Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

3D-printed PEDOT:PSS for soft robotics

Abstract

Soft robotics is an emerging technology requiring conductive materials with inherently high compliance to sense, control or actuate. Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is a soft and flexible conducting polymer with tunable mechanical properties, mixed ionic and electronic conductivity and excellent processability. Combining PEDOT:PSS with advanced 3D printing has ushered unprecedented opportunities in soft material engineering and soft robotics. In this Review, we aim to bridge the gap between different research areas by specifically discussing the use of PEDOT:PSS-based inks in 3D printing for soft robotics. We discuss rational PEDOT:PSS-based ink design and evaluation, 3D-printing technologies and strategies as well as applications for soft robotics. We provide insights into the theoretical background and fundamental aspects of the 3D printing of conducting polymers, with the goal of accelerating soft robotics development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Roadmap on 3D-printing poly(3,4-ethylenedioxythiophene):polystyrene sulfonate for soft robotics.
Fig. 2: Design strategies and schematic illustrations for 3D-printable poly(3,4-ethylenedioxythiophene):polystyrene sulfonate-based inks.
Fig. 3: Brief overview and printability requirements of typical nozzle-based and light-based printing for poly(3,4-ethylenedioxythiophene):polystyrene sulfonate-based inks.
Fig. 4: Nozzle-based and light-based printing techniques.
Fig. 5: Three-dimensional-printed poly(3,4-ethylenedioxythiophene):polystyrene sulfonate for soft robotics.
Fig. 6: Perspectives.

Similar content being viewed by others

References

  1. Downs, F. G. et al. Multi-responsive hydrogel structures from patterned droplet networks. Nat. Chem. 12, 363–371 (2020).

    Article  CAS  Google Scholar 

  2. Wu, Y., Dong, X., Kim, J. K., Wang, C. & Sitti, M. Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces. Sci. Adv. 8, eabn3431 (2022).

    Article  CAS  Google Scholar 

  3. Kim, Y., Parada, G. A., Liu, S. & Zhao, X. Ferromagnetic soft continuum robots. Sci. Robot. 4, eaax7329 (2019).

    Article  Google Scholar 

  4. Kim, Y. et al. Telerobotic neurovascular interventions with magnetic manipulation. Sci. Robot. 7, eabg9907 (2022).

    Article  Google Scholar 

  5. Gu, G. et al. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-021-00767-0 (2021).

  6. Yan, Y. et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 6, eabc8801 (2021).

    Article  Google Scholar 

  7. Yao, K. et al. Encoding of tactile information in hand via skin-integrated wireless haptic interface. Nat. Mach. Intell. 4, 893–903 (2022).

    Article  Google Scholar 

  8. Barreiros, J. A. et al. Haptic perception using optoelectronic robotic flesh for embodied artificially intelligent agents. Sci. Robot. 7, eabi6745 (2022).

    Article  Google Scholar 

  9. Lin, W. et al. Super-resolution wearable electrotactile rendering system. Sci. Adv. 8, eabp8738 (2022).

    Article  Google Scholar 

  10. Yun, S. S., Kim, K., Ahn, J. & Cho, K. J. Body-powered variable impedance: an approach to augmenting humans with a passive device by reshaping lifting posture. Sci. Robot. 6, eabe1243 (2021).

    Article  Google Scholar 

  11. Proietti, T. et al. Restoring arm function with a soft robotic wearable for individuals with amyotrophic lateral sclerosis. Sci. Transl. Med. 15, eadd1504 (2023).

    Article  Google Scholar 

  12. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    Article  CAS  Google Scholar 

  13. Zhao, X. et al. Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121, 4309–4372 (2021).

    Article  CAS  Google Scholar 

  14. Apsite, I., Salehi, S. & Ionov, L. Materials for smart soft actuator systems. Chem. Rev. 122, 1349–1415 (2022).

    Article  CAS  Google Scholar 

  15. Cai, M. et al. A multifunctional electronic skin based on patterned metal films for tactile sensing with a broad linear response range. Sci. Adv. 7, eabl8313 (2021).

    Article  CAS  Google Scholar 

  16. Jiang, Z. et al. A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors. Nat. Electron. 5, 784–793 (2022).

    Article  CAS  Google Scholar 

  17. Song, H. et al. Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Sci. Adv. 8, eabm3785 (2022).

    Article  CAS  Google Scholar 

  18. Cui, C. et al. Controlled desiccation of preprinted hydrogel scaffolds toward complex 3D microarchitectures. Adv. Mater. 35, e2207388 (2022).

    Article  Google Scholar 

  19. Markvicka, E. J., Bartlett, M. D., Huang, X. & Majidi, C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17, 618–624 (2018).

    Article  CAS  Google Scholar 

  20. Yeom, J. et al. Soft and ion-conducting hydrogel artificial tongue for astringency perception. Sci. Adv. 6, eaba5785 (2020).

    Article  CAS  Google Scholar 

  21. Shi, J. et al. Embedment of sensing elements for robust, highly sensitive, and cross-talk-free iontronic skins for robotics applications. Sci. Adv. 9, eadf8831 (2023).

    Article  CAS  Google Scholar 

  22. Zhao, Y. et al. A self-healing electrically conductive organogel composite. Nat. Electron. https://doi.org/10.1038/s41928-023-00932-0 (2023).

  23. Jang, S., Shim, H. & Yu, C. Fully rubbery Schottky diode and integrated devices. Sci. Adv. 8, eade4284 (2022).

    Article  CAS  Google Scholar 

  24. Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article  CAS  Google Scholar 

  25. He, H. et al. Salt-induced ductilization and strain-insensitive resistance of an intrinsically conducting polymer. Sci. Adv. 8, eabq8160 (2022).

    Article  CAS  Google Scholar 

  26. Berggren, M. et al. Ion electron-coupled functionality in materials and devices based on conjugated polymers. Adv. Mater. 31, 1805813 (2019).

    Article  Google Scholar 

  27. Feig, V. R. et al. An electrochemical gelation method for patterning conductive PEDOT:PSS hydrogels. Adv. Mater. 31, 1902869 (2019).

    Article  Google Scholar 

  28. Zhang, S. et al. Room-temperature-formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics. Adv. Mater. 32, 1904752 (2020).

    Article  CAS  Google Scholar 

  29. Lee, Y. et al. A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00918-x (2022).

  30. Kim, T. et al. Dynamic tactility by position-encoded spike spectrum. Sci. Robot. 7, eabl5761 (2022).

    Article  Google Scholar 

  31. Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01528-3 (2022).

  32. Xu, C. et al. A PEDOT:PSS conductive hydrogel incorporated with Prussian blue nanoparticles for wearable and noninvasive monitoring of glucose. Chem. Eng. J. 431, 134109 (2022).

    Article  CAS  Google Scholar 

  33. Bae, E. J., Kang, Y. H., Jang, K. S., Lee, C. & Cho, S. Y. Solution synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators. Nanoscale 8, 10885–10890 (2016).

    Article  CAS  Google Scholar 

  34. Zhu, C. X. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1, 183–190 (2018).

    Article  Google Scholar 

  35. Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article  CAS  Google Scholar 

  36. Zheng, Y. Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    Article  CAS  Google Scholar 

  37. Yap, H. K., Ng, H. Y. & Yeow, C.-H. High-force soft printable pneumatics for soft robotic applications. Soft Robot. 3, 144–158 (2016).

    Article  Google Scholar 

  38. Zhu, Z., Ng, D. W. H., Park, H. S. & McAlpine, M. C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater. 6, 27–47 (2020).

    Article  Google Scholar 

  39. Cui, H. et al. Design and printing of proprioceptive three-dimensional architected robotic metamaterials. Science 376, 1287–1293 (2022).

    Article  CAS  Google Scholar 

  40. Byun, J. et al. Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Sci. Robot. 3, eaas9020 (2018). This work demonstrates ultrathin skin-type soft robotic hands on the basis of rapid electrothermal actuation.

    Article  Google Scholar 

  41. Da Silva, A. C., Wang, J. & Minev, I. R. Electro-assisted printing of soft hydrogels via controlled electrochemical reactions. Nat. Commun. 13, 1353 (2022).

    Article  Google Scholar 

  42. Liashenko, I., Rosell-Llompart, J. & Cabot, A. Ultrafast 3D printing with submicrometer features using electrostatic jet deflection. Nat. Commun. 11, 753 (2020). This work introduces electrostatic deflection into electrohydrodynamic jet printing and enables ultrafast 3D printing of thin-walled structures.

    Article  CAS  Google Scholar 

  43. Wei, H. et al. Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels. Nat. Commun. 12, 2082 (2021). This work develops orthogonal photochemistry-assisted post-printing crosslinking for complex PEDOT:PSS-based 3D structures with high shape fidelity.

    Article  CAS  Google Scholar 

  44. Shen, Z. et al. High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines. Adv. Mater. 34, 2203650 (2022). This work constructs PEDOT:PSS-PVA hydrogels with a microphase-semiseparated network for highly sensitive low-hysteresis strain sensors at human–robot interfaces.

    Article  CAS  Google Scholar 

  45. Zhou, T. et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 22, 895–902 (2023). This work reports monolithic bi-continuous PEDOT:PSS-PU hydrogels with high stretchability and stable electrical properties for fully printed all-hydrogel bioelectronic interfaces.

    Article  CAS  Google Scholar 

  46. Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020). This work develops 3D-printable PEDOT:PSS inks via secondary dopants and enables high-resolution and high-aspect-ratio microstructures with overhanging features.

    Article  CAS  Google Scholar 

  47. Kayser, L. V. & Lipomi, D. J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 31, 1806133 (2019).

    Article  Google Scholar 

  48. Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371–378 (2016).

    Article  CAS  Google Scholar 

  49. Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A. & Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022).

    Article  CAS  Google Scholar 

  50. Bertsch, P., Diba, M., Mooney, D. J. & Leeuwenburgh, S. C. G. Self-healing injectable hydrogels for tissue regeneration. Chem. Rev. 123, 834–873 (2023).

    Article  CAS  Google Scholar 

  51. Nezakati, T., Seifalian, A., Tan, A. & Seifalian, A. M. Conductive polymers: opportunities and challenges in biomedical applications. Chem. Rev. 118, 6766–6843 (2018).

    Article  CAS  Google Scholar 

  52. Yuk, H., Wu, J. J. & Zhao, X. H. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 7, 935–952 (2022).

    Article  CAS  Google Scholar 

  53. Zhu, T. et al. Recent advances in conductive hydrogels: classifications, properties, and applications. Chem. Soc. Rev. 52, 473–509 (2023).

    Article  CAS  Google Scholar 

  54. Wallin, T. J., Pikul, J. & Shepherd, R. F. 3D printing of soft robotic systems. Nat. Rev. Mater. 3, 84–100 (2018).

    Article  Google Scholar 

  55. Sachyani Keneth, E., Kamyshny, A., Totaro, M., Beccai, L. & Magdassi, S. 3D printing materials for soft robotics. Adv. Mater. 33, 2003387 (2021).

    Article  CAS  Google Scholar 

  56. Wang, D. et al. Soft actuators and robots enabled by additive manufacturing. Annu. Rev. Control Rob. Auton. Syst. https://doi.org/10.1146/annurev-control-061022-012035 (2023).

  57. Zhou, J. A., Fukawa, T., Shirai, H. & Kimura, M. Anisotropic motion of electroactive papers coated with PEDOT/PSS. Macromol. Mater. Eng. 295, 671–675 (2010).

    Article  CAS  Google Scholar 

  58. Zheng, Y. et al. Coagulation bath-assisted 3D printing of PEDOT:PSS with high resolution and strong substrate adhesion for bioelectronic devices. Adv. Mater. Technol. 7, 2101514 (2022). This work reports a coagulation bath-assisted post-printing treatment to enable high resolution and strong substrate adhesion for bioelectronic devices.

    Article  CAS  Google Scholar 

  59. Zhang, X. S., Yang, W. T., Zhang, H. N., Xie, M. Y. & Duan, X. X. PEDOT:PSS: from conductive polymers to sensors. Nanotechnol. Precis. Eng. 4, 045004 (2021).

    Article  CAS  Google Scholar 

  60. del Olmo, R., Mendes, T. C., Forsyth, M. & Casado, N. Mixed ionic and electronic conducting binders containing PEDOT:PSS and organic ionic plastic crystals toward carbon-free solid-state battery cathodes. J. Mater. Chem. A 10, 19777–19786 (2022).

    Article  Google Scholar 

  61. Zhang, J. et al. Ice-templated large-scale preparation of two-dimensional sheets of conjugated polymers: thickness-independent flexible supercapacitance. ACS Nano 15, 8870–8882 (2021).

    Article  CAS  Google Scholar 

  62. MacDiarmid, A. G. & Epstein, A. J. The concept of secondary doping as applied to polyaniline. Synth. Met. 65, 103–116 (1994).

    Article  CAS  Google Scholar 

  63. Tomaskovic-Crook, E. et al. Human neural tissues from neural stem cells using conductive biogel and printed polymer microelectrode arrays for 3D electrical stimulation. Adv. Healthc. Mater. 8, 1900425 (2019).

    Article  Google Scholar 

  64. Kee, S., Haque, M. A., Corzo, D., Alshareef, H. N. & Baran, D. Self-healing and stretchable 3D-printed organic thermoelectrics. Adv. Funct. Mater. 29, 1905426 (2019).

    Article  CAS  Google Scholar 

  65. Wang, W. et al. Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Sci. Adv. 6, eaba0931 (2020). This work reports overhanging PEDOT:PSS fibre arrays via continuous direct writing and enables moisture detection with precise temporal and spatial resolution.

    Article  CAS  Google Scholar 

  66. Zhang, P., Aydemir, N., Alkaisi, M., Williams, D. E. & Travas-Sejdic, J. Direct writing and characterization of three-dimensional conducting polymer PEDOT arrays. ACS Appl. Mater. Interfaces 10, 11888–11895 (2018).

    Article  CAS  Google Scholar 

  67. Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, 1602076 (2017).

    Article  Google Scholar 

  68. Lu, B. et al. Pure PEDOT:PSS hydrogels. Nat. Commun. 10, 1043 (2019).

    Article  Google Scholar 

  69. Ouyang, J. et al. On the mechanism of conductivity enhancement in poly (3,4-ethylenedioxythiophene): poly(styrene sulfonate) film through solvent treatment. Polymer 45, 8443–8450 (2004).

    Article  CAS  Google Scholar 

  70. Yao, B. et al. Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv. Mater. 29, 1700974 (2017).

    Article  Google Scholar 

  71. Kim, J., Zhang, G., Shi, M. & Suo, Z. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374, 212–216 (2021).

    Article  CAS  Google Scholar 

  72. Zheng, Y., Zhang, S., Tok, J. B. & Bao, Z. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc. 144, 4699–4715 (2022).

    Article  CAS  Google Scholar 

  73. Li, G. et al. Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv. Mater. 34, 2200261 (2022).

    Article  CAS  Google Scholar 

  74. Zhao, Q. et al. Robust PEDOT:PSS-based hydrogel for highly efficient interfacial solar water purification. Chem. Eng. J. 442, 136284 (2022).

    Article  CAS  Google Scholar 

  75. Lei, Q., He, J. & Li, D. Electrohydrodynamic 3D printing of layer-specifically oriented, multiscale conductive scaffolds for cardiac tissue engineering. Nanoscale 11, 15195–15205 (2019).

    Article  CAS  Google Scholar 

  76. Chang, J., He, J., Lei, Q. & Li, D. Electrohydrodynamic printing of microscale PEDOT:PSS-PEO features with tunable conductive/thermal properties. ACS Appl. Mater. Interfaces 10, 19116–19122 (2018).

    Article  CAS  Google Scholar 

  77. Bao, P. et al. 3D printing PEDOT-CMC-based high areal capacity electrodes for Li-ion batteries. Ionics 27, 2857–2865 (2021).

    Article  CAS  Google Scholar 

  78. Taroni, P. J. et al. Toward stretchable self-powered sensors based on the thermoelectric response of PEDOT:PSS/polyurethane blends. Adv. Funct. Mater. 28, 1704285 (2018).

    Article  Google Scholar 

  79. Ahn, J. et al. Air‐pressure‐assisted pen‐nib printing for 3D printed electronics. Adv. Mater. Technol. 7, 2101172 (2021).

    Article  Google Scholar 

  80. Yang, J. et al. 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors. J. Mater. Chem. A 9, 19649–19658 (2021). This work prints PEDOT:PSS-based metastructures with negative Poisson’s ratio for stretchable energy storage devices.

    Article  CAS  Google Scholar 

  81. Alemu, D., Wei, H. Y., Ho, K. C. & Chu, C. W. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ. Sci. 5, 9662–9671 (2012).

    Article  CAS  Google Scholar 

  82. Umrao, S. et al. MXene artificial muscles based on ionically cross-linked Ti(3)C(2)T(x) electrode for kinetic soft robotics. Sci. Robot. 4, eaaw7797 (2019).

    Article  Google Scholar 

  83. Chu, H. et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science 371, 494–498 (2021).

    Article  CAS  Google Scholar 

  84. Pinilla, S., Coelho, J., Li, K., Liu, J. & Nicolosi, V. Two-dimensional material inks. Nat. Rev. Mater. 7, 717–735 (2022).

    Article  Google Scholar 

  85. Jiang, C. et al. Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement. Nat. Commun. 14, 1344 (2023).

    Article  CAS  Google Scholar 

  86. Liu, J. et al. Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34, 2106253 (2022). This work combines freeze–thawing and acid treatment to achieve both shape fidelity and high conductivity for printed PEDOT:PSS-MXene hydrogels.

    Article  CAS  Google Scholar 

  87. Ghaffarkhah, A. et al. High-resolution extrusion printing of Ti3C2-based inks for wearable human motion monitoring and electromagnetic interference shielding. Carbon 191, 277–289 (2022).

    Article  CAS  Google Scholar 

  88. Xu, W. L., Du, Y. & Meng, Q. F. Fabrication of flexible thermoelectric composites by solution 3D printing technology. Compos. Commun. 28, 100944 (2021).

    Article  Google Scholar 

  89. Guo, J. et al. Loose pre-cross-linking mediating cellulose self-assembly for 3D printing strong and tough biomimetic scaffolds. Biomacromolecules 23, 877–888 (2022).

    Article  CAS  Google Scholar 

  90. Heo, D. N. et al. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 99, 582–590 (2019).

    Article  CAS  Google Scholar 

  91. Scordo, G. et al. A novel highly electrically conductive composite resin for stereolithography. Mater. Today Commun. 19, 12–17 (2019).

    Article  CAS  Google Scholar 

  92. Krainer, S., Smit, C. & Hirn, U. The effect of viscosity and surface tension on inkjet printed picoliter dots. RSC Adv. 9, 31708–31719 (2019).

    Article  CAS  Google Scholar 

  93. McKinley, G. H. & Renardy, M. Wolfgang von Ohnesorge. Phys. Fluids 23, 127101 (2011).

    Article  Google Scholar 

  94. Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997).

    Article  CAS  Google Scholar 

  95. Du, Z. H., Zhou, H., Yu, X. H. & Han, Y. C. Controlling the polarity and viscosity of small molecule ink to suppress the contact line receding and coffee ring effect during inkjet printing. Colloids Surf. A Physicochem. Eng. Asp. 602, 125111 (2020).

    Article  CAS  Google Scholar 

  96. Doumenc, F. & Guerrier, B. Self-patterning induced by a solutal Marangoni effect in a receding drying meniscus. Europhys. Lett. 103, 14001 (2013).

    Article  Google Scholar 

  97. Deegan, R. D. et al. Contact line deposits in an evaporating drop. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, 756–765 (2000).

    CAS  Google Scholar 

  98. Saadi, M. et al. Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34, 2108855 (2022). This Review surveys commonly used rheological models for viscoelastic precursors in DIW.

    Article  CAS  Google Scholar 

  99. Bao, Y. Recent trends in advanced photoinitiators for Vat photopolymerization 3D printing. Macromol. Rapid Commun. 43, 2200202 (2022).

    Article  CAS  Google Scholar 

  100. Wypych, G. Handbook of UV Degradation and Stabilization 2nd edn (ChemTec Publishing, 2015).

  101. Zhu, H., Hu, X., Liu, B., Chen, Z. & Qu, S. 3D printing of conductive hydrogel-elastomer hybrids for stretchable electronics. ACS Appl. Mater. Interfaces 13, 59243–59251 (2021). This work reports soft hydrogel–elastomer hybrid devices with reliable adhesion interfaces and cross-scale structures via DLP.

    Article  CAS  Google Scholar 

  102. Dadras-Toussi, O., Khorrami, M. & Abidian, M. R. Femtosecond laser 3D-printing of conductive microelectronics for potential biomedical applications. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021, 1197–1200 (2021).

    Google Scholar 

  103. Ahn, D., Stevens, L. M., Zhou, K. & Page, Z. A. Rapid high-resolution visible light 3D printing. ACS Cent. Sci. 6, 1555–1563 (2020).

    Article  CAS  Google Scholar 

  104. Lopez-Larrea, N. et al. Digital light 3D printing of PEDOT-based photopolymerizable inks for biosensing. ACS Appl. Polym. Mater. 4, 6749–6759 (2022).

    Article  CAS  Google Scholar 

  105. Mondschein, R. J., Kanitkar, A., Williams, C. B., Verbridge, S. S. & Long, T. E. Polymer structure–property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140, 170–188 (2017).

    Article  CAS  Google Scholar 

  106. Kee, S., Zhang, P. K. & Travas-Sejdic, J. Direct writing of 3D conjugated polymer micro/nanostructures for organic electronics and bioelectronics. Polym. Chem. 11, 4530–4541 (2020).

    Article  CAS  Google Scholar 

  107. Hu, J. & Yu, M. F. Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds. Science 329, 313–316 (2010).

    Article  CAS  Google Scholar 

  108. Kim, J. T. et al. Three-dimensional writing of highly stretchable organic nanowires. ACS Macro Lett. 1, 375–379 (2012).

    Article  CAS  Google Scholar 

  109. Chen, M., Xu, Z., Kim, J. H., Seol, S. K. & Kim, J. T. Meniscus-on-demand parallel 3D nanoprinting. ACS Nano 12, 4172–4177 (2018). This work reports an electrohydrodynamic dispensing approach for 3D parallel MGP with reliability and programmability.

    Article  CAS  Google Scholar 

  110. Kim, J. T. et al. Three-dimensional writing of conducting polymer nanowire arrays by meniscus-guided polymerization. Adv. Mater. 23, 1968–1970 (2011).

    Article  CAS  Google Scholar 

  111. Li, M. Y., Nguyen, T. & Wang, J. Strip formation mechanisms and characteristics models in 3D printing of viscous polymer inks. J. Manuf. Process. 69, 331–339 (2021).

    Article  Google Scholar 

  112. Su, R., Park, S. H., Ouyang, X., Ahn, S. I. & McAlpine, M. C. 3D-printed flexible organic light-emitting diode displays. Sci. Adv. 8, eabl8798 (2022). This work reports a multimaterial printing platform, including extrusion, spray and mechanical reconfiguration, to explore fully printed flexible OLED displays for PEDOT:PSS.

    Article  CAS  Google Scholar 

  113. Guo, Y. et al. PEDOT:PSS ‘wires’ printed on textile for wearable electronics. ACS Appl. Mater. Interfaces 8, 26998–27005 (2016).

    Article  CAS  Google Scholar 

  114. Roberts, T. et al. Flexible inkjet-printed multielectrode arrays for neuromuscular cartography. Adv. Healthc. Mater. 5, 1462–1470 (2016).

    Article  CAS  Google Scholar 

  115. Ngamna, O. et al. Inkjet printable polyaniline nanoformulations. Langmuir 23, 8569–8574 (2007).

    Article  CAS  Google Scholar 

  116. Monne, M. A., Lan, X., Zhang, C. B. & Chen, M. Y. H. Inkjet-printed flexible MEMS switches for phased-array antennas. Int. J. Antennas Propag. 2018, 4517848 (2018).

    Article  Google Scholar 

  117. Hinterbichler, H., Planchette, C. & Brenn, G. Ternary drop collisions. Exp. Fluids 56, 190 (2015).

    Article  Google Scholar 

  118. Teo, M. Y. et al. Direct patterning of highly conductive PEDOT:PSS/ionic liquid hydrogel via microreactive inkjet printing. ACS Appl. Mater. Interfaces 11, 37069–37076 (2019).

    Article  CAS  Google Scholar 

  119. Gao, X. X., Chen, H., Nie, Q. C. & Fang, H. S. Stability of line shapes in inkjet printing at low substrate speeds. Phys. Fluids 34, 032002 (2022).

    Article  CAS  Google Scholar 

  120. Shrestha, M., Lu, Z. & Lau, G. K. Transparent tunable acoustic absorber membrane using inkjet-printed PEDOT:PSS thin-film compliant electrodes. ACS Appl. Mater. Interfaces 10, 39942–39951 (2018).

    Article  CAS  Google Scholar 

  121. Maktabi, S. & Chiarot, P. R. Electrohydrodynamic printing of organic polymeric resistors on flat and uneven surfaces. J. Appl. Phys. 120, 084903 (2016).

    Article  Google Scholar 

  122. Basak, I. et al. Inkjet printing of PEDOT:PSS based conductive patterns for 3D forming applications. Polymers 12, 2915 (2020).

    Article  CAS  Google Scholar 

  123. Fan, J., Montemagno, C. & Gupta, M. 3D printed high transconductance organic electrochemical transistors on flexible substrates. Org. Electron. 73, 122–129 (2019).

    Article  CAS  Google Scholar 

  124. An, H. S. et al. High-resolution 3D printing of freeform, transparent displays in ambient air. Adv. Sci. 6, 1901603 (2019). This work reports a hybrid 3D printing platform to fabricate conformal optoelectronic architectures in ambient air.

    Article  CAS  Google Scholar 

  125. Spencer, A. R. et al. Bioprinting of a cell-laden conductive hydrogel composite. ACS Appl. Mater. Interfaces 11, 30518–30533 (2019).

    Article  CAS  Google Scholar 

  126. Yuk, H. & Zhao, X. A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Adv. Mater. 30, 1704028 (2018).

    Article  Google Scholar 

  127. Zhu, J., Zhang, Q., Yang, T., Liu, Y. & Liu, R. 3D printing of multi-scalable structures via high penetration near-infrared photopolymerization. Nat. Commun. 11, 3462 (2020).

    Article  CAS  Google Scholar 

  128. Lee, Y. Y. et al. A strain-insensitive stretchable electronic conductor: PEDOT:PSS/acrylamide organogels. Adv. Mater. 28, 1636–1643 (2016).

    Article  CAS  Google Scholar 

  129. Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Article  CAS  Google Scholar 

  130. Yu, K. et al. Photosynthesis-assisted remodeling of three-dimensional printed structures. Proc. Natl Acad. Sci. USA 118, e2016524118 (2021).

    Article  CAS  Google Scholar 

  131. Xia, Y., Sun, K. & Ouyang, J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 24, 2436–2440 (2012).

    Article  CAS  Google Scholar 

  132. Saxena, N. et al. Ionic liquids as post-treatment agents for simultaneous improvement of Seebeck coefficient and electrical conductivity in PEDOT:PSS films. ACS Appl. Mater. Interfaces 11, 8060–8071 (2019).

    Article  CAS  Google Scholar 

  133. Bertana, V. et al. Rapid prototyping of 3D organic electrochemical transistors by composite photocurable resin. Sci. Rep. 10, 13335 (2020).

    Article  CAS  Google Scholar 

  134. Lee, S. H., Park, W. S., Cho, H. S., Zhang, W. & Leu, M. C. A neural network approach to the modelling and analysis of stereolithography processes. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 215, 1719–1733 (2001).

    Article  Google Scholar 

  135. Scordo, G. et al. Effect of volatile organic compounds adsorption on 3D-printed PEGDA:PEDOT for long-term monitoring devices. Nanomaterials 11, 94 (2021).

    Article  CAS  Google Scholar 

  136. Xing, J. F., Zheng, M. L. & Duan, X. M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem. Soc. Rev. 44, 5031–5039 (2015).

    Article  CAS  Google Scholar 

  137. Patil, A. O., Heeger, A. J. & Wudl, F. Optical properties of conducting polymers. Chem. Rev. 88, 183–200 (1988).

    Article  CAS  Google Scholar 

  138. Kurselis, K., Kiyan, R., Bagratashvili, V. N., Popov, V. K. & Chichkov, B. N. 3D fabrication of all-polymer conductive microstructures by two photon polymerization. Opt. Express 21, 31029–31035 (2013).

    Article  Google Scholar 

  139. Tao, Y. et al. Nanostructured electrically conductive hydrogels obtained via ultrafast laser processing and self-assembly. Nanoscale 11, 9176–9184 (2019).

    Article  CAS  Google Scholar 

  140. Geng, Q., Wang, D., Chen, P. & Chen, S. C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019).

    Article  Google Scholar 

  141. Sun, C., Fang, N., Wu, D. M. & Zhang, X. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens. Actuator A Phys. 121, 113–120 (2005).

    Article  CAS  Google Scholar 

  142. Kim, S., Handler, J. J., Cho, Y. T., Barbastathis, G. & Fang, N. X. Scalable 3D printing of aperiodic cellular structures by rotational stacking of integral image formation. Sci. Adv. 7, eabh1200 (2021).

    Article  CAS  Google Scholar 

  143. Aggas, J. R., Abasi, S., Phipps, J. F., Podstawczyk, D. A. & Guiseppi-Elie, A. Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics. Biosens. Bioelectron. 168, 112568 (2020).

    Article  CAS  Google Scholar 

  144. Sunwoo, S. H., Ha, K. H., Lee, S., Lu, N. & Kim, D. H. Wearable and implantable soft bioelectronics: device designs and material strategies. Annu. Rev. Chem. Biomol. Eng. 12, 359–391 (2021).

    Article  CAS  Google Scholar 

  145. Zhao, Z., Spyropoulos, G. D., Cea, C., Gelinas, J. N. & Khodagholy, D. Ionic communication for implantable bioelectronics. Sci. Adv. 8, eabm7851 (2022).

    Article  CAS  Google Scholar 

  146. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  CAS  Google Scholar 

  147. Lou, J. & Mooney, D. J. Chemical strategies to engineer hydrogels for cell culture. Nat. Rev. Chem. 6, 726–744 (2022).

    Article  CAS  Google Scholar 

  148. Vernerey, F. J., Lalitha Sridhar, S., Muralidharan, A. & Bryant, S. J. Mechanics of 3D cell–hydrogel interactions: experiments, models, and mechanisms. Chem. Rev. 121, 11085–11148 (2021).

    Article  CAS  Google Scholar 

  149. Park, S. E. et al. Geometric engineering of organoid culture for enhanced organogenesis in a dish. Nat. Methods 19, 1449–1460 (2022).

    Article  CAS  Google Scholar 

  150. Rastin, H. et al. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications. J. Mater. Chem. B 8, 5862–5876 (2020).

    Article  CAS  Google Scholar 

  151. Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).

    Article  CAS  Google Scholar 

  152. Yao, B. et al. Ultrastrong, highly conductive and capacitive hydrogel electrode for electron-ion transduction. Matter 5, 4407–4424 (2022).

    Article  CAS  Google Scholar 

  153. Nolan, J. K., Nguyen, T. N. H., Le, K. V. H., DeLong, L. E. & Lee, H. Simple fabrication of flexible biosensor arrays using direct writing for multianalyte measurement from human astrocytes. SLAS Technol. 25, 33–46 (2020).

    Article  CAS  Google Scholar 

  154. Tan, P. et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 13, 358 (2022).

    Article  CAS  Google Scholar 

  155. Liu, H. et al. 3D printed flexible strain sensors: from printing to devices and signals. Adv. Mater. 33, 2004782 (2021).

    Article  CAS  Google Scholar 

  156. Liu, H. et al. Harnessing the wide-range strain sensitivity of bilayered PEDOT:PSS films for wearable health monitoring. Matter 4, 2886–2901 (2021).

    Article  CAS  Google Scholar 

  157. Olowo, O. O. et al. 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Vienna, Austria, 1–4 (IEEE, 2022).

  158. Kim, J., Campbell, A. S., de Avila, B. E. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  CAS  Google Scholar 

  159. Sempionatto, J. R., Lasalde-Ramirez, J. A., Mahato, K., Wang, J. & Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022).

    Article  Google Scholar 

  160. Wang, Y. et al. Skin bioelectronics towards long-term, continuous health monitoring. Chem. Soc. Rev. 51, 3759–3793 (2022).

    Article  CAS  Google Scholar 

  161. Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    Article  CAS  Google Scholar 

  162. Majak, D., Fan, J. X. & Gupta, M. Fully 3D printed OECT based logic gate for detection of cation type and concentration. Sens. Actuators B Chem. 286, 111–118 (2019).

    Article  CAS  Google Scholar 

  163. Keene, S. T. et al. Enhancement-mode PEDOT:PSS organic electrochemical transistors using molecular de-doping. Adv. Mater. 32, 2000270 (2020).

    Article  CAS  Google Scholar 

  164. Su, X. et al. A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis-free soft tactile sensors. Adv. Mater. 34, 2200682 (2022).

    Article  CAS  Google Scholar 

  165. Maksimkin, A. V., Dayyoub, T., Telyshev, D. V. & Gerasimenko, A. Y. Electroactive polymer-based composites for artificial muscle-like actuators: a review. Nanomaterials 12, 2272–2292 (2022).

    Article  CAS  Google Scholar 

  166. Chortos, A., Hajiesmaili, E., Morales, J., Clarke, D. R. & Lewis, J. A. 3D printing of interdigitated dielectric elastomer actuators. Adv. Funct. Mater. 30, 1907375 (2020).

    Article  CAS  Google Scholar 

  167. Christianson, C., Goldberg, N. N., Deheyn, D. D., Cai, S. & Tolley, M. T. Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot. 3, eaat1893 (2018).

    Article  Google Scholar 

  168. Shrestha, M., Asundi, A. & Lau, G. K. Smart window based on electric unfolding of microwrinkled TiO2 nanometric films. ACS Photonics 5, 3255–3262 (2018).

    Article  CAS  Google Scholar 

  169. Chen, L., Busfield, J. J. C. & Carpi, F. Electrically tunable directional light scattering from soft thin membranes. Opt. Express 28, 20669–20685 (2020).

    Article  CAS  Google Scholar 

  170. Wang, Y., Li, P., Gupta, U., Ouyang, J. & Zhu, J. Tunable soft lens of large focal length change. Soft Robot. 9, 705–712 (2022).

    Article  CAS  Google Scholar 

  171. Li, P. C. et al. Transparent soft robots for effective camouflage. Adv. Funct. Mater. 29, 1901908 (2019).

    Article  Google Scholar 

  172. Jager, E. W., Smela, E. & Inganas, O. Microfabricating conjugated polymer actuators. Science 290, 1540–1545 (2000).

    Article  CAS  Google Scholar 

  173. Feng, C., Hemantha Rajapaksha, C. P. & Jákli, A. Ionic elastomers for electric actuators and sensors. Engineering 7, 581–602 (2021).

    Article  CAS  Google Scholar 

  174. Park, M., Yoo, S., Bae, Y., Kim, S. & Jeon, M. Enhanced stability and driving performance of GO(-)Ag-NW-based ionic electroactive polymer actuators with Triton X-100-PEDOT:PSS nanofibrils. Polymers 11, 906–914 (2019).

    Article  CAS  Google Scholar 

  175. Park, M., Kim, J., Song, H., Kim, S. & Jeon, M. Fast and stable ionic electroactive polymer actuators with PEDOT:PSS/(graphene(-)Ag-nanowires) nanocomposite electrodes. Sensors 18, 3126–3139 (2018).

    Article  Google Scholar 

  176. Põldsalu, I. et al. Thin ink-jet printed trilayer actuators composed of PEDOT:PSS on interpenetrating polymer networks. Sens. Actuators B Chem. 258, 1072–1079 (2018).

    Article  Google Scholar 

  177. Simaite, A., Mesnilgrente, F., Tondu, B., Soueres, P. & Bergaud, C. Towards inkjet printable conducting polymer artificial muscles. Sens. Actuators B Chem. 229, 425–433 (2016).

    Article  CAS  Google Scholar 

  178. Nakshatharan, S. S., Martinez, J. G., Punning, A., Aabloo, A. & Jager, E. W. H. Soft parallel manipulator fabricated by additive manufacturing. Sens. Actuators B Chem. 305, 127355 (2020).

    Article  CAS  Google Scholar 

  179. Tian, Y., Li, Y. T., Tian, H., Yang, Y. & Ren, T. L. Recent progress of soft electrothermal actuators. Soft Robot. 8, 241–250 (2021).

    Article  Google Scholar 

  180. Zhan, Z. et al. 3D printed ultra-fast photothermal responsive shape memory hydrogel for microrobots. Int. J. Extrem. Manuf. https://doi.org/10.1088/2631-7990/ac376b (2021).

  181. Todd, S. T. & Huikai, X. An electrothermomechanical lumped element model of an electrothermal bimorph actuator. J. Microelectromech. Syst. 17, 213–225 (2008).

    Article  Google Scholar 

  182. Shakoor, A., Gao, W., Zhao, L., Jiang, Z. & Sun, D. Advanced tools and methods for single-cell surgery. Microsyst. Nanoeng. 8, 47 (2022).

    Article  CAS  Google Scholar 

  183. Yao, Z.-F., Wang, J.-Y. & Pei, J. Controlling morphology and microstructure of conjugated polymers via solution-state aggregation. Prog. Polym. Sci. 136, 101626 (2023).

    Article  CAS  Google Scholar 

  184. Liu, G. et al. Additive manufacturing of structural materials. Mater. Sci. Eng. R. Rep. 145, 100596 (2021).

    Article  Google Scholar 

  185. Kollamaram, G. et al. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int. J. Pharm. 545, 144–152 (2018).

    Article  CAS  Google Scholar 

  186. Huang, J., Ware, H. O. T., Hai, R., Shao, G. & Sun, C. Conformal geometry and multimaterial additive manufacturing through freeform transformation of building layers. Adv. Mater. 33, 2005672 (2021).

    Article  CAS  Google Scholar 

  187. Zhang, K. et al. Aerial additive manufacturing with multiple autonomous robots. Nature 609, 709–717 (2022).

    Article  CAS  Google Scholar 

  188. Hua, M. et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590, 594–599 (2021).

    Article  CAS  Google Scholar 

  189. Chen, J. et al. 3D-printed anisotropic polymer materials for functional applications. Adv. Mater. 34, 2102877 (2022).

    Article  CAS  Google Scholar 

  190. Weeks, R. D., Truby, R. L., Uzel, S. G. M. & Lewis, J. A. Embedded 3D printing of multimaterial polymer lattices via graph-based print path planning. Adv. Mater. 35, e2206958 (2022).

    Article  Google Scholar 

  191. Wijsboom, Y. H. et al. Controlling rigidity and planarity in conjugated polymers: poly(3,4-ethylenedithioselenophene). Angew. Chem. 121, 5551–5555 (2009).

    Article  Google Scholar 

  192. Xu, Y. et al. Molecular engineered conjugated polymer with high thermal conductivity. Sci. Adv. 4, eaar3031 (2018).

    Article  Google Scholar 

  193. Cui, C. & Liu, W. Recent advances in wet adhesives: adhesion mechanism, design principle and applications. Prog. Polym. Sci. 116, 101388 (2021).

    Article  CAS  Google Scholar 

  194. Ji, S. & Chen, X. Enhancing the interfacial binding strength between modular stretchable electronic components. Natl Sci. Rev. 10, nwac172 (2023).

    Article  Google Scholar 

  195. Inoue, A., Yuk, H., Lu, B. & Zhao, X. Strong adhesion of wet conducting polymers on diverse substrates. Sci. Adv. 6, eaay5394 (2020).

    Article  CAS  Google Scholar 

  196. Rao, Z. Y. et al. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nat. Electron. 4, 513–521 (2021).

    Article  Google Scholar 

  197. Lv, J., Thangavel, G. & Lee, P. S. Reliability of printed stretchable electronics based on nano/micro materials for practical applications. Nanoscale 15, 434–449 (2023).

    Article  CAS  Google Scholar 

  198. Zuo, R., Zhou, Z., Ying, B. & Liu, X. in 2021 IEEE International Conference on Robotics and Automation (ICRA) 12164–12169 (IEEE, 2021).

  199. Wang, K. et al. 3D printing of viscoelastic suspensions via digital light synthesis for tough nanoparticle–elastomer composites. Adv. Mater. 32, 2001646 (2020).

    Article  CAS  Google Scholar 

  200. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article  CAS  Google Scholar 

  201. Becker, K. et al. Active entanglement enables stochastic, topological grasping. Proc. Natl Acad. Sci. USA 119, 2209819119 (2022).

    Article  Google Scholar 

  202. Shen, Z., Zhu, X., Majidi, C. & Gu, G. Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses. Adv. Mater. 33, 2102069 (2021).

    Article  CAS  Google Scholar 

  203. Dobashi, Y. et al. Piezoionic mechanoreceptors: force-induced current generation in hydrogels. Science 376, 502–507 (2022).

    Article  CAS  Google Scholar 

  204. Allard, C. An all-polymer display for on-skin electronics. Nat. Rev. Mater. 7, 335–335 (2022).

    Article  Google Scholar 

  205. Li, K. et al. 4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage. Nat. Commun. 13, 6884 (2022).

    Article  CAS  Google Scholar 

  206. Yang, C. Y. et al. A high-conductivity n-type polymeric ink for printed electronics. Nat. Commun. 12, 2354 (2021).

    Article  CAS  Google Scholar 

  207. Ouyang, X. et al. 3D printed skin-interfaced UV-visible hybrid photodetectors. Adv. Sci. 9, 2201275 (2022).

    Article  CAS  Google Scholar 

  208. Song, S., Fallegger, F., Trouillet, A., Kim, K. & Lacour, S. P. Deployment of an electrocorticography system with a soft robotic actuator. Sci. Robot. 8, eadd1002 (2023).

    Article  Google Scholar 

  209. Zhu, J. et al. Intelligent soft surgical robots for next‐generation minimally invasive surgery. Adv. Intell. Syst. 3, 2100011 (2021).

    Article  Google Scholar 

  210. Bradley, C., Nydam, A. S., Dux, P. E. & Mattingley, J. B. State-dependent effects of neural stimulation on brain function and cognition. Nat. Rev. Neurosci. 23, 459–475 (2022).

    Article  CAS  Google Scholar 

  211. Chao, Y. et al. One-pot hydrothermal synthesis of solution-processable MoS2/PEDOT:PSS composites for high-performance supercapacitors. ACS Appl. Mater. Interfaces 13, 7285–7296 (2021).

    Article  CAS  Google Scholar 

  212. Groenendaal, B. L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12, 481–494 (2000).

    Article  CAS  Google Scholar 

  213. Yang, Y., Deng, H. & Fu, Q. Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Mater. Chem. Front. 4, 3130–3152 (2020).

    Article  CAS  Google Scholar 

  214. Elschner, A., Kirchmeyer, S., Lovenich, W., Merker, U. & Reuter, K. PEDOT: Principles and Applications of an Intrinsically Conductive Polymer 1st edn, 113–158 (CRC Press, 2010).

Download references

Acknowledgements

The authors thank D. Wang for constructive suggestions and essay polishing on printing techniques, Z. Shen for the insightful discussion on perspective applications for soft machines at human–robot interfaces and Q. Zhao for his keen percipience on design principles of printable inks. This study was supported in part by the National Natural Science Foundation of China (Grant Nos 52025057, 51963011 and T2293725.), the Science and Technology Commission of Shanghai Municipality (Grant No. 20550712100) and the Innovative Research Team of High-Level Local Universities in Shanghai (SHSMU-ZDCX20210901).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and J.C. contributed equally to this paper. All authors contributed to the planning, discussion and writing of the manuscript.

Corresponding authors

Correspondence to Baoyang Lu or Guoying Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Chuan-Fei Guo, Shaoxing Qu and Wentao Xu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Cao, J., Lu, B. et al. 3D-printed PEDOT:PSS for soft robotics. Nat Rev Mater 8, 604–622 (2023). https://doi.org/10.1038/s41578-023-00587-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00587-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing