Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Low-dimensional wide-bandgap semiconductors for UV photodetectors

Abstract

Accurate UV light detection is a crucial component in modern optoelectronic technologies. Current UV photodetectors are mainly based on wide-bandgap semiconductors (WBSs), such as III–V semiconductors. However, conventional WBSs have reached a bottleneck of low integration and inflexibility. In this regard, low-dimensional WBSs, which have suitable UV absorption, tunable performance and good compatibility, are appealing for diversified UV applications. UV photodetectors based on low-dimensional WBSs have broad application prospects in imaging, communication, multispectral and/or weak light detection and flexible and wearable electronics. This Review focuses on the progress, open challenges and outlook in the field of UV photodetectors on the basis of low-dimensional WBSs. We examine how material design, dimensionality engineering and device engineering of WBSs can control their morphological structures and properties and attempt to clarify the interplay among material growth, device structure and application scenarios.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Applications and development of UV photodetectors.
Fig. 2: Ordered assembly of large-area single-crystalline low-dimensional wide-bandgap semiconductors and their basic mechanisms.
Fig. 3: Dimensionality engineering and tunable optoelectronic performance.
Fig. 4: Device designs for UV photodetectors.
Fig. 5: Perspectives on UV photodetectors based on low-dimensional wide-bandgap semiconductors.

Similar content being viewed by others

References

  1. Razeghi, M. & Rogalski, A. Semiconductor ultraviolet detectors. J. Appl. Phys. 79, 7433–7473 (1996).

    Article  CAS  Google Scholar 

  2. Fortune, W. G., Scholz, M. S. & Fielding, H. H. UV photoelectron spectroscopy of aqueous solutions. Acc. Chem. Res. 55, 3631–3640 (2022).

    Article  CAS  Google Scholar 

  3. Kneissl, M., Seong, T.-Y., Han, J. & Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 13, 233–244 (2019).

    Article  CAS  Google Scholar 

  4. Chen, H., Liu, K., Hu, L., Al-Ghamdi, A. A. & Fang, X. New concept ultraviolet photodetectors. Mater. Today 18, 493–502 (2015).

    Article  CAS  Google Scholar 

  5. Zou, W., Sastry, M., Gooding, J. J., Ramanathan, R. & Bansal, V. Recent advances and a roadmap to wearable UV sensor technologies. Adv. Mater. Technol. 5, 1901036 (2020).

    Article  CAS  Google Scholar 

  6. Araki, H. et al. Materials and device designs for an epidermal UV colorimetric dosimeter with near field communication capabilities. Adv. Funct. Mater. 27, 1604465 (2017).

    Article  Google Scholar 

  7. Ouyang, W., Chen, J., Shi, Z. & Fang, X. Self-powered UV photodetectors based on ZnO nanomaterials. Appl. Phys. Rev. 8, 031315 (2021).

    Article  CAS  Google Scholar 

  8. García de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    Article  Google Scholar 

  9. Guo, L., Guo, Y., Wang, J. & Wei, T. Ultraviolet communication technique and its application. J. Semicond. 42, 081801 (2021).

    Article  CAS  Google Scholar 

  10. Wang, X., Chen, Y., Liu, F. & Pan, Z. Solar-blind ultraviolet-C persistent luminescence phosphors. Nat. Commun. 11, 2040 (2020).

    Article  CAS  Google Scholar 

  11. Cai, Q. et al. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light Sci. Appl. 10, 94 (2021).

    Article  CAS  Google Scholar 

  12. Jia, L., Zheng, W. & Huang, F. Vacuum-ultraviolet photodetectors. PhotoniX 1, 22 (2020).

    Article  Google Scholar 

  13. Raeiszadeh, M. & Adeli, B. A critical review on ultraviolet disinfection systems against Covid-19 outbreak: applicability, validation, and safety considerations. ACS Photonics 7, 2941–2951 (2020).

    Article  CAS  Google Scholar 

  14. Kneissl, M. & Rass, J. III-Nitride Ultraviolet Emitters: Technology and Applications Vol. 227 (Springer, 2015).

  15. Liu, M. et al. Colloidal quantum dot electronics. Nat. Electron. 4, 548–558 (2021).

    Article  Google Scholar 

  16. Zhang, Q. et al. Enhanced gain and detectivity of unipolar barrier solar blind avalanche photodetector via lattice and band engineering. Nat. Commun. 14, 418 (2023).

    Article  CAS  Google Scholar 

  17. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article  CAS  Google Scholar 

  18. Barrigón, E., Heurlin, M., Bi, Z., Monemar, B. & Samuelson, L. Synthesis and applications of III–V nanowires. Chem. Rev. 119, 9170–9220 (2019).

    Article  Google Scholar 

  19. Ali, A. et al. in 2017 IEEE International Electron Devices Meeting (IEDM) 8.6.1–8.6.4 (IEEE, 2017).

  20. Lev, L. L. et al. k-Space imaging of anisotropic 2D electron gas in GaN/GaAlN high-electron-mobility transistor heterostructures. Nat. Commun. 9, 2653 (2018).

    Article  CAS  Google Scholar 

  21. Zhang, L., Dong, J. & Ding, F. Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev. 121, 6321–6372 (2021).

    Article  CAS  Google Scholar 

  22. Quan, L. N., Kang, J., Ning, C.-Z. & Yang, P. Nanowires for photonics. Chem. Rev. 119, 9153–9169 (2019).

    Article  CAS  Google Scholar 

  23. Zheng, W., Huang, F., Zheng, R. & Wu, H. Low-dimensional structure vacuum-ultraviolet-sensitive (λ < 200 nm) photodetector with fast-response speed based on high-quality AlN micro/nanowire. Adv. Mater. 27, 3921–3927 (2015).

    Article  CAS  Google Scholar 

  24. Romijn, J. et al. Integrated 64 pixel UV image sensor and readout in a silicon carbide CMOS technology. Microsyst. Nanoeng. 8, 114 (2022).

    Article  CAS  Google Scholar 

  25. Monroy, E., Omnès, F. & Calle, F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 18, R33 (2003).

    Article  CAS  Google Scholar 

  26. Gao, A. et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 14, 217–222 (2019).

    Article  CAS  Google Scholar 

  27. Yang, W. et al. 2D ultrawide bandgap semiconductors: odyssey and challenges. Small Methods 6, 2101348 (2022).

    Article  CAS  Google Scholar 

  28. Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).

    Article  CAS  Google Scholar 

  29. Ren, X. et al. Grain boundaries in chemical-vapor-deposited atomically thin hexagonal boron nitride. Phys. Rev. Mater. 3, 014004 (2019).

    Article  CAS  Google Scholar 

  30. Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Article  CAS  Google Scholar 

  31. Chen, T.-A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111). Nature 579, 219–223 (2020).

    Article  CAS  Google Scholar 

  32. Bets, K. V., Gupta, N. & Yakobson, B. I. How the complementarity at vicinal steps enables growth of 2D monocrystals. Nano Lett. 19, 2027–2031 (2019).

    Article  CAS  Google Scholar 

  33. Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    Article  CAS  Google Scholar 

  34. Kim, H. et al. Remote epitaxy. Nat. Rev. Methods Primers 2, 40 (2022).

    Article  CAS  Google Scholar 

  35. Jeong, J. et al. Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle. Sci. Adv. 6, eaaz5180 (2020).

    Article  CAS  Google Scholar 

  36. Jia, C., Lin, Z., Huang, Y. & Duan, X. Nanowire electronics: from nanoscale to macroscale. Chem. Rev. 119, 9074–9135 (2019).

    Article  CAS  Google Scholar 

  37. Huang, C.-T. et al. GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 132, 4766–4771 (2010).

    Article  CAS  Google Scholar 

  38. Kuykendall, T. R., Altoe, M. V. P., Ogletree, D. F. & Aloni, S. Catalyst-directed crystallographic orientation control of gan nanowire growth. Nano Lett. 14, 6767–6773 (2014).

    Article  CAS  Google Scholar 

  39. Kuykendall, T. et al. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nat. Mater. 3, 524–528 (2004).

    Article  CAS  Google Scholar 

  40. Fernández-Garrido, S., Zettler, J. K., Geelhaar, L. & Brandt, O. Monitoring the formation of nanowires by line-of-sight quadrupole mass spectrometry: a comprehensive description of the temporal evolution of GaN nanowire ensembles. Nano Lett. 15, 1930–1937 (2015).

    Article  Google Scholar 

  41. Fang, Z. et al. Si donor incorporation in GaN nanowires. Nano Lett. 15, 6794–6801 (2015).

    Article  CAS  Google Scholar 

  42. Bae, S.-Y. et al. Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal–organic vapor deposition. CrystEngComm 18, 1505–1514 (2016).

    Article  CAS  Google Scholar 

  43. Ondry, J. C., Philbin, J. P., Lostica, M., Rabani, E. & Alivisatos, A. P. Colloidal synthesis path to 2D crystalline quantum dot superlattices. ACS Nano 15, 2251–2262 (2021).

    Article  CAS  Google Scholar 

  44. Balazs, D. M. et al. Electron mobility of 24 cm2 V−1 s−1 in PbSe colloidal-quantum-dot superlattices. Adv. Mater. 30, 1802265 (2018).

    Article  Google Scholar 

  45. Pinna, J. et al. Approaching bulk mobility in PbSe colloidal quantum dots 3D superlattices. Adv. Mater. 35, 2207364 (2023).

    Article  CAS  Google Scholar 

  46. Coropceanu, I., Boles, M. A. & Talapin, D. V. Systematic mapping of binary nanocrystal superlattices: the role of topology in phase selection. J. Am. Chem. Soc. 141, 5728–5740 (2019).

    Article  CAS  Google Scholar 

  47. Nagaoka, Y., Zhu, H., Eggert, D. & Chen, O. Single-component quasicrystalline nanocrystal superlattices through flexible polygon tiling rule. Science 362, 1396–1400 (2018).

    Article  CAS  Google Scholar 

  48. Kaushik, S. et al. Deep-ultraviolet photodetectors based on hexagonal boron nitride nanosheets enhanced by localized surface plasmon resonance in Al nanoparticles. ACS Appl. Nano Mater. 5, 7481–7491 (2022).

    Article  CAS  Google Scholar 

  49. Veeralingam, S., Durai, L., Yadav, P. & Badhulika, S. Record-high responsivity and detectivity of a flexible deep-ultraviolet photodetector based on solid state-assisted synthesized hBN nanosheets. ACS Appl. Electron. Mater. 3, 1162–1169 (2021).

    Article  CAS  Google Scholar 

  50. Nasiri, N., Bo, R., Wang, F., Fu, L. & Tricoli, A. Ultraporous electron-depleted ZnO nanoparticle networks for highly sensitive portable visible-blind UV photodetectors. Adv. Mater. 27, 4336–4343 (2015).

    Article  CAS  Google Scholar 

  51. Jin, Y., Wang, J., Sun, B., Blakesley, J. C. & Greenham, N. C. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett. 8, 1649–1653 (2008).

    Article  CAS  Google Scholar 

  52. Tsai, D.-S. et al. Ultra-high-responsivity broadband detection of si metal–semiconductor–metal Schottky photodetectors improved by ZnO nanorod arrays. ACS Nano 5, 7748–7753 (2011).

    Article  CAS  Google Scholar 

  53. Shi, L. & Nihtianov, S. Comparative study of silicon-based ultraviolet photodetectors. IEEE Sens. J. 12, 2453–2459 (2012).

    Article  CAS  Google Scholar 

  54. Saha, A. et al. Visible-blind ZnMgO colloidal quantum dot downconverters expand silicon CMOS sensors spectral coverage into ultraviolet and enable UV-band discrimination. Adv. Mater. 34, 2109498 (2022).

    Article  CAS  Google Scholar 

  55. Mitra, S. et al. High-performance solar-blind flexible deep-UV photodetectors based on quantum dots synthesized by femtosecond-laser ablation. Nano Energy 48, 551–559 (2018).

    Article  CAS  Google Scholar 

  56. Guo, F. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 7, 798–802 (2012).

    Article  CAS  Google Scholar 

  57. Ning, Y. et al. Spatially controlled occlusion of polymer-stabilized gold nanoparticles within ZnO. Angew. Chem. Int. Ed. 58, 4302–4307 (2019).

    Article  CAS  Google Scholar 

  58. Shao, D., Zhu, W., Xin, G., Lian, J. & Sawyer, S. Inorganic vacancy-ordered perovskite Cs2SnCl6:Bi/GaN heterojunction photodiode for narrowband, visible-blind UV detection. Appl. Phys. Lett. 115, 121106 (2019).

    Article  Google Scholar 

  59. Jin, Z. et al. Graphdiyne: ZnO nanocomposites for high-performance UV photodetectors. Adv. Mater. 28, 3697–3702 (2016).

    Article  CAS  Google Scholar 

  60. Liang, G., Mo, F., Ji, X. & Zhi, C. Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6, 109–123 (2021).

    Article  CAS  Google Scholar 

  61. Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nat. Photonics 3, 569–576 (2009).

    Article  CAS  Google Scholar 

  62. Liu, X. et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 5, 4007 (2014).

    Article  CAS  Google Scholar 

  63. Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009).

    Article  CAS  Google Scholar 

  64. Krogstrup, P. et al. Single-nanowire solar cells beyond the Shockley–Queisser limit. Nat. Photonics 7, 306–310 (2013).

    Article  CAS  Google Scholar 

  65. Hu, L. & Chen, G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249–3252 (2007).

    Article  CAS  Google Scholar 

  66. Cuesta, S. et al. Effect of bias on the response of GaN Axial p–n junction single-nanowire photodetectors. Nano Lett. 19, 5506–5514 (2019).

    Article  CAS  Google Scholar 

  67. Li, Y. et al. Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection. Adv. Funct. Mater. 20, 3972–3978 (2010).

    Article  CAS  Google Scholar 

  68. Xu, X. et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv. Mater. 30, 1803165 (2018).

    Article  Google Scholar 

  69. Li, Q., Meng, J., Huang, J. & Li, Z. Plasmon-induced pyro-phototronic effect enhancement in self-powered UV–Vis detection with a ZnO/CuO p–n junction device. Adv. Funct. Mater. 32, 2108903 (2022).

    Article  CAS  Google Scholar 

  70. Liu, X. et al. Photovoltage-competing dynamics in photoelectrochemical devices: achieving self-powered spectrally distinctive photodetection. Adv. Funct. Mater. 32, 2104515 (2022).

    Article  CAS  Google Scholar 

  71. Wang, D. et al. Bidirectional photocurrent in p–n heterojunction nanowires. Nat. Electron. 4, 645–652 (2021).

    Article  CAS  Google Scholar 

  72. Deng, X., Li, Z., Cao, F., Hong, E. & Fang, X. Woven fibrous photodetectors for scalable UV optical communication device. Adv. Funct. Mater. 33, 2213334 (2023).

    Article  CAS  Google Scholar 

  73. Wang, S. et al. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022).

    Article  CAS  Google Scholar 

  74. Wang, S., Liu, X. & Zhou, P. The road for 2D semiconductors in the silicon age. Adv. Mater. 34, 2106886 (2022).

    Article  CAS  Google Scholar 

  75. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  CAS  Google Scholar 

  76. Yang, F. et al. 2D organic materials for optoelectronic applications. Adv. Mater. 30, 1702415 (2018).

    Article  Google Scholar 

  77. Chen, W. et al. Giant five-photon absorption from multidimensional core–shell halide perovskite colloidal nanocrystals. Nat. Commun. 8, 15198 (2017).

    Article  CAS  Google Scholar 

  78. Roy, S. et al. Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv. Mater. 33, 2101589 (2021).

    Article  CAS  Google Scholar 

  79. Li, J. et al. Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers. Appl. Phys. Lett. 101, 171112 (2012).

    Article  Google Scholar 

  80. Song, S.-B. et al. Deep-ultraviolet electroluminescence and photocurrent generation in graphene/hBN/graphene heterostructures. Nat. Commun. 12, 7134 (2021).

    Article  CAS  Google Scholar 

  81. Wang, F. et al. Liquid-alloy-assisted growth of 2D ternary Ga2In4S9 toward high-performance UV photodetection. Adv. Mater. 31, 1806306 (2019).

    Article  Google Scholar 

  82. Gong, C. et al. Large-scale ultrathin 2D wide-bandgap BiOBr nanoflakes for gate-controlled deep-ultraviolet phototransistors. Adv. Mater. 32, 1908242 (2020).

    Article  CAS  Google Scholar 

  83. Liu, X. et al. Boosted responsivity and tunable spectral response in B-site substituted 2D Ca2Nb3−xTaxO10 perovskite photodetectors. Adv. Funct. Mater. 31, 2101480 (2021).

    Article  CAS  Google Scholar 

  84. Wu, J. et al. Epitaxial growth of 2D ultrathin metastable γ-Bi2O3 flakes for high performance ultraviolet photodetection. Small 18, 2104244 (2022).

    Article  CAS  Google Scholar 

  85. Al Balushi, Z. Y. et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 15, 1166–1171 (2016).

    Article  CAS  Google Scholar 

  86. Li, S., Zhang, Y., Yang, W., Liu, H. & Fang, X. 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv. Mater. 32, 1905443 (2020).

    Article  CAS  Google Scholar 

  87. Liu, W. et al. Graphene charge-injection photodetectors. Nat. Electron. 5, 281–288 (2022).

    Article  CAS  Google Scholar 

  88. Zhang, Z. et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).

    Article  Google Scholar 

  89. Wang, C.-Y. et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6, eaba6173 (2020).

    Article  Google Scholar 

  90. Zhu, X. et al. Negative phototransistors with ultrahigh sensitivity and weak-light detection based on 1D/2D molecular crystal p–n heterojunctions and their application in light encoders. Adv. Mater. 34, 2201364 (2022).

    Article  CAS  Google Scholar 

  91. Fan, Z. et al. Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays. Appl. Phys. Lett. 89, 213110 (2006).

    Article  Google Scholar 

  92. Chen, Y. et al. 3D solar-blind Ga2O3 photodetector array realized via origami method. Adv. Funct. Mater. 29, 1906040 (2019).

    Article  CAS  Google Scholar 

  93. Li, X.-X. et al. High responsivity and flexible deep-UV phototransistor based on Ta-doped β-Ga2O3. npj Flex. Electron. 6, 47 (2022).

    Article  CAS  Google Scholar 

  94. Lien, D.-H. et al. 360° Omnidirectional, printable and transparent photodetectors for flexible optoelectronics. npj Flex. Electron. 2, 19 (2018).

    Article  Google Scholar 

  95. Liu, G. et al. Upconversion under photon trapping in ZnO/BN nanoarray: an ultrahigh responsivity solar-blind photodetecting paper. Small 18, 2200563 (2022).

    Article  CAS  Google Scholar 

  96. Fang, Z. et al. Pull-to-peel of two-dimensional materials for the simultaneous determination of elasticity and adhesion. Nano Lett. 23, 742–749 (2023).

    Article  CAS  Google Scholar 

  97. Kim, Y. et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377, 859–864 (2022).

    Article  CAS  Google Scholar 

  98. Li, Z. et al. Mechanically compatible UV photodetectors based on electrospun free-standing Y3+-doped TiO2 nanofibrous membranes with enhanced flexibility. Adv. Funct. Mater. 30, 2005291 (2020).

    Article  CAS  Google Scholar 

  99. Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).

    Article  CAS  Google Scholar 

  100. Chen, B. et al. Solar X-ray and EUV imager on board the FY-3E satellite. Light Sci. Appl. 11, 329 (2022).

    Article  CAS  Google Scholar 

  101. Zhang, Z. et al. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 13, 6590 (2022).

    Article  CAS  Google Scholar 

  102. Gu, L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).

    Article  CAS  Google Scholar 

  103. Wu, W. et al. Ultrathin and conformable lead halide perovskite photodetector arrays for potential application in retina-like vision sensing. Adv. Mater. 33, 2006006 (2021).

    Article  CAS  Google Scholar 

  104. Cao, F., Yan, T., Li, Z., Wu, L. & Fang, X. Dual-band perovskite bulk heterojunction self-powered photodetector for encrypted communication and imaging. Adv. Opt. Mater. 10, 2200786 (2022).

    Article  CAS  Google Scholar 

  105. Bian, Y. et al. Spatially nanoconfined N-type polymer semiconductors for stretchable ultrasensitive X-ray detection. Nat. Commun. 13, 7163 (2022).

    Article  CAS  Google Scholar 

  106. Fountaine, K. T., Cheng, W.-H., Bukowsky, C. R. & Atwater, H. A. Near-unity unselective absorption in sparse InP nanowire arrays. ACS Photonics 3, 1826–1832 (2016).

    Article  CAS  Google Scholar 

  107. Gibson, S. J. et al. Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection. Nat. Nanotechnol. 14, 473–479 (2019).

    Article  CAS  Google Scholar 

  108. Wang, D. et al. Observation of polarity-switchable photoconductivity in III-nitride/MoSx core–shell nanowires. Light Sci. Appl. 11, 227 (2022).

    Article  CAS  Google Scholar 

  109. Hoang, C. V. et al. Interplay of hot electrons from localized and propagating plasmons. Nat. Commun. 8, 771 (2017).

    Article  Google Scholar 

  110. Hsu, A. L. et al. Graphene-based thermopile for thermal imaging applications. Nano Lett. 15, 7211–7216 (2015).

    Article  CAS  Google Scholar 

  111. Guo J. X. et al. Infrared photodetectors for multidimensional optical information acquisition. J. Infrared Millim. Waves 41, 40–60 (2022).

    CAS  Google Scholar 

  112. Zheng, Z. et al. Gallium nitride-based complementary logic integrated circuits. Nat. Electron. 4, 595–603 (2021).

    Article  CAS  Google Scholar 

  113. Zou, W. et al. Skin color-specific and spectrally-selective naked-eye dosimetry of UVA, B and C radiations. Nat. Commun. 9, 3743 (2018).

    Article  Google Scholar 

  114. Gao, N. et al. Quantum state engineering with ultra-short-period (AlN)m/(GaN)n superlattices for narrowband deep-ultraviolet detection. Nanoscale 6, 14733–14739 (2014).

    Article  CAS  Google Scholar 

  115. Gao, N. et al. Integral monolayer-scale featured digital-alloyed AlN/GaN superlattices using hierarchical growth units. Cryst. Growth Des. 19, 1720–1727 (2019).

    Article  CAS  Google Scholar 

  116. Xia, Z. et al. Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities. Sci. Adv. 3, e1602783 (2017).

    Article  Google Scholar 

  117. van Breemen, A. J. J. M. et al. A thin and flexible scanner for fingerprints and documents based on metal halide perovskites. Nat. Electron. 4, 818–826 (2021).

    Article  Google Scholar 

  118. Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).

    Article  CAS  Google Scholar 

  119. Li, G. et al. Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nat. Commun. 13, 1729 (2022).

    Article  CAS  Google Scholar 

  120. Park, H.-L. et al. Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv. Mater. 32, 1906899 (2020).

    Article  CAS  Google Scholar 

  121. Zhou, F. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14, 776–782 (2019).

    Article  CAS  Google Scholar 

  122. Li, Q., van de Groep, J., Wang, Y., Kik, P. G. & Brongersma, M. L. Transparent multispectral photodetectors mimicking the human visual system. Nat. Commun. 10, 4982 (2019).

    Article  Google Scholar 

  123. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

    Article  CAS  Google Scholar 

  124. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11, 366–371 (2017).

    Article  CAS  Google Scholar 

  125. Polat, E. O. et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 5, eaaw7846 (2019).

    Article  CAS  Google Scholar 

  126. Rajbhandari, S. et al. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semicond. Sci. Technol. 32, 023001 (2017).

    Article  Google Scholar 

  127. Ren, A. et al. Emerging light-emitting diodes for next-generation data communications. Nat. Electron. 4, 559–572 (2021).

    Article  Google Scholar 

  128. Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556, 349–354 (2018).

    Article  CAS  Google Scholar 

  129. Mauthe, S. et al. High-speed III–V nanowire photodetector monolithically integrated on Si. Nat. Commun. 11, 4565 (2020).

    Article  CAS  Google Scholar 

  130. Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).

    Article  CAS  Google Scholar 

  131. Li, M.-Y. et al. Ultrahigh responsivity UV photodetector based on Cu Nanostructure/ZnO QD hybrid architectures. Small 15, 1901606 (2019).

    Article  Google Scholar 

  132. Liu, S. et al. Broad-band high-sensitivity ZnO colloidal quantum dots/self-assembled Au nanoantennas heterostructures photodetectors. ACS Appl. Mater. Interfaces 10, 32516–32525 (2018).

    Article  CAS  Google Scholar 

  133. Gong, M. et al. All-printable ZnO quantum dots/graphene van der Waals heterostructures for ultrasensitive detection of ultraviolet light. ACS Nano 11, 4114–4123 (2017).

    Article  CAS  Google Scholar 

  134. Luo, G. et al. High-performance ultraviolet photodetectors enabled by van der Waals Schottky junction based on TiO2 nanorod arrays/Au-modulated Ti3C2Tx MXene. Adv. Funct. Mater. 33, 2211610 (2023).

    Article  CAS  Google Scholar 

  135. Li, Y. et al. Solution-processed one-dimensional CsCu2I3 nanowires for polarization-sensitive and flexible ultraviolet photodetectors. Mater. Horiz. 7, 1613–1622 (2020).

    Article  CAS  Google Scholar 

  136. Wang, D. et al. Highly uniform, self-assembled AlGaN nanowires for self-powered solar-blind photodetector with fast-response speed and high responsivity. Adv. Opt. Mater. 9, 2000893 (2021).

    Article  CAS  Google Scholar 

  137. Xie, C. et al. Catalyst-free vapor–solid deposition growth of β-Ga2O3 nanowires for DUV photodetector and image sensor application. Adv. Opt. Mater. 7, 1901257 (2019).

    Article  CAS  Google Scholar 

  138. You, D. et al. Single-crystal ZnO/AlN core/shell nanowires for ultraviolet emission and dual-color ultraviolet photodetection. Adv. Opt. Mater. 7, 1801522 (2019).

    Article  Google Scholar 

  139. Park, T. et al. Aspect ratio-controlled ZnO nanorods for highly sensitive wireless ultraviolet sensor applications. J. Mater. Chem. C 5, 12256–12263 (2017).

    Article  CAS  Google Scholar 

  140. Zhang, Y. et al. High-performance two-dimensional perovskite Ca2Nb3O10 UV photodetectors. Nano Lett. 21, 382–388 (2021).

    Article  CAS  Google Scholar 

  141. Zhang, Y.-Y. et al. High performance flexible visible-blind ultraviolet photodetectors with two-dimensional electron gas based on unconventional release strategy. ACS Nano 15, 8386–8396 (2021).

    Article  CAS  Google Scholar 

  142. Yu, H. et al. Atomic-thin ZnO sheet for visible-blind ultraviolet photodetection. Small 16, 2005520 (2020).

    Article  CAS  Google Scholar 

  143. Han, W. et al. Atomically thin oxyhalide solar-blind photodetectors. Small 16, 2000228 (2020).

    Article  CAS  Google Scholar 

  144. Yan, Y. et al. Direct wide bandgap 2D GeSe2 monolayer toward anisotropic UV photodetection. Adv. Opt. Mater. 7, 1900622 (2019).

    Article  CAS  Google Scholar 

  145. Liao, M. & Koide, Y. High-performance metal–semiconductor–metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film. Appl. Phys. Lett. 89, 113509 (2006).

    Article  Google Scholar 

  146. Furlan, F. et al. Tuning halide composition allows low dark current perovskite photodetectors with high specific detectivity. Adv. Opt. Mater. 10, 2201816 (2022).

    Article  CAS  Google Scholar 

  147. Fang, Y., Armin, A., Meredith, P. & Huang, J. Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics 13, 1–4 (2019).

    Article  CAS  Google Scholar 

  148. Kublitski, J. et al. Reverse dark current in organic photodetectors and the major role of traps as source of noise. Nat. Commun. 12, 551 (2021).

    Article  CAS  Google Scholar 

  149. Han, S. et al. Anisotropic growth of centimeter-size CsCu2I3 single crystals with ultra-low trap density for aspect-ratio-dependent photodetectors. Adv. Sci. 10, 2206417 (2023).

    Article  CAS  Google Scholar 

  150. Li, Z., Liu, X., Zuo, C., Yang, W. & Fang, X. Supersaturation-controlled growth of monolithically integrated lead-free halide perovskite single-crystalline thin film for high-sensitivity photodetectors. Adv. Mater. 33, 2103010 (2021).

    Article  CAS  Google Scholar 

  151. Yan, T., Cai, S., Hu, Z., Li, Z. & Fang, X. Ultrafast speed, dark current suppression, and self-powered enhancement in TiO2-based ultraviolet photodetectors by organic layers and Ag nanowires regulation. J. Phys. Chem. Lett. 12, 9912–9918 (2021).

    Article  CAS  Google Scholar 

  152. Chen, J. et al. Work-function-tunable MXenes electrodes to optimize p-CsCu2I3/n-Ca2Nb3-xTaxO10 junction photodetectors for image sensing and logic electronics. Adv. Funct. Mater. 32, 2201066 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key R&D Program of China (No. 2022YFA1402904), National Natural Science Foundation of China (Nos 62204047, 92263106, 12061131009 and 12211530438) and the Science and Technology Commission of Shanghai Municipality (No. 21520712600 and 19520744300).

Author information

Authors and Affiliations

Authors

Contributions

Z.L. and T.Y. contributed equally to this work. X.F. supervised the manuscript. All authors contributed to the discussion of content, writing and editing of the manuscript before submission.

Corresponding author

Correspondence to Xiaosheng Fang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Zhiyong Fan, Xiaohang Li and Lin-Bao Luo for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yan, T. & Fang, X. Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat Rev Mater 8, 587–603 (2023). https://doi.org/10.1038/s41578-023-00583-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00583-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing