Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vapour-phase deposition of two-dimensional layered chalcogenides

Abstract

Two-dimensional (2D) layered materials are attracting a lot of attention because of unique physicochemical properties that are intriguing for both fundamental research and emerging technological applications. In particular, 2D layered chalcogenides have diverse properties that depend on their compositions and phases and hold great promise for many applications. Reliable scaled-up synthesis of high-quality 2D layered chalcogenides is a first and necessary step towards their real-world applications, and vapour-phase deposition has emerged as one of the closest practical solutions to achieve this goal. In this Review, we aim to provide a timely discussion on the latest advancements and status of the vapour-phase deposition of 2D layered chalcogenides. We identify critical research aims in terms of material synthesis before the translation of 2D layered chalcogenides from laboratory to manufacturing scale can be realized and highlight research progresses towards those aims. We further discuss the remaining technical challenges that need to be tackled and the future opportunities in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vapour-phase deposition techniques for 2D layered chalcogenides.
Fig. 2: Efforts towards developing robust vapour-phase approaches for synthesizing versatile 2D layered chalcogenides.
Fig. 3: Efforts towards the synthesis of wafer-scale single-crystalline 2D layered chalcogenides.
Fig. 4: Efforts towards controlling point defects in 2D layered chalcogenides during the synthesis process.
Fig. 5: Efforts towards assisting 2D device fabrication and integration processes by controlled synthesis approaches.
Fig. 6: Efforts towards developing new 2D materials with emerging functionalities.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  CAS  Google Scholar 

  3. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photon. 6, 749–758 (2012).

    Article  CAS  Google Scholar 

  4. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  CAS  Google Scholar 

  5. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  6. Zhou, J. et al. Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nat. Mater. https://doi.org/10.1038/s41563-022-01291-5 (2022). This study demonstrates the importance of regulating the precursors’ vapour pressure for effectively engineering the phase and composition of synthesized 2D materials.

  7. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. https://doi.org/10.1038/natrevmats.2017.33 (2017).

  8. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  9. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  10. Lembke, D., Bertolazzi, S. & Kis, A. Single-layer MoS2 electronics. Acc. Chem. Res. 48, 100–110 (2015).

    Article  CAS  Google Scholar 

  11. Hwangbo, S., Hu, L., Hoang, A. T., Choi, J. Y. & Ahn, J.-H. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 17, 500–506 (2022).

    Article  CAS  Google Scholar 

  12. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  13. Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    Article  CAS  Google Scholar 

  14. Choi, M. et al. Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane. Sci. Adv. 6, eabb5898 (2020).

    Article  CAS  Google Scholar 

  15. Hoang, A. T. et al. Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01460-w (2023).

  16. Wang, S. et al. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022).

    Article  CAS  Google Scholar 

  17. Wang, S., Liu, X. & Zhou, P. The road for 2D semiconductors in the silicon age. Adv. Mater. 34, 2106886 (2022).

    Article  CAS  Google Scholar 

  18. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765–769 (2015).

    Article  CAS  Google Scholar 

  19. Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    Article  CAS  Google Scholar 

  20. Yu, W. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 31, 1903779 (2019).

    Article  CAS  Google Scholar 

  21. Zheng, C. et al. Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv. 4, eaar7720 (2018).

    Article  Google Scholar 

  22. Luo, Y. et al. Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor. Nat. Nanotechnol. 18, 350–356 (2023).

    Article  CAS  Google Scholar 

  23. Xue, F. et al. Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater. 28, 1803738 (2018).

    Article  Google Scholar 

  24. Vargas, A. et al. Tunable and laser-reconfigurable 2D heterocrystals obtained by epitaxial stacking of crystallographically incommensurate Bi2Se3 and MoS2 atomic layers. Sci. Adv. 3, e1601741 (2017).

  25. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  CAS  Google Scholar 

  26. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  27. Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    Article  CAS  Google Scholar 

  28. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article  CAS  Google Scholar 

  29. Deng, Y. et al. Controlled growth of 3R phase tantalum diselenide and its enhanced superconductivity. J. Am. Chem. Soc. 142, 2948–2955 (2020).

    Article  CAS  Google Scholar 

  30. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  CAS  Google Scholar 

  31. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  CAS  Google Scholar 

  32. Tan, Q. et al. Layer-dependent correlated phases in WSe2/MoS2 moiré superlattice. Nat. Mater. https://doi.org/10.1038/s41563-023-01521-4 (2023).

  33. Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    Article  CAS  Google Scholar 

  34. Ahn, E. C. 2D materials for spintronic devices. npj 2D Mater. Appl. 4, 17 (2020).

    Article  CAS  Google Scholar 

  35. Ross, J. S. et al. Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett. 17, 638–643 (2017).

    Article  CAS  Google Scholar 

  36. Coogan, Á. & Gun’ko, Y. K. Solution-based ‘bottom-up’ synthesis of group VI transition metal dichalcogenides and their applications. Mater. Adv. 2, 146–164 (2021).

    Article  CAS  Google Scholar 

  37. Sun, Y., Terrones, M. & Schaak, R. E. Colloidal nanostructures of transition-metal dichalcogenides. Acc. Chem. Res. 54, 1517–1527 (2021).

    Article  CAS  Google Scholar 

  38. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  CAS  Google Scholar 

  39. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  40. Shi, Y., Li, H. & Li, L.-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44, 2744–2756 (2015).

    Article  CAS  Google Scholar 

  41. Cai, Z., Liu, B., Zou, X. & Cheng, H.-M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118, 6091–6133 (2018).

    Article  CAS  Google Scholar 

  42. Kang, T. et al. Strategies for controlled growth of transition metal dichalcogenides by chemical vapor deposition for integrated electronics. ACS Mater. Au 2, 665–685 (2022).

    Article  CAS  Google Scholar 

  43. Venables, J. A., Spiller, G. D. T. & Hanbucken, M. Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399 (1984).

    Article  Google Scholar 

  44. Sun, L. et al. Chemical vapour deposition. Nat. Rev. Methods Primers 1, 5 (2021).

    Article  CAS  Google Scholar 

  45. Reichelt, K. Nucleation and growth of thin films. Vacuum 38, 1083–1099 (1988).

    Article  CAS  Google Scholar 

  46. Dong, J., Zhang, L., Wu, B., Ding, F. & Liu, Y. Theoretical study of chemical vapor deposition synthesis of graphene and beyond: challenges and perspectives. J. Phys. Chem. Lett. 12, 7942–7963 (2021).

    Article  CAS  Google Scholar 

  47. Choudhury, T. H., Zhang, X., Al Balushi, Z. Y., Chubarov, M. & Redwing, J. M. Epitaxial growth of two-dimensional layered transition metal dichalcogenides. Annu. Rev. Mater. Res. 50, 155–177 (2020). This review article summarizes the fundamentals and technical approaches for the epitaxy of 2D layered TMD materials, as well as the characterization techniques for large-area epitaxial films.

    Article  CAS  Google Scholar 

  48. Mortelmans, W., De Gendt, S., Heyns, M. & Merckling, C. Epitaxy of 2D chalcogenides: aspects and consequences of weak van der Waals coupling. Appl. Mater. Today 22, 100975 (2021).

    Article  Google Scholar 

  49. Zhu, J. et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01375-6 (2023). This study demonstrates a back-end-of-line compatible, low-temperature MOCVD growth approach and subsequent device fabrication process flow on a 200-mm platform, enabling the direct integration of 2D MoS2 transistors with silicon CMOS circuits.

  50. Bhowmik, S. & Govind Rajan, A. Chemical vapor deposition of 2D materials: a review of modeling, simulation, and machine learning studies. iScience 25, 103832 (2022).

    Article  Google Scholar 

  51. Lei, J., Xie, Y., Kutana, A., Bets, K. V. & Yakobson, B. I. Salt-assisted MoS2 growth: molecular mechanisms from the first principles. J. Am. Chem. Soc. 144, 7497–7503 (2022).

    Article  CAS  Google Scholar 

  52. Momeni, K. et al. A computational framework for guiding the MOCVD-growth of wafer-scale 2D materials. npj Comput. Mater. https://doi.org/10.1038/s41524-022-00936-y (2022).

  53. May, A. F., Yan, J. & McGuire, M. A. A practical guide for crystal growth of van der Waals layered materials. J. Appl. Phys. 128, 051101 (2020).

    Article  CAS  Google Scholar 

  54. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    Article  CAS  Google Scholar 

  55. Liu, K.-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    Article  CAS  Google Scholar 

  56. Lee, Y.-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  CAS  Google Scholar 

  57. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018). This work presents a molten-salt-assisted CVD approach for synthesizing a large variety of 2D layered chalcogenides.

    Article  CAS  Google Scholar 

  58. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    Article  CAS  Google Scholar 

  59. Gong, Y. et al. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 14, 442–449 (2014).

    Article  CAS  Google Scholar 

  60. Zhang, T. et al. Universal in situ substitutional doping of transition metal dichalcogenides by liquid-phase precursor-assisted synthesis. ACS Nano 14, 4326–4335 (2020).

    Article  CAS  Google Scholar 

  61. Ling, X. et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 14, 464–472 (2014).

    Article  CAS  Google Scholar 

  62. Li, S. et al. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1, 60–66 (2015).

    Article  Google Scholar 

  63. Lee, Y.-H. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 1852–1857 (2013).

    Article  CAS  Google Scholar 

  64. Wang, S. et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 26, 6371–6379 (2014).

    Article  CAS  Google Scholar 

  65. Zhang, F. et al. Controlled synthesis of 2D transition metal dichalcogenides: from vertical to planar MoS2. 2D Mater. 4, 025029 (2017).

    Article  Google Scholar 

  66. Yang, P. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018).

    Article  Google Scholar 

  67. Wang, Q. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 20, 7193–7199 (2020).

    Article  CAS  Google Scholar 

  68. Zhang, Z. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).

    Article  CAS  Google Scholar 

  69. Dumcenco, D. et al. Large-area epitaxial monolayer MoS2. ACS Nano 9, 4611–4620 (2015).

    Article  CAS  Google Scholar 

  70. Guo, Y. et al. Additive manufacturing of patterned 2D semiconductor through recyclable masked growth. Proc. Natl Acad. Sci. USA 116, 3437–3442 (2019).

    Article  CAS  Google Scholar 

  71. Xue, G. et al. Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. https://doi.org/10.1016/j.scib.2023.06.037 (2023). This study presents a modularized growth strategy for the batch production of wafer-scale TMDs of up to 12inches.

  72. Choudhury, T. H. et al. Chalcogen precursor effect on cold-wall gas-source chemical vapor deposition growth of WS2. Cryst. Growth Des. 18, 4357–4364 (2018).

    Article  CAS  Google Scholar 

  73. Lunceford, C., Borcean, E. & Drucker, J. Uniform and repeatable cold-wall chemical vapor deposition synthesis of single-layer MoS2. Cryst. Growth Des. 16, 988–995 (2016).

    Article  CAS  Google Scholar 

  74. Lin, Y.-C. et al. Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano 12, 965–975 (2018).

    Article  CAS  Google Scholar 

  75. Zhang, X. et al. Diffusion-controlled epitaxy of large area coalesced WSe2 monolayers on sapphire. Nano Lett. 18, 1049–1056 (2018). This study achieves the epitaxial growth of large-area monolayer WSe2 films by MOCVD with distinctly controlled nucleation, domain ripening and lateral growth stages.

    Article  CAS  Google Scholar 

  76. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  Google Scholar 

  77. Kang, M. et al. Low-temperature and high-quality growth of Bi2O2Se layered semiconductors via cracking metal–organic chemical vapor Deposition. ACS Nano 15, 8715–8723 (2021).

    Article  CAS  Google Scholar 

  78. Noh, G. et al. Large memory window of van der Waals heterostructure devices based on MOCVD-grown 2D layered Ge4Se9. Adv. Mater. 34, 2204982 (2022).

    Article  CAS  Google Scholar 

  79. Xie, S. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018). This work demonstrates coherent in-plane TMD superlattices with a strong epitaxial strain by a controlled MOCVD strategy.

    Article  CAS  Google Scholar 

  80. Jin, G. et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol. 16, 1092–1098 (2021).

    Article  CAS  Google Scholar 

  81. Cohen, A. et al. Growth-etch metal–organic chemical vapor deposition approach of WS2 atomic layers. ACS Nano 15, 526–538 (2021).

    Article  CAS  Google Scholar 

  82. Devi, A. ‘Old chemistries’ for new applications: perspectives for development of precursors for MOCVD and ALD applications. Coord. Chem. Rev. 257, 3332–3384 (2013).

    Article  CAS  Google Scholar 

  83. Zhang, Z. et al. Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl Sci. Rev. 7, 737–744 (2020).

    Article  CAS  Google Scholar 

  84. Yang, X. et al. Strain-induced alternating photoluminescence segmentation in hexagonal monolayer tungsten disulfide grown by physical vapor deposition. ACS Appl. Mater. Interfaces 13, 46164–46170 (2021).

    Article  CAS  Google Scholar 

  85. Chiu, M.-H. et al. Growth of large-sized 2D ultrathin SnSe crystals with in-plane ferroelectricity. Adv. Electron. Mater. 2201031, https://doi.org/10.1002/aelm.202201031 (2023).

  86. Feng, Q. et al. Growth of MoS2(1–x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano 9, 7450–7455 (2015).

    Article  CAS  Google Scholar 

  87. Tao, J. et al. Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale 7, 2497–2503 (2015).

    Article  CAS  Google Scholar 

  88. Serna, M. I. et al. Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control. ACS Nano 10, 6054–6061 (2016).

    Article  CAS  Google Scholar 

  89. Clark, G. et al. Vapor-transport growth of high optical quality WSe2 monolayers. APL Mater. 2, 101101 (2014).

    Article  Google Scholar 

  90. Wu, S. et al. Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7, 2768–2772 (2013).

    Article  CAS  Google Scholar 

  91. Feng, Q. et al. Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys. Adv. Mater. 26, 2648–2653 (2014).

    Article  CAS  Google Scholar 

  92. Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).

    Article  CAS  Google Scholar 

  93. Modtland, B. J., Navarro-Moratalla, E., Ji, X., Baldo, M. & Kong, J. Monolayer tungsten disulfide (WS2) via chlorine-driven chemical vapor transport. Small 13, 1701232 (2017).

    Article  Google Scholar 

  94. Cho, A. Y. & Arthur, J. R. Molecular beam epitaxy. Prog. Solid. State Chem. 10, 157–191 (1975).

    Article  Google Scholar 

  95. Chen, X., Ma, X.-C., He, K., Jia, J.-F. & Xue, Q.-K. Molecular beam epitaxial growth of topological insulators. Adv. Mater. 23, 1162–1165 (2011).

    Article  CAS  Google Scholar 

  96. Singh, D. K. & Gupta, G. van der Waals epitaxy of transition metal dichalcogenides via molecular beam epitaxy: looking back and moving forward. Mater. Adv. 3, 6142–6156 (2022).

    Article  CAS  Google Scholar 

  97. Ugeda, M. M. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 12, 92–97 (2016).

    Article  CAS  Google Scholar 

  98. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    Article  CAS  Google Scholar 

  99. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  CAS  Google Scholar 

  100. Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9, 111–115 (2014).

    Article  CAS  Google Scholar 

  101. Mortelmans, W. et al. Measuring and then eliminating twin domains in SnSe thin films using fast optical metrology and molecular beam epitaxy. ACS Nano 16, 9472–9478 (2022). This study demonstrates a substrate engineering approach for eliminating twin boundaries in molecular-beam-epitaxy-grown 2D SnSe films.

    Article  CAS  Google Scholar 

  102. Mattinen, M., Leskelä, M. & Ritala, M. Atomic layer deposition of 2D metal dichalcogenides for electronics, catalysis, energy storage, and beyond. Adv. Mater. Interfaces 8, 2001677 (2021).

    Article  CAS  Google Scholar 

  103. Tan, L. K. et al. Atomic layer deposition of a MoS2 film. Nanoscale 6, 10584–10588 (2014).

    Article  CAS  Google Scholar 

  104. Jurca, T. et al. Low-temperature atomic layer deposition of MoS2 films. Angew. Chem. Int. Ed. 56, 4991–4995 (2017).

    Article  CAS  Google Scholar 

  105. Mattinen, M. et al. Atomic layer deposition of large-area polycrystalline transition metal dichalcogenides from 100 °C through control of plasma chemistry. Chem. Mater. 34, 7280–7292 (2022).

    Article  CAS  Google Scholar 

  106. Kim, Y. et al. Atomic-layer-deposition-based 2D transition metal chalcogenides: synthesis, modulation, and applications. Adv. Mater. 33, e2005907 (2021).

    Article  Google Scholar 

  107. Kim, D. H. et al. Wafer-scale growth of a MoS2 monolayer via one cycle of atomic layer deposition: an adsorbate control method. Chem. Mater. 33, 4099–4105 (2021).

    Article  CAS  Google Scholar 

  108. Aspiotis, N. et al. Large-area synthesis of high electrical performance MoS2 by a commercially scalable atomic layer deposition process. npj 2D Mater. Appl. 7, 18 (2023).

    Article  CAS  Google Scholar 

  109. Deijkers, J. H. et al. MoS2 synthesized by atomic layer deposition as Cu diffusion barrier. Adv. Mater. Interfaces 10, 2202426 (2023).

    Article  CAS  Google Scholar 

  110. Li, X. et al. Surfactant-mediated growth and patterning of atomically thin transition metal dichalcogenides. ACS Nano 14, 6570–6581 (2020).

    Article  CAS  Google Scholar 

  111. Li, S. et al. Mixed-salt enhanced chemical vapor deposition of two-dimensional transition metal dichalcogenides. Chem. Mater. 33, 7301–7308 (2021).

    Article  CAS  Google Scholar 

  112. Kim, H., Ovchinnikov, D., Deiana, D., Unuchek, D. & Kis, A. Suppressing nucleation in metal–organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett. 17, 5056–5063 (2017).

    Article  CAS  Google Scholar 

  113. Zhang, K. et al. Considerations for utilizing sodium chloride in epitaxial molybdenum disulfide. ACS Appl. Mater. Interfaces 10, 40831–40837 (2018).

    Article  CAS  Google Scholar 

  114. Constant, I., Tardif, F. & Derrien, J. Deposition and removal of sodium contamination on silicon wafers. Semicond. Sci. Technol. 15, 61 (2000).

    Article  CAS  Google Scholar 

  115. Shivayogimath, A. et al. A universal approach for the synthesis of two-dimensional binary compounds. Nat. Commun. 10, 2957 (2019).

    Article  Google Scholar 

  116. Cai, Z. et al. Dissolution-precipitation growth of uniform and clean two dimensional transition metal dichalcogenides. Natl Sci. Rev. 8, nwaa115 (2021).

    Article  CAS  Google Scholar 

  117. Niu, L. et al. Van der Waals template-assisted low-temperature epitaxial growth of 2D atomic crystals. Adv. Funct. Mater. 32, 2202580 (2022).

    Article  CAS  Google Scholar 

  118. Zhang, K. et al. Epitaxial substitution of metal iodides for low-temperature growth of two-dimensional metal chalcogenides. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01326-1 (2023). This work reports a generalized epitaxial substitution approach that can synthesize crystalline 2D layered chalcogenides and their heterostructures at temperatures below 400°C.

  119. Islam, Z. & Haque, A. Defects and grain boundary effects in MoS2: a molecular dynamics study. J. Phys. Chem. Solids 148, 109669 (2021).

    Article  CAS  Google Scholar 

  120. Sangwan, V. K. et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10, 403–406 (2015).

    Article  CAS  Google Scholar 

  121. He, Y. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 11, 57 (2020).

    Article  CAS  Google Scholar 

  122. Wu, T. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater. 15, 43–47 (2016).

    Article  CAS  Google Scholar 

  123. Chen, J. et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 139, 1073–1076 (2017).

    Article  CAS  Google Scholar 

  124. Gong, Y. et al. Synthesis of millimeter-scale transition metal dichalcogenides single crystals. Adv. Funct. Mater. 26, 2009–2015 (2016).

    Article  CAS  Google Scholar 

  125. Zafar, A. et al. Sulfur-mastery: precise synthesis of 2D transition metal dichalcogenides. Adv. Funct. Mater. 29, 1809261 (2019).

    Article  Google Scholar 

  126. Ji, Q. et al. Revealing the Brønsted–Evans–Polanyi relation in halide-activated fast MoS2 growth toward millimeter-sized 2D crystals. Sci. Adv. 7, eabj3274 (2021).

    Article  CAS  Google Scholar 

  127. Suzuki, H. et al. Surface diffusion-limited growth of large and high-quality monolayer transition metal dichalcogenides in confined space of microreactor. ACS Nano 16, 11360–11373 (2022).

    Article  CAS  Google Scholar 

  128. Xu, X. et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021). This work develops a seeded epitaxy method that uses a small 2H-MoTe2 seeding crystal to direct the epitaxial growth of wafer-scale single-crystalline 2H-MoTe2.

    Article  CAS  Google Scholar 

  129. Gao, Y. et al. Ultrafast growth of high-quality monolayer WSe2 on Au. Adv. Mater. 29, 1700990 (2017).

    Article  Google Scholar 

  130. Gao, Y. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 6, 8569 (2015).

    Article  CAS  Google Scholar 

  131. Wang, J. et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 17, 33–38 (2022).

    Article  CAS  Google Scholar 

  132. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021). This study demonstrates a step-edge-guided unidirectional nucleation and growth approach, resulting in wafer-scale single-crystalline MoS2 monolayers.

    Article  CAS  Google Scholar 

  133. Nguyen, V. L. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 27, 1376–1382 (2015).

    Article  CAS  Google Scholar 

  134. Ma, Y. et al. Metallic twin grain boundaries embedded in MoSe2 monolayers grown by molecular beam epitaxy. ACS Nano 11, 5130–5139 (2017).

    Article  CAS  Google Scholar 

  135. Dong, J., Zhang, L., Dai, X. & Ding, F. The epitaxy of 2D materials growth. Nat. Commun. 11, 5862 (2020).

    Article  CAS  Google Scholar 

  136. Xu, X. & Liu, K. Progress and perspective on the growth of two-dimensional single crystals. Sci. Bull. 67, 1410–1412 (2022).

    Article  CAS  Google Scholar 

  137. Fu, J.-H. et al. Oriented lateral growth of two-dimensional materials on c-plane sapphire. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01445-9 (2023). This report suggests the dominant role of the surface symmetry of c-plane sapphire in breaking the energy degeneracy of antiparallel 2D TMD domains and in enabling unidirectional epitaxy.

  138. Zhu, H. et al. Step engineering for nucleation and domain orientation control in WSe2 epitaxy on c-plane sapphire. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01456-6 (2023).

  139. Yang, P. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14, 5036–5045 (2020).

    Article  CAS  Google Scholar 

  140. Zheng, P. et al. Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides. Nat. Commun. 14, 592 (2023).

    Article  CAS  Google Scholar 

  141. Reifsnyder Hickey, D. et al. Illuminating invisible grain boundaries in coalesced single-orientation WS2 monolayer films. Nano Lett. 21, 6487–6495 (2021).

    Article  CAS  Google Scholar 

  142. Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).

    Article  CAS  Google Scholar 

  143. Wang, Q. et al. Layer-by-layer epitaxy of multi-layer MoS2 wafers. Natl Sci. Rev. 9, nwac077 (2022).

    Article  CAS  Google Scholar 

  144. Wang, H. et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 8, 394 (2017).

    Article  Google Scholar 

  145. Wan, Y. et al. Low-defect-density WS2 by hydroxide vapor phase deposition. Nat. Commun. 13, 4149 (2022). This work develops a hydroxide vapour-phase deposition method that aids the synthesis of low-defect-density monolayer WS2 with good electrical performances.

    Article  CAS  Google Scholar 

  146. Zhang, T. et al. Spatial control of substitutional dopants in hexagonal monolayer WS2: the effect of edge termination. Small 19, 2205800 (2023).

    Article  CAS  Google Scholar 

  147. Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015).

    Article  CAS  Google Scholar 

  148. Zuo, Y. et al. Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat. Commun. 13, 1007 (2022).

    Article  CAS  Google Scholar 

  149. Yu, Z. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5, 5290 (2014).

    Article  CAS  Google Scholar 

  150. Feng, S. et al. Synthesis of ultrahigh-quality monolayer molybdenum disulfide through in situ defect healing with thiol molecules. Small 16, 2003357 (2020).

    Article  CAS  Google Scholar 

  151. Sun, Z. et al. Statistical assessment of high-performance scaled double-gate transistors from monolayer WS2. ACS Nano 16, 14942–14950 (2022).

    Article  CAS  Google Scholar 

  152. Lin, H. et al. Growth of environmentally stable transition metal selenide films. Nat. Mater. 18, 602–607 (2019).

    Article  CAS  Google Scholar 

  153. Cochrane, K. A. et al. Intentional carbon doping reveals CH as an abundant charged impurity in nominally undoped synthetic WS2 and WSe2. 2D Mater. 7, 031003 (2020).

    Article  CAS  Google Scholar 

  154. Zhang, F. et al. Carbon doping of WS2 monolayers: bandgap reduction and p-type doping transport. Sci. Adv. 5, eaav5003 (2019).

    Article  CAS  Google Scholar 

  155. Liang, T. et al. Intrinsically substitutional carbon doping in CVD-grown monolayer MoS2 and the band structure modulation. ACS Appl. Electron. Mater. 2, 1055–1064 (2020).

    Article  CAS  Google Scholar 

  156. Zhang, X. et al. Flux method growth of bulk MoS2 single crystals and their application as a saturable absorber. CrystEngComm 17, 4026–4032 (2015).

    Article  CAS  Google Scholar 

  157. Edelberg, D. et al. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett. 19, 4371–4379 (2019).

    Article  CAS  Google Scholar 

  158. Kim, B. et al. Free trions with near-unity quantum yield in monolayer MoSe2. ACS Nano 16, 140–147 (2022).

    Article  CAS  Google Scholar 

  159. Rivera, P. et al. Intrinsic donor-bound excitons in ultraclean monolayer semiconductors. Nat. Commun. 12, 871 (2021).

    Article  CAS  Google Scholar 

  160. Luo, Y., Liu, N., Li, X., Hone, J. C. & Strauf, S. Single photon emission in WSe2 up 160 K by quantum yield control. 2D Mater. 6, 035017 (2019).

    Article  CAS  Google Scholar 

  161. Cho, H. et al. Se-vacancy healing with substitutional oxygen in WSe2 for high-mobility p-type field-effect transistors. ACS Nano https://doi.org/10.1021/acsnano.2c11567 (2023).

  162. Wang, Y. & Chhowalla, M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 4, 101–112 (2022).

    Article  CAS  Google Scholar 

  163. Shen, P.-C. et al. Healing of donor defect states in monolayer molybdenum disulfide using oxygen-incorporated chemical vapour deposition. Nat. Electron. 5, 28–36 (2021). This work introduces an oxygen-incorporated CVD method to passivate sulfur vacancies with oxygen and suppress the formation of donor states in monolayer MoS2.

    Article  Google Scholar 

  164. Barja, S. et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 10, 3382 (2019).

    Article  Google Scholar 

  165. Tang, J. et al. In situ oxygen doping of monolayer MoS2 for novel electronics. Small 16, 2004276 (2020).

    Article  CAS  Google Scholar 

  166. Wei, Z. et al. Wafer-scale oxygen-doped MoS2 monolayer. Small Methods 5, 2100091 (2021).

    Article  CAS  Google Scholar 

  167. Zhang, K. et al. Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping. Adv. Funct. Mater. 28, 1706950 (2018).

    Article  Google Scholar 

  168. Torsi, R. et al. Dilute rhenium doping and its impact on intrinsic defects in MoS2. Preprint at https://doi.org/10.48550/arXiv.2302.00110 (2023).

  169. Huyghebaert, C. et al. 2D materials: roadmap to CMOS integration. In 2018 IEEE International Electron Devices Meeting (IEDM) 22.1.1–22.1.4 (IEEE, 2018).

  170. Tang, A. et al. Toward low-temperature solid-source synthesis of monolayer MoS2. ACS Appl. Mater. Interfaces 13, 41866–41874 (2021).

    Article  CAS  Google Scholar 

  171. Peng, H. et al. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 4, 281–286 (2012).

    Article  CAS  Google Scholar 

  172. Park, J. H. et al. Synthesis of high-performance monolayer molybdenum disulfide at low temperature. Small Methods 5, e2000720 (2021).

    Article  Google Scholar 

  173. Kozhakhmetov, A. et al. Scalable BEOL compatible 2D tungsten diselenide. 2D Mater. https://doi.org/10.1088/2053-1583/ab5ad1 (2019).

  174. Mun, J. et al. High-mobility MoS2 directly grown on polymer substrate with kinetics-controlled metal–organic chemical vapor deposition. ACS Appl. Electron. Mater. 1, 608–616 (2019).

    Article  CAS  Google Scholar 

  175. Groven, B. et al. Plasma-enhanced atomic layer deposition of two-dimensional WS2 from WF6, H2 plasma, and H2S. Chem. Mater. 29, 2927–2938 (2017).

    Article  CAS  Google Scholar 

  176. Lo, C.-L. et al. Enhancing interconnect reliability and performance by converting tantalum to 2D layered tantalum sulfide at low temperature. Adv. Mater. 31, 1902397 (2019).

    Article  Google Scholar 

  177. Gong, Y. et al. Direct growth of MoS2 single crystals on polyimide substrates. 2D Mater. 4, 021028 (2017).

    Article  Google Scholar 

  178. Qin, B. et al. General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials. Nat. Commun. 14, 304 (2023).

    Article  CAS  Google Scholar 

  179. Han, G. H. et al. Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nat. Commun. 6, 6128 (2015).

    Article  CAS  Google Scholar 

  180. Gan, Z. et al. Patterned growth of transition metal dichalcogenide monolayers and multilayers for electronic and optoelectronic device applications. Small Methods 6, 2200300 (2022).

    Article  CAS  Google Scholar 

  181. Song, S. et al. Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal–semiconductor contacts at the Schottky–Mott limit. Nat. Electron. 3, 207–215 (2020).

    Article  CAS  Google Scholar 

  182. Zhang, Z. et al. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol. 17, 493–499 (2022).

    Article  CAS  Google Scholar 

  183. Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    Article  CAS  Google Scholar 

  184. Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023). This study demonstrates a geometrically confined growth technique that achieves the patterned growth of single-crystalline monolayer WSe2 domains and MoS2/WSe2 vertical heterostructures on non-epitaxial substrates.

    Article  CAS  Google Scholar 

  185. Li, H. et al. Laterally stitched heterostructures of transition metal dichalcogenide: chemical vapor deposition growth on lithographically patterned area. ACS Nano 10, 10516–10523 (2016).

    Article  CAS  Google Scholar 

  186. Ling, X. et al. Parallel stitching of 2D materials. Adv. Mater. 28, 2322–2329 (2016).

    Article  CAS  Google Scholar 

  187. Tan, C. et al. 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616, 66–72 (2023).

    Article  CAS  Google Scholar 

  188. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  189. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  CAS  Google Scholar 

  190. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  Google Scholar 

  191. Zhang, Y. et al. Simultaneous electrical and thermal rectification in a monolayer lateral heterojunction. Science 378, 169–175 (2022).

    Article  CAS  Google Scholar 

  192. Li, M.-Y. et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    Article  CAS  Google Scholar 

  193. Ren, H., Wan, Z. & Duan, X. Van der Waals superlattices. Natl Sci. Rev. 9, nwab166 (2022).

    Article  CAS  Google Scholar 

  194. Han, Y. et al. Sub-nanometre channels embedded in two-dimensional materials. Nat. Mater. 17, 129–133 (2018).

    Article  CAS  Google Scholar 

  195. Lin, Y. C. et al. Formation of highly doped nanostripes in 2D transition metal dichalcogenides via a dislocation climb mechanism. Adv. Mater. 33, e2007819 (2021).

    Article  Google Scholar 

  196. Chen, K. et al. Lateral built-in potential of monolayer MoS2–WS2 in-plane heterostructures by a shortcut growth strategy. Adv. Mater. 27, 6431–6437 (2015).

    Article  CAS  Google Scholar 

  197. Zhang, Q. et al. Two-dimensional layered heterostructures synthesized from core–shell nanowires. Angew. Chem. Int. Ed. 54, 8957–8960 (2015).

    Article  Google Scholar 

  198. Gong, Y. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15, 6135–6141 (2015).

    Article  CAS  Google Scholar 

  199. Fali, A. et al. Photodegradation protection in 2D in-plane heterostructures revealed by hyperspectral nanoimaging: the role of nanointerface 2D alloys. ACS Nano 15, 2447–2457 (2021).

    Article  CAS  Google Scholar 

  200. Zhou, J. et al. Heterodimensional superlattice with in-plane anomalous Hall effect. Nature 609, 46–51 (2022). This work reports the direct CVD synthesis of heterodimensional VS2/VS superlattices, which exhibit a room-temperature in-plane anomalous Hall effect.

    Article  CAS  Google Scholar 

  201. Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).

    Article  Google Scholar 

  202. Ding, K. et al. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science 366, 210–215 (2019).

    Article  CAS  Google Scholar 

  203. Zhang, F. et al. Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019).

    Article  CAS  Google Scholar 

  204. Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019).

    Article  CAS  Google Scholar 

  205. Jiang, J., Xu, L., Qiu, C. & Peng, L.-M. Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).

    Article  CAS  Google Scholar 

  206. Jiang, J. et al. Yttrium-induced phase-transition technology for forming perfect ohmic contact in two-dimensional MoS2 transistors. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2508636/v1 (2023).

  207. Duerloo, K.-A. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).

    Article  CAS  Google Scholar 

  208. Zhao, W. & Ding, F. Energetics and kinetics of phase transition between a 2H and a 1T MoS2 monolayer — a theoretical study. Nanoscale 9, 2301–2309 (2017).

    Article  CAS  Google Scholar 

  209. Empante, T. A. et al. Chemical vapor deposition growth of few-layer MoTe2 in the 2H, 1T′, and 1T phases: tunable properties of MoTe2 films. ACS Nano 11, 900–905 (2017).

    Article  CAS  Google Scholar 

  210. Mao, N. et al. Giant nonlinear optical response via coherent stacking of in-plane ferroelectric layers. Adv. Mater. https://doi.org/10.1002/adma.202210894 (2023).

  211. Zhang, X. et al. Low contact barrier in 2H/1T′ MoTe2 in-plane heterostructure synthesized by chemical vapor deposition. ACS Appl. Mater. Interfaces 11, 12777–12785 (2019).

    Article  CAS  Google Scholar 

  212. Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017).

    Article  CAS  Google Scholar 

  213. Tang, B. et al. Phase engineering of Cr5Te8 with colossal anomalous Hall effect. Nat. Electron. 5, 224–232 (2022).

    Article  CAS  Google Scholar 

  214. Wang, X. et al. Ultrathin FeTe nanosheets with tetragonal and hexagonal phases synthesized by chemical vapor deposition. Mater. Today 45, 35–43 (2021).

    Article  CAS  Google Scholar 

  215. Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    Article  CAS  Google Scholar 

  216. Song, S. et al. Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188–193 (2016).

    Article  CAS  Google Scholar 

  217. Yoo, Y., DeGregorio, Z. P., Su, Y., Koester, S. J. & Johns, J. E. In-plane 2H-1T′ MoTe2 homojunctions synthesized by flux-controlled phase engineering. Adv. Mater. 29, 1605461 (2017).

    Article  Google Scholar 

  218. Deng, Y. et al. MoTe2: semiconductor or semimetal? ACS Nano 15, 12465–12474 (2021).

    Article  CAS  Google Scholar 

  219. Zhou, L. et al. Role of molecular sieves in the CVD synthesis of large-area 2D MoTe2. Adv. Funct. Mater. 27, 1603491 (2017).

    Article  Google Scholar 

  220. Liu, L. et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 17, 1108–1114 (2018). This work introduces a potassium-assisted CVD method for the phase-selective growth of metastable monolayer 1T′-MoS2.

    Article  CAS  Google Scholar 

  221. Arellano Arreola, V. M. et al. Direct growth of monolayer 1T–2H MoS2 heterostructures using KCl-assisted CVD process. 2D Mater. 8, 025033 (2021).

    Article  CAS  Google Scholar 

  222. Lin, Y.-C. et al. Stable 1T tungsten disulfide monolayer and its junctions: growth and atomic structures. ACS Nano 12, 12080–12088 (2018).

    Article  CAS  Google Scholar 

  223. Zhang, Q. et al. Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides. Chem. Mater. 29, 4641–4644 (2017).

    Article  CAS  Google Scholar 

  224. Er, D. et al. Prediction of enhanced catalytic activity for hydrogen evolution reaction in Janus transition metal dichalcogenides. Nano Lett. 18, 3943–3949 (2018).

    Article  CAS  Google Scholar 

  225. Hu, T. et al. Intrinsic and anisotropic Rashba spin splitting in Janus transition-metal dichalcogenide monolayers. Phys. Rev. B 97, 235404 (2018).

    Article  CAS  Google Scholar 

  226. Dong, L., Lou, J. & Shenoy, V. B. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano 11, 8242–8248 (2017).

    Article  CAS  Google Scholar 

  227. Lu, A.-Y. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017). This work is one of the earliest experimental demonstrations of Janus TMD monolayers with broken out-of-plane structural symmetry.

    Article  CAS  Google Scholar 

  228. Cheng, Y. C., Zhu, Z. Y., Tahir, M. & Schwingenschlögl, U. Spin–orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. Europhys. Lett. 102, 57001 (2013).

    Article  Google Scholar 

  229. Zhang, J. et al. Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192–8198 (2017).

    Article  CAS  Google Scholar 

  230. Lin, Y.-C. et al. Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures. ACS Nano 14, 3896–3906 (2020).

    Article  CAS  Google Scholar 

  231. Gan, Z. et al. Chemical vapor deposition of high-optical-quality large-area monolayer Janus transition metal dichalcogenides. Adv. Mater. 34, e2205226 (2022).

    Article  Google Scholar 

  232. Guo, Y. et al. Designing artificial two-dimensional landscapes via atomic-layer substitution. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2106124118 (2021). This study presents a reaction pathway for the room-temperature synthesis of Janus TMD monolayers and multi-heterostructures with patterned dipole orientations.

  233. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  234. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  CAS  Google Scholar 

  235. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article  CAS  Google Scholar 

  236. Lin, M.-L. et al. Moiré phonons in twisted bilayer MoS2. ACS Nano 12, 8770–8780 (2018).

    Article  CAS  Google Scholar 

  237. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  CAS  Google Scholar 

  238. Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    Article  CAS  Google Scholar 

  239. Liu, Y. et al. Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures. Chem. Soc. Rev. 50, 6401–6422 (2021).

    Article  CAS  Google Scholar 

  240. Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    Article  CAS  Google Scholar 

  241. Sun, L. et al. Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nat. Commun. 12, 2391 (2021).

    Article  CAS  Google Scholar 

  242. Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).

    Article  CAS  Google Scholar 

  243. Liu, C. et al. Designed growth of large bilayer graphene with arbitrary twist angles. Nat. Mater. 21, 1263–1268 (2022). This work demonstrates an angle replication strategy for growing large-scale bilayer graphene with controlled twist angles by CVD, and this approach should be informative for the vapour-phase growth of twisted 2D layered chalcogenides in the future.

    Article  CAS  Google Scholar 

  244. Zhao, Y. et al. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces. Science 370, 442–445 (2020).

    Article  CAS  Google Scholar 

  245. Wu, J. et al. Spiral growth of SnSe2 crystals by chemical vapor deposition. Adv. Mater. Interfaces 3, 1600383 (2016).

    Article  Google Scholar 

  246. Zhang, L. et al. Three-dimensional spirals of atomic layered MoS2. Nano Lett. 14, 6418–6423 (2014).

    Article  CAS  Google Scholar 

  247. Fan, X. et al. Controllable growth and formation mechanisms of dislocated WS2 spirals. Nano Lett. 18, 3885–3892 (2018).

    Article  CAS  Google Scholar 

  248. Liu, Y. et al. Helical van der Waals crystals with discretized Eshelby twist. Nature 570, 358–362 (2019).

    Article  CAS  Google Scholar 

  249. Bierman, M. J., Lau, Y. K. A., Kvit, A. V., Schmitt, A. L. & Jin, S. Dislocation-driven nanowire growth and Eshelby twist. Science 320, 1060–1063 (2008).

    Article  CAS  Google Scholar 

  250. Cheng, Z. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 416–423 (2022).

    Article  Google Scholar 

  251. Franklin, A. D. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349, aab2750 (2015).

    Article  Google Scholar 

  252. Franklin, A. D., Hersam, M. C. & Wong, H. S. P. Carbon nanotube transistors: making electronics from molecules. Science 378, 726–732 (2022).

    Article  CAS  Google Scholar 

  253. Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).

    Article  CAS  Google Scholar 

  254. Huang, J. K. et al. High-kappa perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).

    Article  CAS  Google Scholar 

  255. Park, S. et al. The Schottky–Mott rule expanded for two-dimensional semiconductors: influence of substrate dielectric screening. ACS Nano 15, 14794–14803 (2021).

    Article  CAS  Google Scholar 

  256. Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  CAS  Google Scholar 

  257. Chou, A. S. et al. High-performance monolayer WSe2 p/n FETs via antimony–platinum modulated contact technology towards 2D CMOS electronics. In 2022 IEEE International Electron Devices Meeting (IEDM) 7.2.1–7.2.4 (IEEE, 2022).

  258. Ho, P.-H. et al. High-performance two-dimensional electronics with a noncontact remote doping method. ACS Nano 17, 12208–12215 (2023).

    Article  CAS  Google Scholar 

  259. Hung, T. Y. T. et al. pMOSFET with CVD-grown 2D semiconductor channel enabled by ultra-thin and fab-compatible spacer doping. In 2022 International Electron Devices Meeting (IEDM) 7.3.1–7.3.4 (IEEE, 2022).

  260. Yang, L. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14, 6275–6280 (2014).

    Article  CAS  Google Scholar 

  261. Ji, H. G. et al. Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Adv. Mater. 31, 1903613 (2019).

    Article  CAS  Google Scholar 

  262. Lee, S.-J. et al. Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat. Electron. 3, 630–637 (2020).

    Article  CAS  Google Scholar 

  263. Zhang, K. & Robinson, J. Doping of two-dimensional semiconductors: a rapid review and outlook. MRS Adv. 4, 2743–2757 (2019).

    Article  CAS  Google Scholar 

  264. Lim, Y. R. et al. Roll-to-roll production of layer-controlled molybdenum disulfide: a platform for 2D semiconductor-based industrial applications. Adv. Mater. 30, 1705270 (2018).

    Article  Google Scholar 

  265. Meng, W. et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021).

    Article  CAS  Google Scholar 

  266. Ghosh, S. et al. Integration of epitaxial monolayer MX2 channels on 300mm wafers via collective-die-to-wafer (CoD2W) transfer. In 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) 1–2 (IEEE, 2023).

  267. Mannix, A. J. et al. Robotic four-dimensional pixel assembly of van der Waals solids. Nat. Nanotechnol. 17, 361–366 (2022).

    Article  CAS  Google Scholar 

  268. Masubuchi, S. et al. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 9, 1413 (2018).

    Article  Google Scholar 

  269. Lu, A. Y. et al. Unraveling the correlation between Raman and photoluminescence in monolayer MoS2 through machine-learning models. Adv. Mater. 34, e2202911 (2022).

    Article  Google Scholar 

  270. Yoo, J. et al. Explainable artificial intelligence approach to identify the origin of phonon-assisted emission in WSe2 monolayer. Adv. Intell. Syst. https://doi.org/10.1002/aisy.202200463 (2023).

  271. Taghizadeh, A., Leffers, U., Pedersen, T. G. & Thygesen, K. S. A library of ab initio Raman spectra for automated identification of 2D materials. Nat. Commun. 11, 3011 (2020).

    Article  CAS  Google Scholar 

  272. Han, B. et al. Deep-learning-enabled fast optical identification and characterization of 2D materials. Adv. Mater. 32, e2000953 (2020).

    Article  Google Scholar 

  273. Zhu, X., Wang, H., Wang, K. & Xie, L. Progress on the in situ imaging of growth dynamics of two-dimensional materials. Nanoscale 15, 11746–11758 (2023).

    Article  CAS  Google Scholar 

  274. Puretzky, A. A. et al. In situ laser reflectivity to monitor and control the nucleation and growth of atomically thin 2D materials. 2D Mater. 7, 025048 (2020).

    Article  CAS  Google Scholar 

  275. Rosenberger, M. R., Chuang, H.-J., McCreary, K. M., Li, C. H. & Jonker, B. T. Electrical characterization of discrete defects and impact of defect density on photoluminescence in monolayer WS2. ACS Nano 12, 1793–1800 (2018).

    Article  CAS  Google Scholar 

  276. Tikhomirova, K. A. et al. Exotic two-dimensional structure: the first case of hexagonal NaCl. J. Phys. Chem. Lett. 11, 3821–3827 (2020).

    Article  CAS  Google Scholar 

  277. Zhang, B. Y. et al. Hexagonal metal oxide monolayers derived from the metal–gas interface. Nat. Mater. 20, 1073–1078 (2021).

    Article  CAS  Google Scholar 

  278. Tusche, C., Meyerheim, H. L. & Kirschner, J. Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Phys. Rev. Lett. 99, 026102 (2007).

    Article  CAS  Google Scholar 

  279. Chang, S.-J. et al. van der Waals epitaxy of 2D h-AlN on TMDs by atomic layer deposition at 250 °C. Appl. Phys. Lett. 120, 162102 (2022).

    Article  CAS  Google Scholar 

  280. Tsipas, P. et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag (111). Appl. Phys. Lett. 103, 251605 (2013).

    Article  Google Scholar 

  281. Zavabeti, A. et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358, 332–335 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the US Department of Energy, Office of Science, Basic Energy Sciences, under award DE-SC0020042.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data, discussed the contents, and participated in the writing and editing of the manuscript.

Corresponding author

Correspondence to Jing Kong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Soon-Yong Kwon, Joan Redwing and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wang, J., Wu, P. et al. Vapour-phase deposition of two-dimensional layered chalcogenides. Nat Rev Mater 8, 799–821 (2023). https://doi.org/10.1038/s41578-023-00609-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00609-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing