Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

In situ self-assembly for cancer therapy and imaging

Abstract

In situ self-assembly — the in situ formation of complex materials via biochemical reactions of monomers — has enhanced the efficacy of drug delivery for cancer therapy and imaging. So far, nanomedicine has been confined to ex situ self-assembly, which is limited by poor deep-tumour penetration and poor blood circulation. By contrast, in situ self-assembly-based cancer treatments offer various advantages, including enhanced blood circulation of monomers, long-term drug delivery pharmacokinetics, low drug resistance and the ability to target deep tumours and organelles, which can result in disruption-mediated apoptosis and enable the imaging of cellular activity for effective cancer therapy and diagnosis. In this Review, we discuss the design of in situ self-assembled nanomedicines for cancer therapy and imaging based on various endogenous and exogenous stimuli in both the extracellular and the intracellular milieu. We also highlight the advantages of cancer treatment via multimodal dynamic transformations of nanostructures self-assembled in situ, including the ability to induce mechanical stress, deploy cancer-specific targeted therapies, obtain deep-tumour penetration and sustain prolonged drug retention time in the body. Finally, we discuss from a clinical viewpoint the challenges of in situ self-assembled nanomedicine and its potential to offer advanced alternatives to existing cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of in situ self-assembly.
Fig. 2: Overall concept of in situ self-assembly for cancer therapy and imaging.
Fig. 3: Extracellular in situ self-assembly.
Fig. 4: Intracellular in situ self-assembly.
Fig. 5: Multimodal dynamic control of in situ self-assembly for cancer therapy.
Fig. 6: Representative cancer diagnosis imaging techniques based on in situ self-assembly.

Similar content being viewed by others

References

  1. Wyld, L., Audisio, R. A. & Poston, G. J. The evolution of cancer surgery and future perspectives. Nat. Rev. Clin. Oncol. 12, 115–124 (2015).

    Article  Google Scholar 

  2. Sgouros, G., Bodei, L., McDevitt, M. R. & Nedrow, J. R. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat. Rev. Drug Discov. 19, 589–608 (2020).

    Article  CAS  Google Scholar 

  3. Alexander, J. L. et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol. 14, 356–365 (2017).

    Article  CAS  Google Scholar 

  4. Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V. & Wargo, J. A. The microbiome, cancer, and cancer therapy. Nat. Med. 25, 377–388 (2019).

    Article  CAS  Google Scholar 

  5. Price, J. M., Prabhakaran, A. & West, C. M. L. Predicting tumour radiosensitivity to deliver precision radiotherapy. Nat. Rev. Clin. Oncol. 20, 83–98 (2023).

    Article  CAS  Google Scholar 

  6. Schaue, D. & McBride, W. H. Opportunities and challenges of radiotherapy for treating cancer. Nat. Rev. Clin. Oncol. 12, 527–540 (2015).

    Article  Google Scholar 

  7. Roscoe, J. A. et al. Patient expectation is a strong predictor of severe nausea after chemotherapy. Cancer 101, 2701–2708 (2004).

    Article  Google Scholar 

  8. Hesketh, P. J. Chemotherapy-induced nausea and vomiting. N. Engl. J. Med. 358, 2482–2494 (2008).

    Article  CAS  Google Scholar 

  9. Dirix, P., Nuyts, S. & Van den Bogaert, W. Radiation-induced xerostomia in patients with head and neck cancer. Cancer 107, 2525–2534 (2006).

    Article  Google Scholar 

  10. Lalla, R. V. et al. A systematic review of oral fungal infections in patients receiving cancer therapy. Support. Care Cancer 18, 985–992 (2010).

    Article  Google Scholar 

  11. Kato, K. et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 20, 1506–1517 (2019).

    Article  CAS  Google Scholar 

  12. Krishnan, V. & Mitragotri, S. Nanoparticles for topical drug delivery: potential for skin cancer treatment. Adv. Drug Deliv. Rev. 153, 87–108 (2020).

    Article  CAS  Google Scholar 

  13. Gilhar, A., Keren, A. & Paus, R. JAK inhibitors and alopecia areata. Lancet 393, 318–319 (2019).

    Article  Google Scholar 

  14. Di Maio, M., Basch, E., Bryce, J. & Perrone, F. Patient-reported outcomes in the evaluation of toxicity of anticancer treatments. Nat. Rev. Clin. Oncol. 13, 319–325 (2016).

    Article  Google Scholar 

  15. Li, S. et al. Neoadjuvant therapy with immune checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric cancer. Nat. Commun. 14, 8 (2023).

    Article  CAS  Google Scholar 

  16. Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer. Nature 575, 299–309 (2019).

    Article  CAS  Google Scholar 

  17. Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2, 48–58 (2002).

    Article  CAS  Google Scholar 

  18. Chi, Y. et al. CapG promotes resistance to paclitaxel in breast cancer through transactivation of PIK3R1/P50. Theranostics 9, 6840–6855 (2019).

    Article  CAS  Google Scholar 

  19. Wang, P. et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat. Commun. 9, 2898 (2018).

    Article  Google Scholar 

  20. Rajan, S. S. et al. The mechanism of cancer drug addiction in ALK-positive T-cell lymphoma. Oncogene 39, 2103–2117 (2020).

    Article  CAS  Google Scholar 

  21. Zhou, J. et al. Enzymatic self-assembly confers exceptionally strong synergism with NF-κB targeting for selective necroptosis of cancer cells. J. Am. Chem. Soc. 140, 2301–2308 (2018).

    Article  CAS  Google Scholar 

  22. Li, P. et al. Site-selective in situ growth-induced self-assembly of protein–polymer conjugates into pH-responsive micelles for tumor microenvironment triggered fluorescence imaging. Biomacromolecules 19, 4472–4479 (2018).

    Article  CAS  Google Scholar 

  23. Liu, Y. et al. In situ supramolecular polymerization-enhanced self-assembly of polymer vesicles for highly efficient photothermal therapy. Nat. Commun. 11, 1724 (2020).

    Article  CAS  Google Scholar 

  24. Wu, G. et al. One-step in situ self-assembly of biodegradable films for long-term intravesical bladder cancer therapy. ACS Appl. Bio Mater. 5, 825–832 (2022).

    Article  CAS  Google Scholar 

  25. Ma, B. et al. Self-assembled copper–amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 141, 849–857 (2019).

    Article  CAS  Google Scholar 

  26. Samperi, M., Pérez-García, L. & Amabilino, D. B. Quantification of energy of activation to supramolecular nanofibre formation reveals enthalpic and entropic effects and morphological consequence. Chem. Sci. 10, 10256–10266 (2019).

    Article  CAS  Google Scholar 

  27. Yin, P., Choi, H. M. T., Calvert, C. R. & Pierce, N. A. Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008).

    Article  CAS  Google Scholar 

  28. Dergham, M., Lin, S. & Geng, J. Supramolecular self-assembly in living cells. Angew. Chem. Int. Ed. 61, e202114267 (2022).

    Article  CAS  Google Scholar 

  29. Du, X. W. et al. In situ generated D-peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells. Cell Death Dis. 8, e2614 (2017).

    Article  CAS  Google Scholar 

  30. Zhang, Y. et al. Controlled intracellular polymerization for cancer treatment. JACS Au 2, 579–589 (2022).

    Article  CAS  Google Scholar 

  31. Wu, J. et al. Programmable ROS-mediated cancer therapy via magneto-inductions. Adv. Sci. 7, 1902933 (2020).

    Article  CAS  Google Scholar 

  32. He, H., Liu, S., Wu, D. & Xu, B. Enzymatically formed peptide assemblies sequestrate proteins and relocate inhibitors to selectively kill cancer cells. Angew. Chem. Int. Ed. 59, 16445–16450 (2020).

    Article  CAS  Google Scholar 

  33. Fan, J. Q. et al. Binding-induced fibrillogenesis peptides recognize and block intracellular vimentin skeletonization against breast cancer. Nano Lett. 21, 6202–6210 (2021).

    Article  CAS  Google Scholar 

  34. Li, G., Hu, X. W., Wu, X. & Zhang, Y. Microtubule-targeted self-assembly triggers prometaphase-metaphase oscillations suppressing tumor growth. Nano Lett. 21, 3052–3059 (2021).

    Article  CAS  Google Scholar 

  35. Song, N. et al. In situ oxidation-regulated self-assembly of peptides into transformable scaffolds for cascade therapy. Nano Today 38, 101198 (2021).

    Article  CAS  Google Scholar 

  36. Yang, Y. et al. Photodynamic therapy with liposomes encapsulating photosensitizers with aggregation-induced emission. Nano Lett. 19, 1821–1826 (2019).

    Article  CAS  Google Scholar 

  37. Liu, B., Wu, R., Gong, S., Xiao, H. & Thayumanavan, S. In situ formation of polymeric nanoassemblies using an efficient reversible click reaction. Angew. Chem. Int. Ed. 59, 15135–15140 (2020).

    Article  CAS  Google Scholar 

  38. Cheng, Z. F. et al. Self-assembly of pentapeptides into morphology-adaptable nanomedicines for enhanced combinatorial chemo-photodynamic therapy. Nano Today 33, 100878 (2020).

    Article  CAS  Google Scholar 

  39. Li, M. et al. Proline isomerization-regulated tumor microenvironment-adaptable self-assembly of peptides for enhanced therapeutic efficacy. Nano Lett. 19, 7965–7976 (2019).

    Article  CAS  Google Scholar 

  40. Kang, H. et al. Immunoregulation of macrophages by dynamic ligand presentation via ligand–cation coordination. Nat. Commun. 10, 1696 (2019).

    Article  Google Scholar 

  41. Wang, X. et al. Tumor-microenvironment-activated in situ self-assembly of sequentially responsive biopolymer for targeted photodynamic therapy. Adv. Funct. Mater. 30, 2000229 (2020).

    Article  CAS  Google Scholar 

  42. Cheng, G. et al. Programmed size-changeable nanotheranostic agents for enhanced imaging-guided chemo/photodynamic combination therapy and fast elimination. Adv. Mater. 33, 2100398 (2021).

    Article  CAS  Google Scholar 

  43. Cheng, Q. et al. Supramolecular tropism driven aggregation of nanoparticles in situ for tumor-specific bioimaging and photothermal therapy. Small 17, 2101332 (2021).

    Article  CAS  Google Scholar 

  44. Li, S. et al. Smart NIR-II croconaine dye-peptide for enhanced photo-sonotheranostics of hepatocellular carcinoma. Theranostics 12, 76–86 (2022).

    Article  CAS  Google Scholar 

  45. She, J. et al. Thermo-triggered in situ chitosan-based gelation system for repeated and enhanced sonodynamic therapy post a single injection. Adv. Healthc. Mater. 10, 2001208 (2021).

    Article  CAS  Google Scholar 

  46. Chen, Z., Chen, M., Zhou, K. & Rao, J. Pre-targeted imaging of protease activity through in situ assembly of nanoparticles. Angew. Chem. Int. Ed. 59, 7864–7870 (2020).

    Article  CAS  Google Scholar 

  47. Hou, D.-Y. et al. An activated excretion-retarded tumor imaging strategy towards metabolic organs. Bioact. Mater. 14, 110–119 (2022).

    CAS  Google Scholar 

  48. Hu, Y. X. et al. Enzyme-mediated in situ self-assembly promotes in vivo bioorthogonal reaction for pretargeted multimodality imaging. Angew. Chem. Int. Ed. 60, 18082–18093 (2021).

    Article  CAS  Google Scholar 

  49. He, H., Guo, J., Lin, X. & Xu, B. Enzyme-instructed assemblies enable mitochondria localization of histone H2B in cancer cells. Angew. Chem. Int. Ed. 59, 9330–9334 (2020).

    Article  CAS  Google Scholar 

  50. Yang, K. et al. Enzyme-induced in vivo assembly of gold nanoparticles for imaging-guided synergistic chemo-photothermal therapy of tumor. Biomaterials 223, 119460 (2019).

    Article  CAS  Google Scholar 

  51. Wang, Y. et al. Tailoring a near-infrared macrocyclization scaffold allows the control of in situ self-assembly for photoacoustic/PET bimodal imaging. Angew. Chem. Int. Ed. 61, e202200369 (2022).

    Article  CAS  Google Scholar 

  52. Sun, Z. Y. et al. Controlled nano-bio interface of functional nanoprobes for in vivo monitoring enzyme activity in tumors. ACS Nano 13, 1153–1167 (2019).

    CAS  Google Scholar 

  53. Feng, H.-T., Lam, J. W. Y. & Tang, B. Z. Self-assembly of AIEgens. Coord. Chem. Rev. 406, 213142 (2020).

    Article  CAS  Google Scholar 

  54. Yang, Z. et al. Hierarchical self-assembly of a pyrene-based discrete organoplatinum(II) double-metallacycle with triflate anions via hydrogen bonding and its tunable fluorescence emission. J. Am. Chem. Soc. 142, 13689–13694 (2020).

    Article  CAS  Google Scholar 

  55. Ciesielski, A., El Garah, M., Masiero, S. & Samorì, P. Self-assembly of natural and unnatural nucleobases at surfaces and interfaces. Small 12, 83–95 (2016).

    Article  CAS  Google Scholar 

  56. Nonappa & Ikkala, O. Hydrogen bonding directed colloidal self-assembly of nanoparticles into 2D crystals, capsids, and supracolloidal assemblies. Adv. Funct. Mater. 28, 1704328 (2018).

    Article  Google Scholar 

  57. Zhang, Z. et al. Intra- and intermolecular self-assembly of a 20-nm-wide supramolecular hexagonal grid. Nat. Chem. 12, 468–474 (2020).

    Article  CAS  Google Scholar 

  58. Walker, D. A., Browne, K. P., Kowalczyk, B. & Grzybowski, B. A. Self-assembly of nanotriangle superlattices facilitated by repulsive electrostatic interactions. Angew. Chem. Int. Ed. 49, 6760–6763 (2010).

    Article  CAS  Google Scholar 

  59. Guo, T. et al. Intermolecular self-assembly of dopamine-conjugated carboxymethylcellulose and carbon nanotubes toward supertough filaments and multifunctional wearables. Chem. Eng. J. 416, 128981 (2021).

    Article  CAS  Google Scholar 

  60. Chen, L.-J. & Yang, H.-B. Construction of stimuli-responsive functional materials via hierarchical self-assembly involving coordination interactions. Acc. Chem. Res. 51, 2699–2710 (2018).

    Article  CAS  Google Scholar 

  61. Domoto, Y. & Fujita, M. Self-assembly of nanostructures with high complexity based on metalunsaturated-bond coordination. Coord. Chem. Rev. 466, 214605 (2022).

    Article  CAS  Google Scholar 

  62. Xu, J. et al. Wet and functional adhesives from one-step aqueous self-assembly of natural amino acids and polyoxometalates. Angew. Chem. Int. Ed. 56, 8731–8735 (2017).

    Article  CAS  Google Scholar 

  63. Kang, H. et al. An in situ reversible heterodimeric nanoswitch controlled by metal-ion-ligand coordination regulates the mechanosensing and differentiation of stem cells. Adv. Mater. 30, 1803591 (2018).

    Article  Google Scholar 

  64. Chen, Z. et al. Exploring the condensation reaction between aromatic nitriles and amino thiols to optimize in situ nanoparticle formation for the imaging of proteases and glycosidases in cells. Angew. Chem. Int. Ed. 59, 3272–3279 (2020).

    Article  CAS  Google Scholar 

  65. Qi, G. et al. Enzyme-mediated intracellular polymerization of AIEgens for light-up tumor localization and theranostics. Adv. Mater. 34, 2106885 (2022).

    Article  CAS  Google Scholar 

  66. Liu, J. & Liu, B. Living cell-mediated in-situ polymerization for biomedical applications. Prog. Polym. Sci. 129, 101545 (2022).

    Article  CAS  Google Scholar 

  67. Bishop, K. J. M. Self-assembly across scales. Nat. Mater. 21, 501–502 (2022).

    Article  CAS  Google Scholar 

  68. Nevers, D. R. et al. Mesophase formation stabilizes high-purity magic-sized clusters. J. Am. Chem. Soc. 140, 3652–3662 (2018).

    Article  CAS  Google Scholar 

  69. Zhou, Z. X., Maxeiner, K., Ng, D. Y. W. & Weil, T. Polymer chemistry in living cells. Acc. Chem. Res. 55, 2998–3009 (2022).

    Article  CAS  Google Scholar 

  70. O’Leary, L. E. R., Fallas, J. A., Bakota, E. L., Kang, M. K. & Hartgerink, J. D. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 3, 821–828 (2011).

    Article  Google Scholar 

  71. Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Article  CAS  Google Scholar 

  72. Luo, S. et al. Targeting self-assembly peptide for inhibiting breast tumor progression and metastasis. Biomaterials 249, 120055 (2020).

    Article  CAS  Google Scholar 

  73. Guo, R. C. et al. In vivo self-assembly induced cell membrane phase separation for improved peptide drug internalization. Angew. Chem. Int. Ed. 60, 25128–25134 (2021).

    Article  CAS  Google Scholar 

  74. Brito, A. et al. Inhibiting cancer metabolism by aromatic carbohydrate amphiphiles that act as antagonists of the glucose transporter GLUT1. Chem. Sci. 11, 3737–3744 (2020).

    Article  CAS  Google Scholar 

  75. Yan, R. et al. Activatable NIR fluorescence/MRI bimodal probes for in vivo imaging by enzyme-mediated fluorogenic reaction and self-assembly. J. Am. Chem. Soc. 141, 10331–10341 (2019).

    Article  CAS  Google Scholar 

  76. Feng, Z., Han, X., Wang, H., Tang, T. & Xu, B. Enzyme-instructed peptide assemblies selectively inhibit bone tumors. Chem 5, 2442–2449 (2019).

    Article  CAS  Google Scholar 

  77. Wang, Q. et al. In situ supramolecular self-assembly of Pt(IV) prodrug to conquer cisplatin resistance. Adv. Funct. Mater. 31, 2101826 (2021).

    Article  CAS  Google Scholar 

  78. Wang, Y. H. et al. Selective degradation of PD-L1 in cancer cells by enzyme-instructed self-assembly. Adv. Funct. Mater. 31, 2102505 (2021).

    Article  CAS  Google Scholar 

  79. Zhao, X.-X. et al. In situ self-assembled nanofibers precisely target cancer-associated fibroblasts for improved tumor imaging. Angew. Chem. Int. Ed. 58, 15287–15294 (2019).

    Article  CAS  Google Scholar 

  80. An, H.-W. et al. A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma. ACS Nano 14, 927–936 (2020).

    Article  CAS  Google Scholar 

  81. Li, G. et al. Lipid-raft-targeted molecular self-assembly inactivates YAP to treat ovarian cancer. Nano Lett. 21, 747–755 (2021).

    Article  CAS  Google Scholar 

  82. Wang, M. D. et al. Targeted in situ self-assembly augments peptide drug conjugate cell-entry efficiency. Biomaterials 278, 121139 (2021).

    Article  CAS  Google Scholar 

  83. Wang, Z. et al. Addressable peptide self-assembly on the cancer cell membrane for sensitizing chemotherapy of renal cell carcinoma. Adv. Mater. 31, 1807175 (2019).

    Article  Google Scholar 

  84. Mang, D., Roy, S. R., Zhang, Q., Hu, X. & Zhang, Y. Heparan sulfate-instructed self-assembly selectively inhibits cancer cell migration. ACS Appl. Bio Mater. 13, 17236–17242 (2021).

    Article  CAS  Google Scholar 

  85. Roy, S. R. et al. Integrin and heparan sulfate dual-targeting peptide assembly suppresses cancer metastasis. ACS Appl. Mater. Interfaces 12, 19277–19284 (2020).

    Article  CAS  Google Scholar 

  86. Wang, M.-D., Lv, G. T., An, H. W., Zhang, N. Y. & Wang, H. In situ self-assembly of bispecific peptide for cancer immunotherapy. Angew. Chem. Int. Ed. 61, e202113649 (2022).

    Article  CAS  Google Scholar 

  87. Cao, Z. et al. Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery. Nat. Commun. 13, 2038 (2022).

    Article  CAS  Google Scholar 

  88. Cong, Y. et al. Microenvironment-induced in situ self-assembly of polymer-peptide conjugates that attack solid tumors deeply. Angew. Chem. Int. Ed. 58, 4632–4637 (2019).

    Article  CAS  Google Scholar 

  89. Hu, B. et al. Acid-driven aggregation of selenol-functionalized zwitterionic gold nanoparticles improves the photothermal treatment efficacy of tumors. Mater. Chem. Front. 6, 775–782 (2022).

    Article  CAS  Google Scholar 

  90. Zhang, R. et al. Acid-induced in vivo assembly of gold nanoparticles for enhanced photoacoustic imaging-guided photothermal therapy of tumors. Adv. Healthc. Mater. 9, 2000394 (2020).

    Article  CAS  Google Scholar 

  91. Shi, Y. et al. Fe-doped polyoxometalate as acid-aggregated nanoplatform for NIR-II photothermal-enhanced chemodynamic therapy. Adv. Healthc. Mater. 9, 2000005 (2020).

    Article  CAS  Google Scholar 

  92. Chen, H. et al. Smart self-assembly amphiphilic cyclopeptide-dye for near-infrared window-II imaging. Adv. Mater. 33, 2006902 (2021).

    Article  CAS  Google Scholar 

  93. Zhang, K. et al. Peptide-based nanoparticles mimic fibrillogenesis of laminin in tumor vessels for precise embolization. ACS Nano 14, 7170–7180 (2020).

    Article  CAS  Google Scholar 

  94. Chen, W. et al. Combined tumor environment triggered self-assembling peptide nanofibers and inducible multivalent ligand display for cancer cell targeting with enhanced sensitivity and specificity. Small 16, 2002780 (2020).

    Article  CAS  Google Scholar 

  95. Zhang, P. et al. Quantitative mapping of glutathione within intracranial tumors through interlocked MRI signals of a responsive nanoprobe. Angew. Chem. Int. Ed. 60, 8130–8138 (2021).

    Article  CAS  Google Scholar 

  96. Cui, L. et al. Reduction triggered in situ polymerization in living mice. J. Am. Chem. Soc. 142, 15575–15584 (2020).

    Article  CAS  Google Scholar 

  97. Wang, Y. et al. Tumor vessel targeted self-assemble nanoparticles for amplification and prediction of the embolization effect in hepatocellular carcinoma. ACS Nano 14, 14907–14918 (2020).

    Article  CAS  Google Scholar 

  98. Guillin, O. M., Vindry, C., Ohlmann, T. & Chavatte, L. Selenium, selenoproteins and viral infection. Nutrients 11, 2101 (2019).

    Article  CAS  Google Scholar 

  99. Kim, Y. et al. Photoswitchable microgels for dynamic macrophage modulation. Adv. Mater. 34, 2205498 (2022).

    Article  CAS  Google Scholar 

  100. Meng, Z. et al. Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations. Adv. Mater. 31, 1900927 (2019).

    Article  Google Scholar 

  101. Wang, Q., Li, D., Xiao, J. Y., Guo, F. C. & Qi, L. M. Reversible self-assembly of gold nanorods mediated by photoswitchable molecular adsorption. Nano Res. 12, 1563–1569 (2019).

    Article  CAS  Google Scholar 

  102. Lee, H. P. et al. Light-triggered in situ gelation of hydrogels using 2D molybdenum disulfide (MoS2) nanoassemblies as crosslink epicenter. Adv. Mater. 33, 2101238 (2021).

    Article  CAS  Google Scholar 

  103. Liu, F.-H. et al. Near-infrared laser-driven in situ self-assembly as a general strategy for deep tumor therapy. Nano Lett. 18, 6577–6584 (2018).

    Article  CAS  Google Scholar 

  104. Lee, S. et al. Magnetic control and real-time monitoring of stem cell differentiation by the ligand nanoassembly. Small 17, 2102892 (2021).

    Article  CAS  Google Scholar 

  105. Cai, X. Q. et al. In situ pepsin-assisted needle assembly of magnetic-graphitic-nanocapsules for enhanced gastric retention and mucus penetration. Nano Today 36, 101032 (2021).

    Article  CAS  Google Scholar 

  106. Wu, H. et al. Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy. Nanoscale 9, 16175–16182 (2017).

    Article  CAS  Google Scholar 

  107. Gong, D., Celi, N., Zhang, D. Y. & Cai, J. Magnetic biohybrid microrobot multimers based on chlorella cells for enhanced targeted drug delivery. ACS Appl. Mater. Interfaces 14, 6320–6330 (2022).

    Article  CAS  Google Scholar 

  108. Yu, B., Choi, B., Li, W. & Kim, D.-H. Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy. Nat. Commun. 11, 3637 (2020).

    Article  CAS  Google Scholar 

  109. Cheng, D.-B. et al. Ultrasound-activated cascade effect for synergistic orthotopic pancreatic cancer therapy. iScience 23, 101144 (2020).

    Article  CAS  Google Scholar 

  110. Zhu, J. et al. Ultrasound-triggered in situ gelation to overcome tumor hypoxia for enhanced photodynamic and sustained chemotherapy. Adv. Ther. 4, 2100052 (2021).

    Article  CAS  Google Scholar 

  111. Zheng, D.-W. et al. Controllable gelation of artificial extracellular matrix for altering mass transport and improving cancer therapies. Nat. Commun. 11, 4907 (2020).

    Article  Google Scholar 

  112. Son, S. et al. Cancer therapeutics based on diverse energy sources. Chem. Soc. Rev. 51, 8201–8215 (2022).

    Article  CAS  Google Scholar 

  113. Chagri, S., Ng, D. Y. W. & Weil, T. Designing bioresponsive nanomaterials for intracellular self-assembly. Nat. Rev. Chem. 6, 320–338 (2022).

    Article  Google Scholar 

  114. Du, W., Hu, X., Wei, W. & Liang, G. Intracellular peptide self-assembly: a biomimetic approach for in situ nanodrug preparation. Bioconjug. Chem. 29, 826–837 (2018).

    Article  CAS  Google Scholar 

  115. Liu, J., Chen, W., Zhao, Z. & Xu, H. H. Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering. Biomaterials 34, 7862–7872 (2013).

    Article  CAS  Google Scholar 

  116. Yi, M. et al. Enzyme responsive rigid-rod aromatics target “undruggable” phosphatases to kill cancer cells in a mimetic bone microenvironment. J. Am. Chem. Soc. 144, 13055–13059 (2022).

    Article  CAS  Google Scholar 

  117. López-Otín, C. & Matrisian, L. M. Emerging roles of proteases in tumour suppression. Nat. Rev. Cancer 7, 800–808 (2007).

    Article  Google Scholar 

  118. Chen, R., Jäättelä, M. & Liu, B. Lysosome as a central hub for rewiring pH homeostasis in tumors. Cancers 12, 2437 (2020).

    Article  CAS  Google Scholar 

  119. Van Damme, P. et al. Caspase-specific and nonspecific in vivo protein processing during Fas-induced apoptosis. Nat. Methods 2, 771–777 (2005).

    Article  Google Scholar 

  120. Sun, M., Wang, C., Lv, M., Fan, Z. & Du, J. Intracellular self-assembly of peptides to induce apoptosis against drug-resistant melanoma. J. Am. Chem. Soc. 144, 7337–7345 (2022).

    Article  CAS  Google Scholar 

  121. An, H.-W. et al. A tumour-selective cascade activatable self-detained system for drug delivery and cancer imaging. Nat. Commun. 10, 4861 (2019).

    Article  Google Scholar 

  122. He, H. et al. Enzymatic cleavage of branched peptides for targeting mitochondria. J. Am. Chem. Soc. 140, 1215–1218 (2018).

    Article  CAS  Google Scholar 

  123. He, H., Lin, X., Guo, J., Wang, J. & Xu, B. Perimitochondrial enzymatic self-assembly for selective targeting the mitochondria of cancer cells. ACS Nano 14, 6947–6955 (2020).

    Article  CAS  Google Scholar 

  124. Gao, Z. et al. β-Galactosidase responsive AIE fluorogene for identification and removal of senescent cancer cells. Sci. China Chem. 63, 398–403 (2020).

    Article  CAS  Google Scholar 

  125. Ohkuma, S. & Poole, B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl Acad. Sci. USA 75, 3327–3331 (1978).

    Article  CAS  Google Scholar 

  126. Geisow, M. J., D’Arcy Hart, P. & Young, M. R. Temporal changes of lysosome and phagosome pH during phagolysosome formation in macrophages: studies by fluorescence spectroscopy. J. Cell Biol. 89, 645–652 (1981).

    Article  CAS  Google Scholar 

  127. Mindell, J. A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 74, 69–86 (2012).

    Article  CAS  Google Scholar 

  128. Wang, J. et al. Intracellular condensates of oligopeptide for targeting lysosome and addressing multiple drug resistance of cancer. Adv. Mater. 34, 2104704 (2022).

    Article  CAS  Google Scholar 

  129. Wang, J. et al. Nanolab in a cell: crystallization-induced in situ self-assembly for cancer theranostic amplification. J. Am. Chem. Soc. 144, 14388–14395 (2022).

    Article  CAS  Google Scholar 

  130. Wang, Y. et al. Smart acid-activatable self-assembly of black phosphorous as photosensitizer to overcome poor tumor retention in photothermal therapy. Adv. Funct. Mater. 30, 2003338 (2020).

    Article  CAS  Google Scholar 

  131. Panieri, E. & Santoro, M. M. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 7, e2253 (2016).

    Article  CAS  Google Scholar 

  132. Tu, Y., Peng, F., White, P. B. & Wilson, D. A. Redox-sensitive stomatocyte nanomotors: destruction and drug release in the presence of glutathione. Angew. Chem. Int. Ed. 56, 7620–7624 (2017).

    Article  CAS  Google Scholar 

  133. Yang, D.-S. et al. A redox-triggered bispecific supramolecular nanomedicine based on peptide self-assembly for high-efficacy and low-toxic cancer therapy. Adv. Funct. Mater. 30, 1904969 (2020).

    Article  CAS  Google Scholar 

  134. Qiu, L. et al. Tumor microenvironment responsive “head-to-foot” self-assembly nanoplatform for positron emission tomography imaging in living subjects. ACS Nano 15, 18250–18259 (2021).

    Article  CAS  Google Scholar 

  135. Yang, H., Yuan, B., Zhang, X. & Scherman, O. A. Supramolecular chemistry at interfaces: host–guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 47, 2106–2115 (2014).

    Article  CAS  Google Scholar 

  136. Boekhoven, J., Rubert Pérez, C. M., Sur, S., Worthy, A. & Stupp, S. I. Dynamic display of bioactivity through host–guest chemistry. Angew. Chem. Int. Ed. 52, 12077–12080 (2013).

    Article  CAS  Google Scholar 

  137. Pluth, M. D. et al. Structural consequences of anionic host−cationic guest interactions in a supramolecular assembly. Inorg. Chem. 48, 111–120 (2009).

    Article  CAS  Google Scholar 

  138. Alavi, S., Udachin, K. & Ripmeester, J. A. Effect of guest–host hydrogen bonding on the structures and properties of clathrate hydrates. Chem. Eur. J. 16, 1017–1025 (2010).

    Article  CAS  Google Scholar 

  139. Hua, B., Zhou, J. & Yu, G. Hydrophobic interactions in the pillar[5]arene-based host–guest complexation and their application in the inhibition of acetylcholine hydrolysis. Tetrahedron Lett. 56, 986–989 (2015).

    Article  CAS  Google Scholar 

  140. Zhao, X. et al. Intracellular self-assembly driven nucleus-targeted photo-immune stimulator with chromatin decompaction function for robust innate and adaptive antitumor immunity. Adv. Funct. Mater. 32, 2108883 (2022).

    Article  CAS  Google Scholar 

  141. Shi, J. et al. An intracellular self-assembly-driven uninterrupted ROS generator augments 5-aminolevulinic-acid-based tumor therapy. Adv. Mater. 34, 2201049 (2022).

    Article  CAS  Google Scholar 

  142. Ko, M. J., Hong, H., Choi, H., Kang, H. & Kim, D.-H. Multifunctional magnetic nanoparticles for dynamic imaging and therapy. Adv. NanoBiomed Res. 2, 2200053 (2022).

    Article  CAS  Google Scholar 

  143. Sun, S., Liang, H.-W., Wang, H. & Zou, Q. Light-triggered self-assembly of peptide nanoparticles into nanofibers in living cells through molecular conformation changes and H-bond interactions. ACS Nano 16, 18978–18989 (2022).

    Article  CAS  Google Scholar 

  144. Shi, H. & Sadler, P. J. How promising is phototherapy for cancer? Br. J. Cancer 123, 871–873 (2020).

    Article  Google Scholar 

  145. Shao, J. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016).

    Article  CAS  Google Scholar 

  146. Long, X. et al. Autophagy-targeted nanoparticles for effective cancer treatment: advances and outlook. NPG Asia Mater. 14, 71 (2022).

    Article  CAS  Google Scholar 

  147. Zhang, Y. et al. Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nat. Commun. 9, 4236 (2018).

    Article  Google Scholar 

  148. Yu, G. et al. A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy. Nat. Commun. 9, 4335 (2018).

    Article  Google Scholar 

  149. Chen, Q. et al. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016).

    Article  CAS  Google Scholar 

  150. Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    Article  Google Scholar 

  151. Zhang, Y. et al. Permission to enter cell by shape: nanodisk vs nanosphere. ACS Appl. Mater. Interfaces 4, 4099–4105 (2012).

    Article  CAS  Google Scholar 

  152. Cho, E. C., Au, L., Zhang, Q. & Xia, Y. The effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells. Small 6, 517–522 (2010).

    Article  CAS  Google Scholar 

  153. Mumcuoglu, D. et al. Cellular internalization of therapeutic oligonucleotides by peptide amphiphile nanofibers and nanospheres. ACS Appl. Mater. Interfaces 8, 11280–11287 (2016).

    Article  CAS  Google Scholar 

  154. Huang, X., Teng, X., Chen, D., Tang, F. & He, J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31, 438–448 (2010).

    Article  CAS  Google Scholar 

  155. Rao, A., Roy, S., Jain, V. & Pillai, P. P. Nanoparticle self-assembly: from design principles to complex matter to functional materials. ACS Appl. Mater. Interfaces 15, 25248–25274 (2023).

    Article  CAS  Google Scholar 

  156. Wu, C., Zhang, R., Du, W., Cheng, L. & Liang, G. Alkaline phosphatase-triggered self-assembly of near-infrared nanoparticles for the enhanced photoacoustic imaging of tumors. Nano Lett. 18, 7749–7754 (2018).

    Article  CAS  Google Scholar 

  157. Chang, Y. et al. Cationic vesicles based on amphiphilic pillar[5]arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery. Angew. Chem. Int. Ed. 53, 13126–13130 (2014).

    Article  CAS  Google Scholar 

  158. Liu, S. et al. Facile fabrication of redox-responsive covalent organic framework nanocarriers for efficiently loading and delivering doxorubicin. Macromol. Rapid Commun. 41, 1900570 (2020).

    Article  CAS  Google Scholar 

  159. Croissant, J. G. et al. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. J. Control. Release 229, 183–191 (2016).

    Article  CAS  Google Scholar 

  160. Ye, D. et al. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat. Chem. 6, 519–526 (2014).

    Article  CAS  Google Scholar 

  161. Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2, 683–693 (2002).

    Article  CAS  Google Scholar 

  162. Shields, A. F. et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med. 4, 1334–1336 (1998).

    Article  CAS  Google Scholar 

  163. Hennrich, U. & Benešová, M. [68Ga]Ga-DOTA-TOC: the first FDA-approved 68Ga-radiopharmaceutical for PET imaging. Pharmaceuticals 13, 38 (2020).

    Article  CAS  Google Scholar 

  164. Pienta, K. J. et al. A phase 2/3 prospective multicenter study of the diagnostic accuracy of prostate specific membrane antigen PET/CT with 18F-DCFPyL in prostate cancer patients (OSPREY). J. Urol. 206, 52–61 (2021).

    Article  Google Scholar 

  165. Lin, J. et al. Stimuli-responsive macrocyclization scaffold allows in situ self-assembly of radioactive tracers for positron emission tomography imaging of enzyme activity. J. Am. Chem. Soc. 144, 7667–7675 (2022).

    Article  CAS  Google Scholar 

  166. Zheng, X. et al. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nat. Biomed. Eng. 1, 0057 (2017).

    Article  CAS  Google Scholar 

  167. Li, H. et al. Activity-based NIR enzyme fluorescent probes for the diagnosis of tumors and image-guided surgery. Angew. Chem. Int. Ed. 60, 17268–17289 (2021).

    Article  CAS  Google Scholar 

  168. Huang, J., Li, J., Lyu, Y., Miao, Q. & Pu, K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 18, 1133–1143 (2019).

    Article  CAS  Google Scholar 

  169. Huang, J. et al. Renal clearable polyfluorophore nanosensors for early diagnosis of cancer and allograft rejection. Nat. Mater. 21, 598–607 (2022).

    Article  CAS  Google Scholar 

  170. Liu, D. et al. Xanthene-based NIR-II dyes for in vivo dynamic imaging of blood circulation. J. Am. Chem. Soc. 143, 17136–17143 (2021).

    Article  CAS  Google Scholar 

  171. Wen, X. et al. Controlled sequential in situ self-assembly and disassembly of a fluorogenic cisplatin prodrug for cancer theranostics. Nat. Commun. 14, 800 (2023).

    Article  CAS  Google Scholar 

  172. Shi, S. et al. Versatile pH-response micelles with high cell-penetrating helical diblock copolymers for photoacoustic imaging guided synergistic chemo-photothermal therapy. Theranostics 6, 2170–2182 (2016).

    Article  CAS  Google Scholar 

  173. Zhang, J., Smaga, L. P., Satyavolu, N. S. R., Chan, J. & Lu, Y. DNA aptamer-based activatable probes for photoacoustic imaging in living mice. J. Am. Chem. Soc. 139, 17225–17228 (2017).

    Article  CAS  Google Scholar 

  174. Pu, K. et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 9, 233–239 (2014).

    Article  CAS  Google Scholar 

  175. Zhang, Y. M. et al. Enhanced radiosensitization by gold nanoparticles with acid-triggered aggregation in cancer radiotherapy. Adv. Sci. 6, 1801806 (2019).

    Article  Google Scholar 

  176. Bourlinos, A. B. et al. Gd(III)-doped carbon dots as a dual fluorescent-MRI probe. J. Mater. Chem. 22, 23327–23330 (2012).

    Article  CAS  Google Scholar 

  177. Wang, H. et al. Paramagnetic properties of metal-free boron-doped graphene quantum dots and their application for safe magnetic resonance imaging. Adv. Mater. https://doi.org/10.1002/adma.201605416 (2017).

    Article  Google Scholar 

  178. Kelly, B. D. et al. Anticancer activity of the taxane nanoparticles, DEP® docetaxel and DEP® cabazitaxel. Cancer Res. 80, 1716 (2020).

    Article  Google Scholar 

  179. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/study/NCT03255343 (2017).

  180. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01861496 (2022).

  181. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02112656 (2018).

  182. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00617981 (2017).

  183. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00041808 (2005).

  184. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03458975 (2023).

  185. Barenholz, Y. C. Doxil®—the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).

    Article  CAS  Google Scholar 

  186. Mazzotta, E., Tavano, L. & Muzzalupo, R. Thermo-sensitive vesicles in controlled drug delivery for chemotherapy. Pharmaceutics 10, 150 (2018).

    Article  CAS  Google Scholar 

  187. Suresh, D., Suresh, A. & Kannan, R. Engineering biomolecular systems: controlling the self-assembly of gelatin to form ultra-small bioactive nanomaterials. Bioact. Mater. 18, 321–336 (2022).

    CAS  Google Scholar 

  188. Wang, D. et al. Nucleoside analogue-based supramolecular nanodrugs driven by molecular recognition for synergistic cancer therapy. J. Am. Chem. Soc. 140, 8797–8806 (2018).

    Article  CAS  Google Scholar 

  189. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04649359 (2023).

  190. Hu, L. et al. Structure-based programming of supramolecular assemblies in living cells for selective cancer cell inhibition. Angew. Chem. Int. Ed. 60, 21807–21816 (2021).

    Article  CAS  Google Scholar 

  191. Yuan, Y. et al. Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy. Nat. Mater. 18, 1376–1383 (2019).

    Article  CAS  Google Scholar 

  192. Chen, J. et al. Furin-instructed intracellular gold nanoparticle aggregation for tumor photothermal therapy. Adv. Funct. Mater. 30, 2001566 (2020).

    Article  CAS  Google Scholar 

  193. Li, J. et al. Supramolecular self-assembly-facilitated aggregation of tumor-specific transmembrane receptors for signaling activation and converting immunologically cold to hot tumors. Adv. Mater. 33, 2008518 (2021).

    Article  CAS  Google Scholar 

  194. Zhou, Z. et al. In situ assembly of platinum (II)-metallopeptide nanostructures disrupts energy homeostasis and cellular metabolism. J. Am. Chem. Soc. 144, 12219–12228 (2022).

    Article  CAS  Google Scholar 

  195. Allison, S. J. et al. Self-assembly of an anion receptor with metal-dependent kinase inhibition and potent in vitro anti-cancer properties. Nat. Commun. 12, 3898 (2021).

    Article  CAS  Google Scholar 

  196. Gao, C. et al. In vivo hitchhiking of immune cells by intracellular self-assembly of bacteria-mimetic nanomedicine for targeted therapy of melanoma. Sci. Adv. 8, eabn1805 (2022).

    Article  CAS  Google Scholar 

  197. Liang, G., Ren, H. & Rao, J. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem. 2, 54–60 (2010).

    Article  CAS  Google Scholar 

  198. Seo, J. et al. Light-directed trapping of metastable intermediates in a self-assembly process. Nat. Commun. 11, 6260 (2020).

    Article  CAS  Google Scholar 

  199. Williams, R. J. et al. Enzyme-assisted self-assembly under thermodynamic control. Nat. Nanotechnol. 4, 19–24 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (no. RS-2023-00208427 to H.K.; and CRI project No. 2018R1A3B1052702 to J.S.K.).

Author information

Authors and Affiliations

Authors

Contributions

J.K. and S.L. contributed equally to this work. J.K., S.L., Y.K., K.P., H.K. and J.S.K. conceptualized the manuscript. J.K., S.L., Y.K., M.C., I.L., E.K., C.G.Y. and H.K. reviewed the relevant literature and wrote the manuscript. H.K. and J.S.K. edited and finalized the manuscript.

Corresponding authors

Correspondence to Kanyi Pu, Heemin Kang or Jong Seung Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Xiaoyuan Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Lee, S., Kim, Y. et al. In situ self-assembly for cancer therapy and imaging. Nat Rev Mater 8, 710–725 (2023). https://doi.org/10.1038/s41578-023-00589-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00589-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research