Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Key molecular perspectives for high stability in organic photovoltaics

Abstract

Organic photovoltaics (OPVs) have rapidly improved in efficiency, with single-junction cells now exceeding 18% efficiency. These improvements have been driven by the adoption of new non-fullerene acceptors and the fine tuning of their molecular structures. Although OPVs are highly efficient, they often show extremely poor operational stability, primarily owing to the complex interplay between the morphological instability of the blended bulk heterojunction photoactive layers and the intrinsically poor photostability of the organic semiconductor materials themselves. To realize commercialization, it is vital to understand the degradation mechanisms of these organic materials to improve their stability. Efficiency increases have, in part, been driven by the rational molecular design of materials. In this Perspective, we examine how a similar bottom-up molecular design can be applied to OPV stability. Specifically, we highlight key molecular design parameters and demonstrate how each parameter impacts different degradation pathways. Looking forward, we propose that fundamental understanding of the molecular origin of OPV stability is a key research theme for next-generation OPVs. Additionally, we discuss the tools required, across length scales, to implement these design rules, particularly the use of in situ Raman spectroscopy as a critical bridge linking the molecular scale to the nanoscale and beyond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key advances in organic photovoltaic development.
Fig. 2: Controllable molecular parameters.
Fig. 3: Molecular structure impact on stability.
Fig. 4: Key molecular design rules for non-fullerene acceptors to improve stability.
Fig. 5: Raman spectroscopy as a probe for molecular-level understanding of stability.

Similar content being viewed by others

References

  1. Scheffran, J., Felkers, M. & Froese, R. in Green Energy to Sustainability 1–44 (Wiley, 2020).

  2. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2°C. Nature 534, 631–639 (2016).

    Article  CAS  Google Scholar 

  3. Falkner, R. The Paris Agreement and the new logic of international climate politics. Int. Aff. 92, 1107–1125 (2016).

    Article  Google Scholar 

  4. Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M. & Peters, J. A. H. W. Trends in Global CO2 Emissions: 2013 Report (PBL Netherlands Enviornmental Assessment Agency, 2013).

  5. Luke, J. et al. A commercial benchmark: light‐soaking free, fully scalable, large‐area organic solar cells for low‐light applications. Adv. Energy Mater. 11, 2003405 (2021).

    Article  CAS  Google Scholar 

  6. Lee, H. K. H. et al. Organic photovoltaic cells — promising indoor light harvesters for self-sustainable electronics. J. Mater. Chem. A 6, 5618–5626 (2018).

    Article  CAS  Google Scholar 

  7. Cui, Y. et al. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nat. Energy 4, 768–775 (2019).

    Article  CAS  Google Scholar 

  8. Way, A. et al. Fluorine doped tin oxide as an alternative of indium tin oxide for bottom electrode of semi-transparent organic photovoltaic devices. AIP Adv. 9, 085220 (2019).

    Article  Google Scholar 

  9. Sun, G. et al. Highly-efficient semi-transparent organic solar cells utilising non-fullerene acceptors with optimised multilayer MoO3/Ag/MoO3 electrodes. Mater. Chem. Front. 3, 450–455 (2019).

    Article  CAS  Google Scholar 

  10. Heliatek. The world’s largest BiOPV installation completed in France using Heliatek’s solar film solution, HeliaSol®. https://www.heliatek.com/en/media/news/detail/the-worlds-largest-biopv-installation-completed-in-france-using-heliateks-solar-film-solution-heliasolr/ (2017).

  11. Emmott, C. J. M. et al. Organic photovoltaic greenhouses: a unique application for semi-transparent PV? Energy Environ. Sci. 8, 1317–1328 (2015).

    Article  CAS  Google Scholar 

  12. Lee, B., Lahann, L., Li, Y. & Forrest, S. R. Cost estimates of production scale semitransparent organic photovoltaic modules for building integrated photovoltaics. Sustain. Energy Fuels 4, 5765–5772 (2020).

    Article  CAS  Google Scholar 

  13. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  CAS  Google Scholar 

  14. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells — enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  15. Armin, A. et al. A history and perspective of non‐fullerene electron acceptors for organic solar cells. Adv. Energy Mater. 11, 2003570–2003570 (2021).

    Article  CAS  Google Scholar 

  16. Nielsen, C. B., Holliday, S., Chen, H.-Y., Cryer, S. J. & McCulloch, I. Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 48, 2803–2812 (2015).

    Article  CAS  Google Scholar 

  17. Wadsworth, A. et al. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 48, 1596–1625 (2019).

    Article  CAS  Google Scholar 

  18. Liu, Q. et al. 18% efficiency organic solar cells. Sci. Bull. 65, 272–275 (2020).

    Article  CAS  Google Scholar 

  19. Burlingame, Q., Ball, M. & Loo, Y.-L. It’s time to focus on organic solar cell stability. Nat. Energy 5, 947–949 (2020).

    Article  Google Scholar 

  20. Riede, M., Spoltore, D. & Leo, K. Organic solar cells — the path to commercial success. Adv. Energy Mater. 11, 2002653 (2021).

    Article  CAS  Google Scholar 

  21. Du, X. et al. Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years. Joule 3, 215–226 (2019).

    Article  CAS  Google Scholar 

  22. Gasparini, N. et al. Burn-in free nonfullerene-based organic solar cells. Adv. Energy Mater. 7, 1700770 (2017).

    Article  Google Scholar 

  23. Gasparini, N. et al. Exploiting ternary blends for improved photostability in high-efficiency organic solar cells. ACS Energy Lett. 5, 1371–1379 (2020).

    Article  CAS  Google Scholar 

  24. Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    Article  CAS  Google Scholar 

  25. Park, S. & Son, H. J. Intrinsic photo-degradation and mechanism of polymer solar cells: the crucial role of non-fullerene acceptors. J. Mater. Chem. A 7, 25830–25837 (2019).

    Article  CAS  Google Scholar 

  26. Cui, Y. et al. 1 cm2 organic photovoltaic cells for indoor application with over 20% efficiency. Adv. Mater. 31, 1904512 (2019).

    Article  CAS  Google Scholar 

  27. Chen, H. et al. A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nat. Energy 6, 1045–1053 (2021).

    Article  CAS  Google Scholar 

  28. Li, M. et al. Balanced shelf and operational stability of the PM6:Y6 solar cells by using ZnO:PEI composite electron transporting layer. Org. Electron. 96, 106257 (2021).

    Article  CAS  Google Scholar 

  29. Yu, G., Zhang, C. & Heeger, A. J. Dual-function semiconducting polymer devices: light-emitting and photodetecting diodes. Appl. Phys. Lett. 64, 1540–1542 (1994).

    Article  CAS  Google Scholar 

  30. Jørgensen, M. et al. Stability of polymer solar cells. Adv. Mater. 24, 580–612 (2012).

    Article  Google Scholar 

  31. Reese, M. O. et al. Consensus stability testing protocols for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cell 95, 1253–1267 (2011).

    Article  CAS  Google Scholar 

  32. Cheng, P. & Zhan, X. Stability of organic solar cells: challenges and strategies. Chem. Soc. Rev. 45, 2544–2582 (2016).

    Article  CAS  Google Scholar 

  33. Ghasemi, M. et al. A molecular interaction–diffusion framework for predicting organic solar cell stability. Nat. Mater. 20, 525–532 (2021).

    Article  CAS  Google Scholar 

  34. Hoke, E. T. et al. The role of electron affinity in determining whether fullerenes catalyze or inhibit photooxidation of polymers for solar cells. Adv. Energy Mater. 2, 1351–1357 (2012).

    Article  CAS  Google Scholar 

  35. Yamane, S. et al. MALDI-TOF MS study of the photo-oxidation of PCBM and its suppression by P3HT. Chem. Lett. 44, 339–341 (2015).

    Article  CAS  Google Scholar 

  36. Manceau, M. et al. Further insights into the photodegradation of poly(3-hexylthiophene) by means of X-ray photoelectron spectroscopy. Thin Solid Films 518, 7113–7118 (2010).

    Article  CAS  Google Scholar 

  37. Ahmad, J., Bazaka, K., Anderson, L. J., White, R. D. & Jacob, M. V. Materials and methods for encapsulation of OPV: a review. Renew. Sustain. Energy Rev. 27, 104–117 (2013).

    Article  CAS  Google Scholar 

  38. Distler, A. et al. The effect of PCBM dimerization on the performance of bulk heterojunction solar cells. Adv. Energy Mater. 4, 1300693 (2014).

    Article  Google Scholar 

  39. Wood, S. et al. Natures of optical absorption transitions and excitation energy dependent photostability of diketopyrrolopyrrole (DPP)-based photovoltaic copolymers. Energy Environ. Sci. 8, 3222–3232 (2015).

    Article  CAS  Google Scholar 

  40. Luke, J. et al. Twist and degrade — impact of molecular structure on the photostability of nonfullerene acceptors and their photovoltaic blends. Adv. Energy Mater. 9, 1803755 (2019).

    Article  Google Scholar 

  41. Che, Y., Niazi, M. R., Izquierdo, R. & Perepichka, D. F. Mechanism of the photodegradation of A‐D‐A acceptors for organic photovoltaics. Angew. Chem. Int. Ed. 60, 24833–24837 (2021).

    Article  CAS  Google Scholar 

  42. Züfle, S. et al. An effective area approach to model lateral degradation in organic solar cells. Adv. Energy Mater. 5, 1500835 (2015).

    Article  Google Scholar 

  43. Li, N. et al. Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nat. Commun. 8, 14541 (2017).

    Article  CAS  Google Scholar 

  44. Keivanidis, P. E., Laquai, F., Howard, I. A. & Friend, R. H. Room-temperature phase demixing in bulk heterojunction layers of solution-processed organic photodetectors: the effect of active layer ageing on the device electro-optical properties. Adv. Funct. Mater. 21, 1355–1363 (2011).

    Article  CAS  Google Scholar 

  45. Guerrero, A. & Garcia-Belmonte, G. Recent advances to understand morphology stability of organic photovoltaics. Nano-Micro Lett. 9, 10 (2017).

    Article  Google Scholar 

  46. Ghasemi, M. et al. Delineation of thermodynamic and kinetic factors that control stability in non-fullerene organic solar cells. Joule 3, 1328–1348 (2019).

    Article  CAS  Google Scholar 

  47. Franke, R., Maennig, B., Petrich, A. & Pfeiffer, M. Long-term stability of tandem solar cells containing small organic molecules. Sol. Energy Mater. Sol. Cell 92, 732–735 (2008).

    Article  CAS  Google Scholar 

  48. Sharma, A., Andersson, G. & Lewis, D. A. Role of humidity on indium and tin migration in organic photovoltaic devices. Phys. Chem. Chem. Phys. 13, 4381–4387 (2011).

    Article  CAS  Google Scholar 

  49. Tran, V. H., Ambade, R. B., Ambade, S. B., Lee, S. H. & Lee, I. H. Low-temperature solution-processed SnO2 nanoparticles as a cathode buffer layer for inverted organic solar cells. ACS Appl. Mater. Interfaces 9, 1645–1653 (2017).

    Article  CAS  Google Scholar 

  50. Jiang, Y. et al. Photocatalytic effect of ZnO on the stability of nonfullerene acceptors and its mitigation by SnO2 for nonfullerene organic solar cells. Mater. Horiz. 6, 1438–1443 (2019).

    Article  CAS  Google Scholar 

  51. Zhang, J. et al. Tuning energy levels without negatively affecting morphology: a promising approach to achieving optimal energetic match and efficient nonfullerene polymer solar cells. Adv. Energy Mater. 7, 1602119 (2017).

    Article  Google Scholar 

  52. Fu, Y. et al. Molecular orientation-dependent energetic shifts in solution-processed non-fullerene acceptors and their impact on organic photovoltaic performance. Nat. Commun. 14, 1870 (2023).

    Article  CAS  Google Scholar 

  53. Schmidtke, J. P., Kim, J. S., Gierschner, J., Silva, C. & Friend, R. H. Optical spectroscopy of a polyfluorene copolymer at high pressure: intra- and intermolecular interactions. Phys. Rev. Lett. 99, 167401 (2007).

    Article  Google Scholar 

  54. Vezie, M. S. et al. Exploring the origin of high optical absorption in conjugated polymers. Nat. Mater. 15, 746–753 (2016).

    Article  CAS  Google Scholar 

  55. Tsoi, W. C. et al. Effect of crystallization on the electronic energy levels and thin film morphology of P3HT:PCBM blends. Macromolecules 44, 2944–2952 (2011).

    Article  CAS  Google Scholar 

  56. Nikolka, M. et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 16, 356–362 (2017).

    Article  CAS  Google Scholar 

  57. Boufflet, P. et al. Using molecular design to increase hole transport: backbone fluorination in the benchmark material poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]-thiophene. Adv. Funct. Mater. 25, 7038–7048 (2015).

    Article  CAS  Google Scholar 

  58. Razzell-Hollis, J., Tsoi, W. C. & Kim, J.-S. Directly probing the molecular order of conjugated polymer in OPV blends induced by different film thicknesses, substrates and additives. J. Mater. Chem. C 1, 6235 (2013).

    Article  CAS  Google Scholar 

  59. Tsoi, W. C. et al. Effects of a heavy atom on molecular order and morphology in conjugated polymer:fullerene photovoltaic blend thin films and devices. ACS Nano 6, 9646–9656 (2012).

    Article  CAS  Google Scholar 

  60. Holliday, S. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).

    Article  CAS  Google Scholar 

  61. Krebs, F. C. Stability and Degradation of Organic and Polymer Solar Cells (Wiley, 2012).

  62. Meng, B., Liu, J. & Wang, L. Oligo(ethylene glycol) as side chains of conjugated polymers for optoelectronic applications. Polym. Chem. 11, 1261–1270 (2020).

    Article  CAS  Google Scholar 

  63. Lei, T., Wang, J. Y. & Pei, J. Roles of flexible chains in organic semiconducting materials. Chem. Mater. 26, 594–603 (2014).

    Article  CAS  Google Scholar 

  64. Liang, Q. et al. Reducing the confinement of PBDB-T to ITIC to improve the crystallinity of PBDB-T/ITIC blends. J. Mater. Chem. A 6, 15610–15620 (2018).

    Article  CAS  Google Scholar 

  65. Xia, Z. et al. Fine-tuning the dipole moment of asymmetric non-fullerene acceptors enabling efficient and stable organic solar cells. ACS Appl. Mater. Interfaces 13, 23983–23992 (2021).

    Article  CAS  Google Scholar 

  66. Labanti, C. et al. Selenium-substituted non-fullerene acceptors: a route to superior operational stability for organic bulk heterojunction solar cells. ACS Nano 15, 7712 (2021).

    Article  Google Scholar 

  67. Lee, J. et al. Efficient charge transport driven by strong intermolecular interactions in cyclopentadithiophene‐based donor–acceptor type conjugated copolymers. Adv. Electron. Mater. 8, 2200081 (2022).

    Article  CAS  Google Scholar 

  68. Zhang, J. et al. High-efficiency thermal-annealing-free organic solar cells based on an asymmetric acceptor with improved thermal and air stability. ACS Appl. Mater. Interfaces 12, 57271–57280 (2020).

    Article  CAS  Google Scholar 

  69. Gopikrishna, P. et al. Impact of symmetry-breaking of non-fullerene acceptors for efficient and stable organic solar cells. Chem. Sci. 12, 14083–14097 (2021).

    Article  CAS  Google Scholar 

  70. Luke, J. et al. Strong intermolecular interactions induced by high quadrupole moments enable excellent photostability of non‐fullerene acceptors for organic photovoltaics. Adv. Energy Mater. 12, 2201267 (2022).

    Article  CAS  Google Scholar 

  71. Aldrich, T. J. et al. Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response. J. Am. Chem. Soc. 141, 3274–3287 (2019).

    Article  CAS  Google Scholar 

  72. Liu, Z. X. et al. Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nat. Commun. 12, 3049 (2021).

    Article  CAS  Google Scholar 

  73. Lv, R. et al. Influences of quinoid structures on stability and photovoltaic performance of nonfullerene acceptors. Sol. RRL 4, 2000286 (2020).

    Article  CAS  Google Scholar 

  74. Liu, H., Wang, W., Zhou, Y. & Li, Z. A. A ring-locking strategy to enhance the chemical and photochemical stability of A–D–A-type non-fullerene acceptors. J. Mater. Chem. A 9, 1080–1088 (2021).

    Article  CAS  Google Scholar 

  75. Wu, J. et al. Exceptionally low charge trapping enables highly efficient organic bulk heterojunction solar cells. Energy Environ. Sci. 13, 2422–2430 (2020).

    Article  CAS  Google Scholar 

  76. Clarke, A. J. et al. Non-fullerene acceptor photostability and its impact on organic solar cell lifetime. Cell Rep. Phys. Sci. 2, 100498 (2021).

    Article  CAS  Google Scholar 

  77. Cha, H. et al. An efficient, “burn in” free organic solar cell employing a nonfullerene electron acceptor. Adv. Mater. 29, 1701156 (2017).

    Article  Google Scholar 

  78. Saito, M. et al. Impact of noncovalent sulfur–fluorine interaction position on properties, structures, and photovoltaic performance in naphthobisthiadiazole-based semiconducting polymers. Adv. Energy Mater. 10, 1903278 (2020).

    Article  CAS  Google Scholar 

  79. Fei, Z. et al. Influence of backbone fluorination in regioregular poly(3-alkyl-4-fluoro)thiophenes. J. Am. Chem. Soc. 137, 6866–6879 (2015).

    Article  CAS  Google Scholar 

  80. Wood, S., Kim, J. H. S., Hwang, D. H. & Kim, J. S. Effects of fluorination and side chain branching on molecular conformation and photovoltaic performance of donor-acceptor copolymers. Chem. Mater. 27, 4196–4204 (2015).

    Article  CAS  Google Scholar 

  81. Yu, Z.-P. et al. Simple non-fused electron acceptors for efficient and stable organic solar cells. Nat. Commun. 10, 2152 (2019).

    Article  Google Scholar 

  82. Wang, Y. et al. The critical role of the donor polymer in the stability of high-performance non-fullerene acceptor organic solar cells. Joule 7, 810–829 (2023).

    Article  CAS  Google Scholar 

  83. Zhang, G. et al. Renewed prospects for organic photovoltaics. Chem. Rev. 122, 14180–14274 (2022).

    Article  CAS  Google Scholar 

  84. Wang, Y. et al. Recent progress and challenges toward highly stable nonfullerene acceptor‐based organic solar cells. Adv. Energy Mater. 11, 2003002 (2021).

    Article  CAS  Google Scholar 

  85. Menke, E. H. et al. Triptycene-trisaroyleneimidazoles as non-fullerene acceptors — influence of side-chains on solubility, device morphology and performance. Org. Electron. 47, 211–219 (2017).

    Article  CAS  Google Scholar 

  86. Guo, Q. et al. A non-fullerene acceptor based on alkylphenyl substituted benzodithiophene for high efficiency polymer solar cells with a small voltage loss and excellent stability. J. Mater. Chem. A 7, 24366–24373 (2019).

    Article  CAS  Google Scholar 

  87. Xin, Y., Zeng, G., Ouyang, J. Y., Zhao, X. & Yang, X. Enhancing thermal stability of nonfullerene organic solar cells: via fluoro-side-chain engineering. J. Mater. Chem. C 7, 9513–9522 (2019).

    Article  CAS  Google Scholar 

  88. Guo, J. et al. Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. J. Mater. Chem. A 7, 25088–25101 (2019).

    Article  CAS  Google Scholar 

  89. Liu, B. et al. Simultaneously achieving highly efficient and stable polymer:non-fullerene solar cells enabled by molecular structure optimization and surface passivation. Adv. Sci. 9, 2104588 (2022).

    Article  CAS  Google Scholar 

  90. Zhou, B. et al. On the stability of non-fullerene acceptors and their corresponding organic solar cells: influence of side chains. Adv. Funct. Mater. 32, 2206042 (2022).

    Article  CAS  Google Scholar 

  91. Li, C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605–613 (2021).

    Article  CAS  Google Scholar 

  92. Zhu, L. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21, 656–663 (2022).

    Article  CAS  Google Scholar 

  93. Speller, E. M. et al. From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. J. Mater. Chem. A 7, 23361–23377 (2019).

    Article  CAS  Google Scholar 

  94. Carlé, J. E. et al. A comparative study of fluorine substituents for enhanced stability of flexible and ITO-free high-performance polymer solar cells. J. Polym. Sci. B Polym. Phys. 52, 893–899 (2014).

    Article  Google Scholar 

  95. Helgesen, M. et al. Thermally reactive thiazolo[5,4-d]thiazole based copolymers for high photochemical stability in polymer solar cells. Polym. Chem. 2, 2536 (2011).

    Article  CAS  Google Scholar 

  96. Kim, B. J., Miyamoto, Y., Ma, B. & Fréchet, J. M. J. Photocrosslinkable polythiophenes for efficient, thermally stable, organic photovoltaics. Adv. Funct. Mater. 19, 2273–2281 (2009).

    Article  Google Scholar 

  97. Ye, L. et al. Quenching to the percolation threshold in organic solar cells. Joule 3, 443–458 (2019).

    Article  CAS  Google Scholar 

  98. Zhan, C. & Yao, J. More than conformational “twisting” or “coplanarity”: molecular strategies for designing high-efficiency nonfullerene organic solar cells. Chem. Mater. 28, 1948–1964 (2016).

    Article  CAS  Google Scholar 

  99. Ciammaruchi, L., Zapata-Arteaga, O., Gutiérrez-Fernández, E., Martin, J. & Campoy-Quiles, M. Structure dependent photostability of ITIC and ITIC-4F. Mater. Adv. 1, 2846–2861 (2020).

    Article  CAS  Google Scholar 

  100. Lin, K. H., Paterson, L., May, F. & Andrienko, D. Glass transition temperature prediction of disordered molecular solids. npj Comput. Mater. 7, 179 (2021).

    Article  CAS  Google Scholar 

  101. Speller, E. M. et al. Toward improved environmental stability of polymer:fullerene and polymer:nonfullerene organic solar cells: a common energetic origin of light- and oxygen-induced degradation. ACS Energy Lett. 4, 846–852 (2019).

    Article  CAS  Google Scholar 

  102. Li, Z. et al. Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy 64, 103931 (2019).

    Article  CAS  Google Scholar 

  103. Kong, J. et al. Long-term stable polymer solar cells with significantly reduced burn-in loss. Nat. Commun. 5, 5688 (2014).

    Article  CAS  Google Scholar 

  104. Wood, S., Hollis, J. R. & Kim, J.-S. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors. J. Phys. D Appl. Phys. 50, 073001 (2017).

    Article  Google Scholar 

  105. Kim, J. S., Ho, P. K. H., Murphy, C. E., Baynes, N. & Friend, R. H. Nature of non-emissive black spots in polymer light-emitting diodes by in-situ micro-Raman spectroscopy. Adv. Mater. 14, 206–209 (2002).

    Article  Google Scholar 

  106. Kim, J. S. et al. Electrical degradation of triarylamine-based light-emitting polymer diodes monitored by micro-Raman spectroscopy. Chem. Phys. Lett. 386, 2–7 (2004).

    Article  CAS  Google Scholar 

  107. Tan, E. et al. A highly sensitive molecular structural probe applied to in situ biosensing of metabolites using PEDOT:PSS. Biotechnol. Bioeng. 117, 291–299 (2020).

    Article  CAS  Google Scholar 

  108. Limbu, S. et al. Impact of initial bulk-heterojunction morphology on operational stability of polymer:fullerene photovoltaic cells. Adv. Mater. Interfaces 6, 1801763 (2019).

    Article  Google Scholar 

  109. Nightingale, J., Wade, J., Moia, D., Nelson, J. & Kim, J. S. Impact of molecular order on polaron formation in conjugated polymers. J. Phys. Chem. C 122, 29129–29140 (2018).

    Article  CAS  Google Scholar 

  110. Razzell-Hollis, J. et al. Photochemical stability of high efficiency PTB7:PC70BM solar cell blends. J. Mater. Chem. A 2, 20189–20195 (2014).

    Article  CAS  Google Scholar 

  111. Razzell-Hollis, J., Limbu, S. & Kim, J.-S. Spectroscopic investigations of three-phase morphology evolution in polymer: fullerene solar cell blends. J. Phys. Chem. C 120, 10806–10814 (2016).

    Article  CAS  Google Scholar 

  112. Tsoi, W. C. et al. In-situ monitoring of molecular vibrations of two organic semiconductors in photovoltaic blends and their impact on thin film morphology. Appl. Phys. Lett. 102, 173302 (2013).

    Article  Google Scholar 

  113. Tsoi, W. C. et al. The nature of in-plane skeleton Raman modes of P3HT and their correlation to the degree of molecular order in P3HT:PCBM blend thin films. J. Am. Chem. Soc. 133, 9834–9843 (2011).

    Article  CAS  Google Scholar 

  114. Labanti, C. et al. Light-intensity-dependent photoresponse time of organic photodetectors and its molecular origin. Nat. Commun. 13, 3745 (2022).

    Article  CAS  Google Scholar 

  115. Tan, E. et al. The role of long-alkyl-group spacers in glycolated copolymers for high-performance organic electrochemical transistors. Adv. Mater. 34, 2202574 (2022).

    Article  CAS  Google Scholar 

  116. Stewart, K. et al. Molecular understanding of a π-conjugated polymer/solid-state ionic liquid complex as a highly sensitive and selective gas sensor. J. Mater. Chem. C 8, 15268–15276 (2020).

    Article  CAS  Google Scholar 

  117. Gillett, A. J. et al. The role of charge recombination to triplet excitons in organic solar cells. Nature 597, 666–671 (2021).

    Article  CAS  Google Scholar 

  118. Liang, S. et al. Double‐cable conjugated polymers with pendent near‐infrared electron acceptors for single‐component organic solar cells. Angew. Chem. Int. Ed. 61, e202209316 (2022).

    Article  CAS  Google Scholar 

  119. Natsuda, S. I. et al. Singlet and triplet excited-state dynamics of a nonfullerene electron acceptor y6. J. Phys. Chem. C 125, 20806–20813 (2021).

    Article  CAS  Google Scholar 

  120. Yang, Z. et al. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46, 915–1016 (2017).

    Article  CAS  Google Scholar 

  121. Soon, Y. W. et al. Material crystallinity as a determinant of triplet dynamics and oxygen quenching in donor polymers for organic photovoltaic devices. Adv. Funct. Mater. 24, 1474–1482 (2014).

    Article  CAS  Google Scholar 

  122. Eisner, F. D. et al. Hybridization of local exciton and charge-transfer states reduces nonradiative voltage losses in organic solar cells. J. Am. Chem. Soc. 141, 6362–6374 (2019).

    Article  CAS  Google Scholar 

  123. Shivhare, R. & Banerji, N. Photophysics and charge generation in low energy-offset blends for organic solar cells. Chimia 75, 862–867 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the UK Engineering and Physical Sciences Research Council for funding through both the Application Targeted and Integrated Photovoltaics programme grant (EP/T028513/1) and the Centre for Doctoral Training in Plastic Electronic Materials (EP/L016702/1). Thanks also go to Samsung Electronics for funding. Special thanks also go to M. Heeney (Imperial College London, KAUST Solar Center) for his helpful thoughts and comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed substantially to discussion of the content. J.L. wrote the article with assistance from E.Y., C.L. and S.Y.P. J.-S.K. and J.L. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Joel Luke or Ji-Seon Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Joseph Cameron and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

D18

poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-5,5′-(5,8-bis(4-(2-butyloctyl)thiophen-2-yl)dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2-c][1,2,5]thiadiazole)].

IDTBR

(5Z)-3-ethyl-2-sulfanylidene-5-[[4-[9,9,18,18-tetrakis(R)-15-[7-[(Z)-(3-ethyl-4-oxo-2-sulfanylidene-1,3-thiazolidin-5-ylidene)methyl]-2,1,3-benzothiadiazol-4-yl]-5,14-dithiapentacyclo[10.6.0.03,10.04,8.013,17]octadeca-1(12),2,4(8),6,10,13(17),15-heptaen-6-yl]-2,1,3-benzothiadiazol-7-yl]methylidene]-1,3-thiazolidin-4-one where R is either n-octyl in O-IDTBR or 2-ethylhexyl in EH-IDTBR.

IT-4F

2-[(2Z)-2-[[20-[(Z)-[1-(dicyanomethylidene)-5,6-difluoro-3-oxoinden-2-ylidene]methyl]-12,12,24,24-tetrakis(4-hexylphenyl)-5,9,17,21-tetrathiaheptacyclo[13.9.0.03,13.04,11.06,10.016,23.018,22]tetracosa-1(15),2,4(11),6(10),7,13,16(23),18(22),19-nonaen-8-yl]methylidene]-5,6-difluoro-3-oxoinden-1-ylidene]propanedinitrile.

ITIC

2-[2-[[20-[(Z)-[1-(dicyanomethylidene)-3-oxoinden-2-ylidene]methyl]-12,12,24,24-tetrakis(4-hexylphenyl)-5,9,17,21-tetrathiaheptacyclo[13.9.0.03,13.04,11.06,10.016,23.018,22]tetracosa-1(15),2,4(11),6(10),7,13,16(23),18(22),19-nonaen-8-yl]methylidene]-3-oxoinden-1-ylidene]propanedinitrile.

ITIC-DM

2-[(2Z)-2-[[20-[(E)-[1-(dicyanomethylidene)-5,6-dimethyl-3-oxoinden-2-ylidene]methyl]-12,12,24,24-tetrakis(4-hexylphenyl)-5,9,17,21-tetrathiaheptacyclo[13.9.0.03,13.04,11.06,10.016,23.018,22]tetracosa-1(15),2,4(11),6(10),7,13,16(23),18(22),19-nonaen-8-yl]methylidene]-5,6-dimethyl-3-oxoinden-1-ylidene]propanedinitrile.

L8-BO

2-[2-[[23-[[1-(dicyanomethylidene)-5,6-difluoro-3-oxoinden-2-ylidene]methyl]-3,27-bis(2-ethylhexyl)-8,22-di(2-butyloctyl)-6,10,15,20,24-pentathia-3,14,16,27-tetrazaoctacyclo[16.9.0.02,12.04,11.05,9.013,17.019,26.021,25]heptacosa-1(18),2(12),4(11),5(9),7,13,16,19(26),21(25),22-decaen-7-yl]methylidene]-5,6-difluoro-3-oxoinden-1-ylidene]propanedinitrile.

O-IDFBR

(5Z)-3-ethyl-5-[[4-[2-[7-[(Z)-(3-ethyl-4-oxo-2-sulfanylidene-1,3-thiazolidin-5-ylidene)methyl]-2,1,3-benzothiadiazol-4-yl]-6,6,12,12-tetraoctylindeno[1,2-b]fluoren-8-yl]-2,1,3-benzothiadiazol-7-yl]methylidene]-2-sulfanylidene-1,3-thiazolidin-4-one.

P3HT

poly(3-hexylthiophene-2,5-diyl).

PBDB-T

poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione)].

PM6

poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione)].

PTIC

2-((Z)-2-((5-(4-(5-(((1E,2Z)-1-(cyano(isocyano)methylene)-5,6-difluoro-3-oxo-1,3-dihydro-2H-inden-2-ylidene)methyl)-4-hexylthiophen-2-yl)-2-((2-hexyldecyl)oxy)-5-(pentadecan-7-yloxy)phenyl)-3-hexylthiophen-2-yl)methylene)-5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile.

Y6

2-[2-[[23-[[1-(dicyanomethylidene)-5,6-difluoro-3-oxoinden-2-ylidene]methyl]-3,27-bis(2-ethylhexyl)-8,22-di(undecyl)-6,10,15,20,24-pentathia-3,14,16,27-tetrazaoctacyclo[16.9.0.02,12.04,11.05,9.013,17.019,26.021,25]heptacosa-1(18),2(12),4(11),5(9),7,13,16,19(26),21(25),22-decaen-7-yl]methylidene]-5,6-difluoro-3-oxoinden-1-ylidene]propanedinitrile.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luke, J., Yang, E.J., Labanti, C. et al. Key molecular perspectives for high stability in organic photovoltaics. Nat Rev Mater 8, 839–852 (2023). https://doi.org/10.1038/s41578-023-00606-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00606-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing