Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advantages, challenges and molecular design of different material types used in organic solar cells

Abstract

The performance of organic solar cells (OSCs) has increased substantially over the past 10 years, owing to the development of various high-performance organic electron–acceptor and electron–donor materials, including polymers, small molecules and fullerenes, used in the photoactive layer. Depending on the combination of donor and acceptor materials, OSCs can be categorized into several types: polymer–fullerene, polymer–small molecule, all-polymer and all-small molecule, as well as multicomponent OSCs in which the photoactive layer comprises three or more photoactive components. This Review provides an overview of the historical development of the different material types used in the photoactive layer of solution-processed OSCs and compares their advantages and limitations. Effective molecular design strategies for each type of OSC are discussed and promising research directions highlighted, particularly those relevant to facilitating the industrial manufacturing of OSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Typical organic solar cell device structure and representative photoactive materials used in organic solar cells.
Fig. 2: Timeline of the development of organic solar cell materials.

Similar content being viewed by others

References

  1. Yuen, S. Global Installed PV Capacity Passes 1.18TW — IEA. PV-Tech https://www.pv-tech.org/global-installed-pv-capacity-passes-1-18tw-iea/#:~:Text=It%20reached%20about%201.2TW,International%20Energy%20Agency%20(IEA) (2023).

  2. The Brainy Insights. Solar Cell Market Size by Material (Crystalline [N Material and P Material] and Thin Film), Product (BSF, PERC/PERL/PERT/TOPCON, HJT, IBC & MWT and Others), Technology (Monocrystalline, Polycrystalline, Cadmium Telluride (CDTE), Amorphous Silicon (A-Si) and Copper Indium Gallium Diselenide), End User (Residential, Commercial and Utility), Regions, Global Industry Analysis, Share, Growth, Trends, and Forecast 2023 to 2032. The Brainy Insights http:\\www.thebrainyinsights.com/report/solar-cell-market-13707#summary (2023).

  3. Anctil, A. et al. Cumulative energy demand for small molecule and polymer photovoltaics. Prog. Photovolt. Res. Appl. 21, 1541–1554 (2013).

    Article  CAS  Google Scholar 

  4. Anctil, A. et al. Net energy and cost benefit of transparent organic solar cells in building-integrated applications. Appl. Energy 261, 114429 (2020).

    Article  Google Scholar 

  5. Zhou, Z. & Carbajales-Dale, M. Assessing the photovoltaic technology landscape: efficiency and energy return on investment (EROI). Energy Environ. Sci. 11, 603–608 (2018).

    Article  CAS  Google Scholar 

  6. García-Valverde, R. et al. Life cycle analysis of organic photovoltaic technologies. Prog. Photovolt. Res. Appl. 18, 535–558 (2010).

    Article  Google Scholar 

  7. Roes, A. L. et al. Ex-ante environmental and economic evaluation of polymer photovoltaics. Prog. Photovolt. Res. Appl. 17, 372–393 (2009).

    Article  CAS  Google Scholar 

  8. Heeger, A. J. 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv. Mater. 26, 10–28 (2014).

    Article  CAS  Google Scholar 

  9. Lewis, N. S. Toward cost-effective solar energy use. Science 315, 798–801 (2007).

    Article  CAS  Google Scholar 

  10. Jean, J. et al. Pathways for solar photovoltaics. Energy Environ. Sci. 8, 1200–1219 (2015).

    Article  CAS  Google Scholar 

  11. Martin, B. et al. Techno-economic analysis of roll-to-roll production of perovskite modules using radiation thermal processes. Appl. Energy 307, 118200 (2022).

    Article  CAS  Google Scholar 

  12. Osedach, T. P. et al. Effect of synthetic accessibility on the commercial viability of organic photovoltaics. Energy Environ. Sci. 6, 711–718, (2013).

    Article  CAS  Google Scholar 

  13. Carlson, D. E. & Wronski, C. R. Amorphous silicon solar cell. Appl. Phys. Lett. 28, 671–673 (1976).

    Article  CAS  Google Scholar 

  14. Lungenschmied, C. et al. Flexible, long-lived, large-area, organic solar cells. Sol. Energy Mater. Sol. Cell 91, 379–384 (2007).

    Article  CAS  Google Scholar 

  15. Brus, V. V. et al. Solution-processed semitransparent organic photovoltaics: from molecular design to device performance. Adv. Mater. 31, 1900904 (2019).

    Article  Google Scholar 

  16. Forberich, K. et al. Efficiency limits and color of semitransparent organic solar cells for application in building-integrated photovoltaics. Energy Technol. 3, 1051–1058 (2015).

    Article  CAS  Google Scholar 

  17. Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).

    Article  CAS  Google Scholar 

  18. Jeon, K. E. et al. BLE beacons for internet of things applications: survey, challenges, and opportunities. IEEE Internet Things J. 5, 811–828 (2018).

    Article  Google Scholar 

  19. Gubbi, J. et al. Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660 (2013).

    Article  Google Scholar 

  20. Freitag, M. et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photon. 11, 372–378 (2017).

    Article  CAS  Google Scholar 

  21. Mathews, I. et al. Technology and market perspective for indoor photovoltaic cells. Joule 3, 1415–1426 (2019).

    Article  CAS  Google Scholar 

  22. Foti, M. et al. Efficient flexible thin film silicon module on plastics for indoor energy harvesting. Sol. Energy Mater. Sol. Cell 130, 490–494 (2014).

    Article  CAS  Google Scholar 

  23. Yue, X. et al. Development of an indoor photovoltaic energy harvesting module for autonomous sensors in building air quality applications. IEEE Internet Things J. 4, 2092–2103 (2017).

    Article  Google Scholar 

  24. Lee, C. et al. Over 30% efficient indoor organic photovoltaics enabled by morphological modification using two compatible non-fullerene acceptors. Adv. Energy Mater. 12, 2200275 (2022).

    Article  CAS  Google Scholar 

  25. Ma, L.-K. et al. High-efficiency indoor organic photovoltaics with a band-aligned interlayer. Joule 4, 1486–1500 (2020).

    Article  CAS  Google Scholar 

  26. Zhang, T. et al. A medium-bandgap nonfullerene acceptor enabling organic photovoltaic cells with 30% efficiency under indoor artificial light. Adv. Mater. 34, e2207009 (2022).

    Article  Google Scholar 

  27. Bai, F. et al. A highly crystalline non-fullerene acceptor enabling efficient indoor organic photovoltaics with high EQE and fill factor. Joule 5, 1231–1245 (2021).

    Article  CAS  Google Scholar 

  28. Saeed, M. A. et al. 2D MXene additive‐induced treatment enabling high‐efficiency indoor organic photovoltaics. Adv. Opt. Mater. 11, 2202135 (2022).

    Article  Google Scholar 

  29. Mori, S. et al. Investigation of the organic solar cell characteristics for indoor LED light applications. Jpn. J. Appl. Phys. 54, 071602 (2015).

    Article  Google Scholar 

  30. Yu, G. et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  31. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  CAS  Google Scholar 

  32. Gaspar, H. et al. Recent developments in the optimization of the bulk heterojunction morphology of polymer: fullerene solar cells. Materials 11, 2560 (2018).

    Article  Google Scholar 

  33. Liu, Y. et al. Recent progress in organic solar cells (part I: material science). Sci. China Chem. 65, 224–268 (2022).

    Article  CAS  Google Scholar 

  34. Fu, H. et al. Polymer donors for high-performance non-fullerene organic solar cells. Angew. Chem. Int. Ed. 58, 4442–4453 (2019).

    Article  CAS  Google Scholar 

  35. Schilinsky, P. et al. Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl. Phys. Lett. 81, 3885–3887 (2002).

    Article  CAS  Google Scholar 

  36. Mühlbacher, D. et al. High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18, 2884–2889 (2006).

    Article  Google Scholar 

  37. Liang, Y. et al. For the bright future — bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 (2010).

    Article  CAS  Google Scholar 

  38. Liu, Q. et al. Circumventing UV light induced nanomorphology disorder to achieve long lifetime PTB7-Th:PCBM based solar cells. Adv. Energy Mater. 7, 1701201 (2017).

    Article  Google Scholar 

  39. Liu, Y. et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).

    Article  CAS  Google Scholar 

  40. Zhou, P. et al. Thiophene-fused benzothiadiazole: a strong electron–acceptor unit to build D–A copolymer for highly efficient polymer solar cells. Chem. Mater. 26, 3495–3501 (2014).

    Article  CAS  Google Scholar 

  41. Chen, Z. et al. Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells. Adv. Mater. 26, 2586–2591 (2014).

    Article  CAS  Google Scholar 

  42. Zhao, J. et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, 15027 (2016).

    Article  CAS  Google Scholar 

  43. Lu, L. et al. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115, 12666–12731 (2015).

    Article  CAS  Google Scholar 

  44. Nian, L. et al. Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. J. Am. Chem. Soc. 137, 6995–6998 (2015).

    Article  CAS  Google Scholar 

  45. He, Z. et al. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photon. 9, 174–179 (2015).

    Article  CAS  Google Scholar 

  46. Wan, Q. et al. 10.8% Efficiency polymer solar cells based on PTB7-Th and PC71BM via binary solvent additives treatment. Adv. Funct. Mater. 26, 6635–6640 (2016).

    Article  CAS  Google Scholar 

  47. von Hauff, E. et al. Study of field effect mobility in PCBM films and P3HT:PCBM blends. Sol. Energy Mater. Sol. Cell 87, 149–156 (2005).

    Article  Google Scholar 

  48. Gao, D. et al. Evolution of the electron mobility in polymer solar cells with different fullerene acceptors. ACS Appl. Mater. Interfaces 5, 8038–8043 (2013).

    Article  CAS  Google Scholar 

  49. Fenta, A. D. et al. High efficiency organic photovoltaics with a thick (300 nm) bulk heterojunction comprising a ternary composition of a PFT polymer–PC71BM fullerene–IT4F nonfullerene acceptor. ACS Appl. Energy Mater. 4, 5274–5285 (2021).

    Article  CAS  Google Scholar 

  50. Zhang, D. et al. Recent progress in thick-film organic photovoltaic devices: materials, devices, and processing. SusMat 1, 4–23 (2021).

    Article  CAS  Google Scholar 

  51. Amb, C. M. et al. Aesthetically pleasing conjugated polymer:fullerene blends for blue-green solar cells via roll-to-roll processing. ACS Appl. Mater. Interfaces 4, 1847–1853 (2012).

    Article  CAS  Google Scholar 

  52. Azzopardi, B. et al. Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment. Energy Environ. Sci. 4, 3741–3753, (2011).

    Article  Google Scholar 

  53. Liu, J. et al. Emerging electronic applications of fullerene derivatives: an era beyond OPV. J. Mater. Chem. C 9, 16143–16163 (2021).

    Article  CAS  Google Scholar 

  54. Dey, S. Recent progress in molecular design of fused ring electron acceptors for organic solar cells. Small 15, 1900134 (2019).

    Article  Google Scholar 

  55. Jones, B. A. et al. High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3,4:9,10-bis(dicarboximides). Angew. Chem. Int. Ed. 43, 6363–6366 (2004).

    Article  CAS  Google Scholar 

  56. Yan, Q. et al. Towards rational design of organic electron acceptors for photovoltaics: a study based on perylenediimide derivatives. Chem. Sci. 4, 4389–4394 (2013).

    Article  CAS  Google Scholar 

  57. Weitz, R. T. et al. Organic n-channel transistors based on core-cyanated perylene carboxylic diimide derivatives. J. Am. Chem. Soc. 130, 4637–4645 (2008).

    Article  CAS  Google Scholar 

  58. Kim, S. H. et al. Organic field-effect transistors using perylene. Opt. Mater. 21, 439–443 (2003).

    Article  CAS  Google Scholar 

  59. Li, C. et al. Polyphenylene-based materials for organic photovoltaics. Chem. Rev. 110, 6817–6855 (2010).

    Article  CAS  Google Scholar 

  60. Zhan, X. et al. Rylene and related diimides for organic electronics. Adv. Mater. 23, 268–284 (2011).

    Article  CAS  Google Scholar 

  61. Schmidt-Mende, L. et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119–1122 (2001).

    Article  CAS  Google Scholar 

  62. Zhang, M. et al. Perylene-diimide derived organic photovoltaic materials. Sci. China Chem. 65, 462–485 (2022).

    Article  CAS  Google Scholar 

  63. Cao, J. & Yang, S. Progress in perylene diimides for organic solar cell applications. RSC Adv. 12, 6966–6973 (2022).

    Article  CAS  Google Scholar 

  64. Lin, Y. et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015).

    Article  CAS  Google Scholar 

  65. Jia, B. et al. Enhancing the performance of a fused-ring electron acceptor by unidirectional extension. J. Am. Chem. Soc. 141, 19023–19031 (2019).

    Article  CAS  Google Scholar 

  66. Wang, J. et al. Effect of isomerization on high-performance nonfullerene electron acceptors. J. Am. Chem. Soc. 140, 9140–9147 (2018).

    Article  CAS  Google Scholar 

  67. Cui, Y. et al. Achieving over 15% efficiency in organic photovoltaic cells via copolymer design. Adv. Mater. 31, 1808356 (2019).

    Article  Google Scholar 

  68. Li, S. et al. A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J. Am. Chem. Soc. 140, 7159–7167 (2018).

    Article  CAS  Google Scholar 

  69. Chang, Y. et al. Progress and prospects of thick-film organic solar cells. J. Mater. Chem. A 9, 3125–3150 (2021).

    Article  CAS  Google Scholar 

  70. Wang, J. & Zhan, X. Fused-ring electron acceptors for photovoltaics and beyond. Acc. Chem. Res. 54, 132–143 (2021).

    Article  CAS  Google Scholar 

  71. Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).

    Article  CAS  Google Scholar 

  72. Zhao, J. et al. High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy Environ. Sci. 8, 520–525 (2015).

    Article  CAS  Google Scholar 

  73. Hu, H. et al. Design of donor polymers with strong temperature-dependent aggregation property for efficient organic photovoltaics. Acc. Chem. Res. 50, 2519–2528 (2017).

    Article  CAS  Google Scholar 

  74. Qian, D. et al. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules 45, 9611–9617 (2012).

    Article  CAS  Google Scholar 

  75. Zhang, M. et al. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv. Mater. 27, 4655–4660 (2015).

    Article  CAS  Google Scholar 

  76. Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    Article  CAS  Google Scholar 

  77. Zhan, L. et al. Manipulating charge transfer and transport via intermediary electron acceptor channels enables 19.3% efficiency organic photovoltaics. Adv. Energy Mater. 12, 2201076 (2022).

    Article  CAS  Google Scholar 

  78. Jiang, K. et al. Suppressed recombination loss in organic photovoltaics adopting a planar-mixed heterojunction architecture. Nat. Energy 7, 1076–1086 (2022).

    Article  Google Scholar 

  79. He, C. et al. Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy Environ. Sci. 15, 2537–2544 (2022).

    Article  CAS  Google Scholar 

  80. Sun, R. et al. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor. Adv. Mater. 34, 2110147 (2022).

    Article  CAS  Google Scholar 

  81. Zhu, L. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21, 656–663 (2022).

    Article  CAS  Google Scholar 

  82. Li, P. et al. Banana-shaped electron acceptors with an electron-rich core fragment and 3D packing capability. Carbon Energy 5, e250 (2023).

    Article  CAS  Google Scholar 

  83. Abbas, Z. et al. Optimized vertical phase separation via systematic Y6 inner side-chain modulation for non-halogen solvent processed inverted organic solar cells. Nano Energy 101, 107574 (2022).

    Article  CAS  Google Scholar 

  84. Li, D. et al. Asymmetric non-fullerene small-molecule acceptors toward high-performance organic solar cells. ACS Cent. Sci. 7, 1787–1797 (2021).

    Article  CAS  Google Scholar 

  85. Li, C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605–613 (2021).

    Article  CAS  Google Scholar 

  86. Hofinger, J. et al. Understanding the low voltage losses in high-performance non-fullerene acceptor-based organic solar cells. Mater. Adv. 2, 4291–4302 (2021).

    Article  CAS  Google Scholar 

  87. Zheng, Z. et al. Efficient charge transfer and fine-tuned energy level alignment in a THF-processed fullerene-free organic solar cell with 11.3% efficiency. Adv. Mater. 29, 1604241 (2017).

    Article  Google Scholar 

  88. Zhu, L. et al. Small exciton binding energies enabling direct charge photogeneration towards low-driving-force organic solar cells. Angew. Chem. Int. Ed. 60, 15348–15353 (2021).

    Article  CAS  Google Scholar 

  89. Han, G. & Yi, Y. Molecular insight into efficient charge generation in low-driving-force nonfullerene organic solar cells. Acc. Chem. Res. 55, 869–877 (2022).

    Article  CAS  Google Scholar 

  90. Li, X. et al. Recent advances in Y6-based semiconductors: performance in solar cells, crystallography, and electronic structure. ChemPlusChem 86, 700–708 (2021).

    Article  CAS  Google Scholar 

  91. Gao, W. et al. Achieving 19% power conversion efficiency in planar-mixed heterojunction organic solar cells using a pseudosymmetric electron acceptor. Adv. Mater. 34, 2202089 (2022).

    Article  CAS  Google Scholar 

  92. Liu, S. et al. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat. Photon. 14, 300–305 (2020).

    Article  CAS  Google Scholar 

  93. Zhou, Z. et al. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation. Adv. Mater. 32, 1906324 (2020).

    Article  CAS  Google Scholar 

  94. Song, Y. et al. Fused-heterocycle engineering on asymmetric non-fullerene acceptors enables organic solar cells approaching 29 mA/cm2 short-circuit current density. Chem. Eng. J. 430, 132830 (2022).

    Article  CAS  Google Scholar 

  95. Jiang, K. et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule 3, 3020–3033 (2019).

    Article  CAS  Google Scholar 

  96. Hong, L. et al. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency. Adv. Mater. 31, 1903441 (2019).

    Article  Google Scholar 

  97. Wei, Y. et al. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Adv. Mater. 34, 2204718 (2022).

    Article  CAS  Google Scholar 

  98. Chai, G. et al. Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency. Energy Environ. Sci. 14, 3469–3479 (2021).

    Article  CAS  Google Scholar 

  99. Zhang, J. et al. Alkyl-chain branching of non-fullerene acceptors flanking conjugated side groups toward highly efficient organic solar cells. Adv. Energy Mater. 11, 2102596 (2021).

    Article  CAS  Google Scholar 

  100. Kong, X. et al. The effect of alkyl substitution position of thienyl outer side chains on photovoltaic performance of A–DA′D–A type acceptors. Energy Environ. Sci. 15, 2011–2020 (2022).

    Article  CAS  Google Scholar 

  101. Shang, A. et al. Over 18% binary organic solar cells enabled by isomerization of non-fullerene acceptors with alkylthiophene side chains. Sci. China Chem. 65, 1758–1766 (2022).

    Article  CAS  Google Scholar 

  102. Chen, Y. et al. Asymmetric alkoxy and alkyl substitution on nonfullerene acceptors enabling high-performance organic solar cells. Adv. Energy Mater. 11, 2003141 (2021).

    Article  CAS  Google Scholar 

  103. Murugan, P. et al. Fused ring A–DA′D–A (Y-series) non-fullerene acceptors: recent developments and design strategies for organic photovoltaics. J. Mater. Chem. A 10, 17968–17987 (2022).

    Article  CAS  Google Scholar 

  104. Zhao, J. et al. Recent advances in high-performance organic solar cells enabled by acceptor–donor–acceptor–donor–acceptor (A–DA′D–A) type acceptors. Mater. Chem. Front. 4, 3487–3504 (2020).

    Article  CAS  Google Scholar 

  105. Zhang, Y. et al. Recent progress of Y6-derived asymmetric fused ring electron acceptors. Adv. Funct. Mater. 32, 2205115 (2022).

    Article  CAS  Google Scholar 

  106. Li, X. et al. Benzo[1,2-b:4,5-b′]difuran based polymer donor for high-efficiency (>16%) and stable organic solar cells. Adv. Energy Mater. 12, 2103684 (2022).

    Article  CAS  Google Scholar 

  107. Chen, H. et al. 17.1%-efficient eco-compatible organic solar cells from a dissymmetric 3D network acceptor. Angew. Chem. Int. Ed. 60, 3238–3246 (2021).

    Article  CAS  Google Scholar 

  108. Li, S. et al. Asymmetric electron acceptors for high-efficiency and low-energy-loss organic photovoltaics. Adv. Mater. 32, 2001160 (2020).

    Article  CAS  Google Scholar 

  109. Luo, Z. et al. Fine-tuning energy levels via asymmetric end groups enables polymer solar cells with efficiencies over 17%. Joule 4, 1236–1247 (2020).

    Article  CAS  Google Scholar 

  110. Mishra, A. & Sharma, G. D. Harnessing the structure–performance relationships in designing non-fused ring acceptors for organic solar cells. Angew. Chem. Int. Ed. 62, e202219245 (2023).

    Article  CAS  Google Scholar 

  111. Gao, H. et al. Recent progress in non-fused ring electron acceptors for high performance organic solar cells. Ind. Chem. Mater. 1, 60–78 (2023).

    Article  CAS  Google Scholar 

  112. Peng, W. et al. Simple-structured NIR-absorbing small-molecule acceptors with a thiazolothiazole core: multiple noncovalent conformational locks and D–A effect for efficient OSCs. ACS Appl. Mater. Interfaces 11, 48128–48133 (2019).

    Article  CAS  Google Scholar 

  113. Peng, W. et al. Simple-structured small molecule acceptors constructed by a weakly electron-deficient thiazolothiazole core for high-efficiency non-fullerene organic solar cells. J. Mater. Chem. A 6, 24267–24276 (2018).

    Article  CAS  Google Scholar 

  114. Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).

    Article  CAS  Google Scholar 

  115. Fei, Z. et al. An alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses. Adv. Mater. 30, 1705209 (2018).

    Article  Google Scholar 

  116. Huang, C. et al. Highly efficient organic solar cells based on S,N-heteroacene non-fullerene acceptors. Chem. Mater. 30, 5429–5434 (2018).

    Article  CAS  Google Scholar 

  117. Liu, Y. et al. Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells. J. Am. Chem. Soc. 139, 3356–3359 (2017).

    Article  CAS  Google Scholar 

  118. Yao, H. et al. Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells. Adv. Mater. 28, 8283–8287 (2016).

    Article  CAS  Google Scholar 

  119. Huang, H. et al. Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells. Nat. Commun. 10, 3038 (2019).

    Article  Google Scholar 

  120. Pang, S. et al. Nonfused nonfullerene acceptors with an A–D–A′–D–A framework and a benzothiadiazole core for high-performance organic solar cells. ACS Appl. Mater. Interfaces 12, 16531–16540 (2020).

    Article  CAS  Google Scholar 

  121. Ma, D.-L. et al. Unsymmetrically chlorinated non-fused electron acceptor leads to high-efficiency and stable organic solar cells. Angew. Chem. Int. Ed. 62, e202214931 (2023).

    Article  CAS  Google Scholar 

  122. Kaiser, C. et al. A universal Urbach rule for disordered organic semiconductors. Nat. Commun. 12, 3988 (2021).

    Article  CAS  Google Scholar 

  123. Chen, X.-K. et al. A unified description of non-radiative voltage losses in organic solar cells. Nat. Energy 6, 799–806 (2021).

    Article  CAS  Google Scholar 

  124. Liu, Q. & Vandewal, K. Understanding and suppressing non-radiative recombination losses in non-fullerene organic solar cells. Adv. Mater. 35, 2302452 (2023).

    Article  CAS  Google Scholar 

  125. Badgujar, S. et al. Highly efficient and thermally stable fullerene-free organic solar cells based on a small molecule donor and acceptor. J. Mater. Chem. A 4, 16335–16340 (2016).

    Article  CAS  Google Scholar 

  126. Holliday, S. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).

    Article  CAS  Google Scholar 

  127. Gasparini, N. et al. Exploiting ternary blends for improved photostability in high-efficiency organic solar cells. ACS Energy Lett. 5, 1371–1379 (2020).

    Article  CAS  Google Scholar 

  128. Gasparini, N. et al. Burn-in free nonfullerene-based organic solar cells. Adv. Energy Mater. 7, 1700770 (2017).

    Article  Google Scholar 

  129. Wang, W. et al. Exploring the chemical interaction between diiodooctane and PEDOT-PSS electrode for metal electrode-free nonfullerene organic solar cells. ACS Appl. Mater. Interfaces 12, 3800–3805 (2020).

    Article  CAS  Google Scholar 

  130. Wang, Y. et al. Stability of nonfullerene organic solar cells: from built-in potential and interfacial passivation perspectives. Adv. Energy Mater. 9, 1900157 (2019).

    Article  Google Scholar 

  131. Guo, J. et al. Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. J. Mater. Chem. A 7, 25088–25101 (2019).

    Article  CAS  Google Scholar 

  132. Liu, H. et al. A ring-locking strategy to enhance the chemical and photochemical stability of A–D–A-type non-fullerene acceptors. J. Mater. Chem. A 9, 1080–1088 (2021).

    Article  CAS  Google Scholar 

  133. Bertrandie, J. et al. Air-processable and thermally stable hole transport layer for non-fullerene organic solar cells. ACS Appl. Energy Mater. 5, 1023–1030 (2022).

    Article  CAS  Google Scholar 

  134. Du, X. et al. Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years. Joule 3, 215–226 (2019).

    Article  CAS  Google Scholar 

  135. Du, X. et al. Unraveling the microstructure-related device stability for polymer solar cells based on nonfullerene small-molecular acceptors. Adv. Mater. 32, 1908305 (2020).

    Article  CAS  Google Scholar 

  136. Li, Y. et al. Lifetime over 10,000 hours for organic solar cells with Ir/IrOx electron-transporting layer. Nat. Commun. 14, 1241 (2023).

    Article  CAS  Google Scholar 

  137. Cameron, J. & Skabara, P. J. The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Mater. Horiz. 7, 1759–1772 (2020).

    Article  CAS  Google Scholar 

  138. Dong, X. et al. Two-in-one alcohol-processed PEDOT electrodes produced by solvent exchange for organic solar cells. Energy Environ. Sci. 16, 1511–1519 (2023).

    Article  CAS  Google Scholar 

  139. Jiang, Y. et al. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nat. Energy 7, 352–359 (2022).

    Article  CAS  Google Scholar 

  140. Yu, G. & Heeger, A. J. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J. Appl. Phys. 78, 4510–4515 (1995).

    Article  CAS  Google Scholar 

  141. Fan, Q. et al. Mechanically robust all-polymer solar cells from narrow band gap acceptors with hetero-bridging atoms. Joule 4, 658–672 (2020).

    Article  CAS  Google Scholar 

  142. Sun, H. et al. High-performance n-type polymer semiconductors: applications, recent development, and challenges. Chem 6, 1310–1326 (2020).

    Article  CAS  Google Scholar 

  143. Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

    Article  CAS  Google Scholar 

  144. Zhan, X. et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J. Am. Chem. Soc. 129, 7246–7247 (2007).

    Article  CAS  Google Scholar 

  145. Lee, C. et al. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem. Rev. 119, 8028–8086 (2019).

    Article  CAS  Google Scholar 

  146. Wang, G. et al. All-polymer solar cells: recent progress, challenges, and prospects. Angew. Chem. Int. Ed. 58, 4129–4142 (2019).

    Article  CAS  Google Scholar 

  147. Yang, J. et al. Aromatic-diimide-based n-type conjugated polymers for all-polymer solar cell applications. Adv. Mater. 31, 1804699 (2019).

    Article  CAS  Google Scholar 

  148. Hwang, Y.-J. et al. 7.7% Efficient all-polymer solar cells. Adv. Mater. 27, 4578–4584 (2015).

    Article  CAS  Google Scholar 

  149. Guo, Y. et al. A vinylene-bridged perylenediimide-based polymeric acceptor enabling efficient all-polymer solar cells processed under ambient conditions. Adv. Mater. 28, 8483–8489 (2016).

    Article  CAS  Google Scholar 

  150. Guo, Y. et al. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor. Adv. Mater. 29, 1700309 (2017).

    Article  Google Scholar 

  151. Guo, X. & Watson, M. D. Conjugated polymers from naphthalene bisimide. Org. Lett. 10, 5333–5336 (2008).

    Article  CAS  Google Scholar 

  152. Zhou, K. et al. Morphology control in high-efficiency all-polymer solar cells. InfoMat 4, e12270 (2022).

    Article  CAS  Google Scholar 

  153. Zhu, L. et al. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication. Adv. Mater. 31, 1902899 (2019).

    Article  CAS  Google Scholar 

  154. Gao, L. et al. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 28, 1884–1890 (2016).

    Article  CAS  Google Scholar 

  155. Zhang, Z.-G. & Li, Y. Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 60, 4422–4433 (2021).

    Article  CAS  Google Scholar 

  156. Zhao, R. et al. Organoboron polymer for 10% efficiency all-polymer solar cells. Chem. Mater. 32, 1308–1314 (2020).

    Article  CAS  Google Scholar 

  157. Xu, X. et al. Highly efficient all-polymer solar cells enabled by p-doping of the polymer donor. ACS Energy Lett. 5, 2434–2443 (2020).

    Article  CAS  Google Scholar 

  158. Feng, K. et al. High-performance all-polymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1.28 eV. Adv. Mater. 32, 2001476 (2020).

    Article  CAS  Google Scholar 

  159. Zhang, Z.-G. et al. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 56, 13503–13507 (2017).

    Article  CAS  Google Scholar 

  160. Wang, W. et al. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule 4, 1070–1086 (2020).

    Article  CAS  Google Scholar 

  161. Jia, T. et al. 14.4% efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy 72, 104718 (2020).

    Article  CAS  Google Scholar 

  162. Luo, Z. et al. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15%. Adv. Mater. 32, 2005942 (2020).

    Article  CAS  Google Scholar 

  163. Wang, J. et al. A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness. Adv. Mater. 34, 2205009 (2022).

    Article  CAS  Google Scholar 

  164. Zhang, T. et al. Suppressing the energetic disorder of all-polymer solar cells enables over 18% efficiency. Energy Environ. Sci. 16, 1581–1589 (2023).

    Article  CAS  Google Scholar 

  165. Yang, X. et al. Ternary all-polymer solar cells with efficiency up to 18.14% employing a two-step sequential deposition. Adv. Mater. 35, e2209350 (2022).

    Article  Google Scholar 

  166. Zhang, J. et al. π-Extended conjugated polymer acceptor containing thienylene–vinylene–thienylene unit for high-performance thick-film all-polymer solar cells with superior long-term stability. Adv. Energy Mater. 11, 2102559 (2021).

    Article  CAS  Google Scholar 

  167. Li, Z. et al. A universal strategy via polymerizing non-fullerene small molecule acceptors enables efficient all-polymer solar cells with > 1 year excellent thermal stability. Chem. Eng. J. 430, 132711 (2022).

    Article  CAS  Google Scholar 

  168. Sun, R. et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule 5, 1548–1565 (2021).

    Article  CAS  Google Scholar 

  169. Kim, T. et al. Flexible, highly efficient all-polymer solar cells. Nat. Commun. 6, 8547 (2015).

    Article  CAS  Google Scholar 

  170. Lee, J.-W. et al. Sequentially regular polymer acceptors featuring flexible spacers for high-performance and mechanically robust all-polymer solar cells. Energy Environ. Sci. 15, 4672–4685 (2022).

    Article  CAS  Google Scholar 

  171. Zeng, A. et al. A chlorinated donor polymer achieving high-performance organic solar cells with a wide range of polymer molecular weight. Adv. Funct. Mater. 31, 2102413 (2021).

    Article  CAS  Google Scholar 

  172. Liang, Y. et al. Organic solar cells using oligomer acceptors for improved stability and efficiency. Nat. Energy 7, 1180–1190 (2022).

    Article  CAS  Google Scholar 

  173. Zhao, C. et al. 18.1% Ternary all-polymer solar cells sequentially processed from hydrocarbon solvent with enhanced stability. Adv. Energy Mater. 13, 2300904 (2023).

    Article  CAS  Google Scholar 

  174. Zhao, C. et al. An improved performance of all polymer solar cells enabled by sequential processing via non-halogenated solvents. Nano Energy 104, 107872 (2022).

    Article  CAS  Google Scholar 

  175. Deng, D. et al. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat. Commun. 7, 13740 (2016).

    Article  CAS  Google Scholar 

  176. Zhang, S. et al. Influence of the replacement of alkoxyl with alkylthienyl on photovoltaic properties of two small molecule donors for organic solar cells. Sci. China Chem. 60, 1340–1348 (2017).

    Article  CAS  Google Scholar 

  177. Yang, L. et al. New wide band gap donor for efficient fullerene-free all-small-molecule organic solar cells. J. Am. Chem. Soc. 139, 1958–1966 (2017).

    Article  CAS  Google Scholar 

  178. Li, X. et al. A small molecule donor containing a non-fused ring core for all-small-molecule organic solar cells with high efficiency over 11%. J. Mater. Chem. A 7, 3682–3690 (2019).

    Article  CAS  Google Scholar 

  179. Yang, L. et al. Modulating molecular orientation enables efficient nonfullerene small-molecule organic solar cells. Chem. Mater. 30, 2129–2134 (2018).

    Article  CAS  Google Scholar 

  180. Xu, C. et al. Recent progress in all-small-molecule organic photovoltaics. J. Mater. Chem. A 10, 6291–6329 (2022).

    Article  CAS  Google Scholar 

  181. Ye, W. et al. Nonfullerene all-small-molecule organic solar cells: prospect and limitation. Sol. RRL 4, 2000258 (2020).

    Article  CAS  Google Scholar 

  182. Tang, H. et al. Benzodithiophene-based small-molecule donors for next-generation all-small-molecule organic photovoltaics. Matter 3, 1403–1432 (2020).

    Article  Google Scholar 

  183. Chang, Y. et al. Constructing high-performance all-small-molecule ternary solar cells with the same third component but different mechanisms for fullerene and non-fullerene systems. Adv. Energy Mater. 9, 1900190 (2019).

    Article  Google Scholar 

  184. Shan, T. et al. Spatially orthogonal 2D sidechains optimize morphology in all-small-molecule organic solar cells. Adv. Funct. Mater. 31, 2100750 (2021).

    Article  CAS  Google Scholar 

  185. Ge, J. et al. Asymmetric substitution of end-groups triggers 16.34% efficiency for all-small-molecule organic solar cells. Adv. Mater. 34, 2202752 (2022).

    Article  CAS  Google Scholar 

  186. Ge, J. et al. Solvent annealing enables 15.39% efficiency all-small-molecule solar cells through improved molecule interconnection and reduced non-radiative loss. Adv. Energy Mater. 11, 2100800 (2021).

    Article  CAS  Google Scholar 

  187. Jiang, M. et al. Rational compatibility in a ternary matrix enables all-small-molecule organic solar cells with over 16% efficiency. Energy Environ. Sci. 14, 3945–3953 (2021).

    Article  CAS  Google Scholar 

  188. Liu, Y. et al. High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit. Adv. Mater. 23, 5387–5391 (2011).

    Article  CAS  Google Scholar 

  189. Zhou, J. et al. Small molecules based on benzo[1,2-b:4,5-b′]dithiophene unit for high-performance solution-processed organic solar cells. J. Am. Chem. Soc. 134, 16345–16351 (2012).

    Article  CAS  Google Scholar 

  190. Kan, B. et al. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J. Am. Chem. Soc. 136, 15529–15532 (2014).

    Article  CAS  Google Scholar 

  191. Sun, K. et al. A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nat. Commun. 6, 6013 (2015).

    Article  CAS  Google Scholar 

  192. Tang, H. et al. Donor derivative incorporation: an effective strategy toward high performance all-small-molecule ternary organic solar cells. Adv. Sci. 6, 1901613 (2019).

    Article  CAS  Google Scholar 

  193. Cui, Y. et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 10, 2515 (2019).

    Article  Google Scholar 

  194. Jiang, M. et al. Two-pronged effect of warm solution and solvent–vapor annealing for efficient and stable all-small-molecule organic solar cells. ACS Energy Lett. 6, 2898–2906 (2021).

    Article  CAS  Google Scholar 

  195. Li, Z. et al. Over 17% efficiency all-small-molecule organic solar cells based on an organic molecular donor employing a 2D side chain symmetry breaking strategy. Energy Environ. Sci. 15, 4338–4348 (2022).

    Article  CAS  Google Scholar 

  196. Li, H. et al. Liquid-crystalline small molecules for nonfullerene solar cells with high fill factors and power conversion efficiencies. Adv. Energy Mater. 9, 1803175 (2019).

    Article  Google Scholar 

  197. Gao, K. et al. Over 12% efficiency nonfullerene all-small-molecule organic solar cells with sequentially evolved multilength scale morphologies. Adv. Mater. 31, 1807842 (2019).

    Article  Google Scholar 

  198. Sun, R. et al. High-efficiency all-small-molecule organic solar cells based on an organic molecule donor with an asymmetric thieno[2,3-f] benzofuran unit. Sci. China Chem. 63, 1246–1255 (2020).

    Article  CAS  Google Scholar 

  199. Wang, X. et al. Over 15% efficiency all-small-molecule organic solar cells enabled by a C-shaped small molecule donor with tailorable asymmetric backbone. Nano Energy 81, 105612 (2021).

    Article  CAS  Google Scholar 

  200. Hu, D. et al. A volatile solid additive enables oligothiophene all-small-molecule organic solar cells with excellent commercial viability. Adv. Funct. Mater. 33, 2211873 (2023).

    Article  CAS  Google Scholar 

  201. Nian, L. et al. Approaching 16% efficiency in all-small-molecule organic solar cells based on ternary strategy with a highly crystalline acceptor. Joule 4, 2223–2236 (2020).

    Article  CAS  Google Scholar 

  202. Sun, Y. et al. Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule 6, 2835–2848 (2022).

    Article  CAS  Google Scholar 

  203. Yang, L. et al. Parallel-like bulk heterojunction polymer solar cells. J. Am. Chem. Soc. 134, 5432–5435 (2012).

    Article  CAS  Google Scholar 

  204. Khlyabich, P. P. et al. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. J. Am. Chem. Soc. 134, 9074–9077 (2012).

    Article  CAS  Google Scholar 

  205. Khlyabich, P. P. et al. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 133, 14534–14537 (2011).

    Article  CAS  Google Scholar 

  206. Street, R. A. et al. Origin of the tunable open-circuit voltage in ternary blend bulk heterojunction organic solar cells. J. Am. Chem. Soc. 135, 986–989 (2013).

    Article  CAS  Google Scholar 

  207. Liu, T. et al. Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors. Energy Environ. Sci. 11, 3275–3282 (2018).

    Article  CAS  Google Scholar 

  208. Hultmark, S. et al. Suppressing co-crystallization of halogenated non-fullerene acceptors for thermally stable ternary solar cells. Adv. Funct. Mater. 30, 2005462 (2020).

    Article  CAS  Google Scholar 

  209. Jung, S. et al. Effect of third component on efficiency and stability in ternary organic solar cells: more than a simple superposition. Sol. RRL 6, 2100819 (2022).

    Article  CAS  Google Scholar 

  210. Xu, X. et al. Ternary blend organic solar cells: understanding the morphology from recent progress. Adv. Mater. 34, 2107476 (2022).

    Article  CAS  Google Scholar 

  211. Fan, B. et al. Formation of vitrified solid solution enables simultaneously efficient and stable organic solar cells. ACS Energy Lett. 6, 3522–3529 (2021).

    Article  CAS  Google Scholar 

  212. Zhang, G. et al. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev. 118, 3447–3507 (2018).

    Article  CAS  Google Scholar 

  213. Zhu, Y. et al. Rational strategy to stabilize an unstable high-efficiency binary nonfullerene organic solar cells with a third component. Adv. Energy Mater. 9, 1900376 (2019).

    Article  Google Scholar 

  214. Xie, Y. et al. Morphology control enables efficient ternary organic solar cells. Adv. Mater. 30, 1803045 (2018).

    Article  Google Scholar 

  215. Zhang, H. et al. Improved domain size and purity enables efficient all-small-molecule ternary solar cells. Adv. Mater. 29, 1703777 (2017).

    Article  Google Scholar 

  216. Li, N. et al. Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nat. Commun. 8, 14541 (2017).

    Article  CAS  Google Scholar 

  217. He, Y. et al. Industrial viability of single-component organic solar cells. Joule 6, 1160–1171 (2022).

    Article  CAS  Google Scholar 

  218. Liang, S. et al. Double-cable conjugated polymers with pendant rylene diimides for single-component organic solar cells. Acc. Chem. Res. 54, 2227–2237 (2021).

    Article  CAS  Google Scholar 

  219. He, Y. et al. Evidencing excellent thermal- and photostability for single-component organic solar cells with inherently built-in microstructure. Adv. Energy Mater. 9, 1900409 (2019).

    Article  Google Scholar 

  220. Lai, W. et al. Diketopyrrolopyrrole-based conjugated polymers with perylene bisimide side chains for single-component organic solar cells. Chem. Mater. 29, 7073–7077 (2017).

    Article  CAS  Google Scholar 

  221. Yang, X. et al. Over 13% efficient single-component organic solar cells enabled by adjusting the conjugated-length of intermediate PBDB-T block. Adv. Funct. Mater. 33, 2208412 (2023).

    Article  CAS  Google Scholar 

  222. Liu, S. et al. Printable and large-area organic solar cells enabled by a ternary pseudo-planar heterojunction strategy. Adv. Funct. Mater. 30, 2003223 (2020).

    Article  CAS  Google Scholar 

  223. Sun, R. et al. A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells: rational control of vertical stratification for high performance. Energy Environ. Sci. 12, 3118–3132 (2019).

    Article  CAS  Google Scholar 

  224. Sun, R. et al. A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Joule 4, 407–419 (2020).

    Article  CAS  Google Scholar 

  225. Jee, M. H. et al. Recent advances in nonfullerene acceptor-based layer-by-layer organic solar cells using a solution process. Adv. Sci. 9, 2201876 (2022).

    Article  CAS  Google Scholar 

  226. Guo, S. et al. Toward high-performance organic photovoltaics: the new cooperation of sequential solution-processing and promising non-fullerene acceptors. Mater. Horiz. 9, 2097–2108 (2022).

    Article  CAS  Google Scholar 

  227. Xu, X. et al. Sequential deposition of multicomponent bulk heterojunctions increases efficiency of organic solar cells. Adv. Mater. 35, 2208997 (2023).

    Article  CAS  Google Scholar 

  228. Chen, T. et al. Compromising charge generation and recombination of organic photovoltaics with mixed diluents strategy for certified 19.4% efficiency. Adv. Mater. 35, e2300400 (2023).

    Article  Google Scholar 

  229. Yang, W. et al. Balancing the efficiency, stability, and cost potential for organic solar cells via a new figure of merit. Joule 5, 1209–1230 (2021).

    Article  Google Scholar 

  230. Li, N. et al. Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ. Sci. 11, 1355–1361 (2018).

    Article  CAS  Google Scholar 

  231. Lee, J.-W. et al. Linker engineering of dimerized small molecule acceptors for highly efficient and stable organic solar cells. ACS Energy Lett. 8, 1344–1353 (2023).

    Article  CAS  Google Scholar 

  232. Sun, C. et al. Dimerized small-molecule acceptors enable efficient and stable organic solar cells. Joule 7, 416–430 (2023).

    Article  CAS  Google Scholar 

  233. Zhang, L. et al. ‘N-π-N’ type oligomeric acceptor achieves an OPV efficiency of 18.19% with low energy loss and excellent stability. Adv. Sci. 9, 2202513 (2022).

    Article  Google Scholar 

  234. Li, S. et al. Tethered small-molecule acceptors simultaneously enhance the efficiency and stability of polymer solar cells. Adv. Mater. 35, 2206563 (2023).

    Article  CAS  Google Scholar 

  235. Langner, S. et al. Beyond ternary OPV: high-throughput experimentation and self-driving laboratories optimize multicomponent systems. Adv. Mater. 32, 1907801 (2020).

    Article  CAS  Google Scholar 

  236. Du, X. et al. Elucidating the full potential of OPV materials utilizing a high-throughput robot-based platform and machine learning. Joule 5, 495–506 (2021).

    Article  CAS  Google Scholar 

  237. MacLeod, B. P. et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci. Adv. 6, eaaz8867 (2020).

    Article  CAS  Google Scholar 

  238. Sun, R. et al. 18.2%-Efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor. Joule 7, 221–237 (2023).

    Article  CAS  Google Scholar 

  239. Ma, R. et al. Unveiling the morphological and physical mechanism of burn-in loss alleviation by ternary matrix toward stable and efficient all-polymer solar cells. Adv. Mater. 35, e2212275 (2023).

    Article  Google Scholar 

  240. Hu, D. et al. 15.34% Efficiency all-small-molecule organic solar cells with an improved fill factor enabled by a fullerene additive. Energy Environ. Sci. 13, 2134–2141 (2020).

    Article  CAS  Google Scholar 

  241. Piradi, V. et al. Panchromatic ternary organic solar cells with porphyrin dimers and absorption-complementary benzodithiophene-based small molecules. ACS Appl. Mater. Interfaces 11, 6283–6291 (2019).

    Article  CAS  Google Scholar 

  242. Zhang, Z. et al. Polymerized small-molecule acceptor as an interface modulator to increase the performance of all-small-molecule solar cells. Adv. Energy Mater. 12, 2102394 (2022).

    Article  CAS  Google Scholar 

  243. Jin, K. et al. 18.69% PCE from organic solar cells. J. Semiconduct. 42, 060502 (2021).

    Article  Google Scholar 

  244. Yu, X. et al. Ternary organic solar cells with enhanced charge transfer and stability combining the advantages of polymer acceptors and fullerene acceptors. Org. Electron. 104, 106471 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H. Yan acknowledges support from a Tencent Xplorer Prize.

Author information

Authors and Affiliations

Authors

Contributions

J.Y., G.Z. and H. Yu researched data for the paper. All authors contributed substantially to discussion of the content, wrote the paper and reviewed and/or edited the paper before submission.

Corresponding authors

Correspondence to Guangye Zhang or He Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Xian-Kai Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, J., Zhang, G., Yu, H. et al. Advantages, challenges and molecular design of different material types used in organic solar cells. Nat Rev Mater 9, 46–62 (2024). https://doi.org/10.1038/s41578-023-00618-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00618-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing