Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Regulation of biological processes by intrinsically chiral engineered materials

Abstract

Chirality has a key role in the synthesis of biomolecules and the development of life. Although the effects of many chiral molecules or materials on biological processes have been studied for over 150 years, research aimed at understanding the relationship between the intrinsic chirality of engineered materials and bioresponses is still at the beginning. In this Perspective article, we present three classes of intrinsically chiral engineered materials: carbon dots, metal-based materials and patterned geometries. We elaborate on these chiral materials in terms of design, structural and functional differences between the enantiomers and effects of intrinsic chirality on biological processes. Finally, we address the safety concerns, challenges, opportunities and directions for future development of intrinsically chiral materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Various biological processes that can be regulated by chirality.
Fig. 2: Chiral carbon dots regulating various biological processes.
Fig. 3: Chiral metal-based materials regulating various biological processes.
Fig. 4: Chiral geometries for biomolecule sensing and cellular behaviour regulation.

Similar content being viewed by others

References

  1. Lv, J. et al. Self-assembled inorganic chiral superstructures. Nat. Rev. Chem. 6, 125–145 (2022).

    Article  Google Scholar 

  2. Mayoral, M. J. et al. Dual-mode chiral self-assembly of cone-shaped subphthalocyanine aromatics. J. Am. Chem. Soc. 142, 21017–21031 (2020).

    Article  CAS  Google Scholar 

  3. Parton, T. G. et al. Chiral self-assembly of cellulose nanocrystals is driven by crystallite bundles. Nat. Commun. 13, 2657 (2022).

    Article  CAS  Google Scholar 

  4. Shen, Z. et al. Asymmetric catalysis mediated by a mirror symmetry-broken helical nanoribbon. Nat. Commun. 10, 3976 (2019).

    Article  Google Scholar 

  5. Stolz, S. et al. Asymmetric elimination reaction on chiral metal surfaces. Adv. Mater. 34, 2104481 (2022).

    Article  CAS  Google Scholar 

  6. Liu, Z.-S. et al. Construction of axial chirality via palladium/chiral norbornene cooperative catalysis. Nat. Catal. 3, 727–733 (2020).

    Article  CAS  Google Scholar 

  7. Dong, K., Xu, C., Ren, J. & Qu, X. Chiral nanozymes for enantioselective biological catalysis. Angew. Chem. Int. Ed. 61, e202208757 (2022).

    Article  CAS  Google Scholar 

  8. Rosso, C., Filippini, G. & Prato, M. Carbon dots as nano-organocatalysts for synthetic applications. ACS Catal. 10, 8090–8105 (2020).

    Article  CAS  Google Scholar 

  9. Bai, T. et al. Chiral mesostructured NiO films with spin polarisation. Angew. Chem. Int. Ed. 60, 9421–9426 (2021).

    Article  CAS  Google Scholar 

  10. Li, F. et al. Chiral carbon dots mimicking topoisomerase I to mediate the topological rearrangement of supercoiled DNA enantioselectively. Angew. Chem. Int. Ed. 59, 11087–11092 (2020).

    Article  CAS  Google Scholar 

  11. Shao, Y. et al. Shining light on chiral inorganic nanomaterials for biological issues. Theranostics 11, 9262–9295 (2021).

    Article  CAS  Google Scholar 

  12. Hooftman, A. & O’Neill, L. A. Nanoparticle asymmetry shapes an immune response. Nature 601, 323–325 (2022).

    Article  CAS  Google Scholar 

  13. Lebreton, G. et al. Molecular to organismal chirality is induced by the conserved myosin 1D. Science 362, 949–952 (2018).

    Article  CAS  Google Scholar 

  14. Gao, R. et al. Site-selective proteolytic cleavage of plant viruses by photoactive chiral nanoparticles. Nat. Catal. 5, 694–707 (2022).

    Article  CAS  Google Scholar 

  15. Döring, A., Ushakova, E. & Rogach, A. L. Chiral carbon dots: synthesis, optical properties, and emerging applications. Light. Sci. Appl. 11, 75 (2022).

    Article  Google Scholar 

  16. Zhang, N.-N. et al. Gold nanoparticle enantiomers and their chiral-morphology dependence of cellular uptake. CCS Chem. 4, 660–670 (2022).

    Article  CAS  Google Scholar 

  17. Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    Article  CAS  Google Scholar 

  18. Qu, S., Jia, Q., Li, Z., Wang, Z. & Shang, L. Chiral NIR-II fluorescent Ag2S quantum dots with stereospecific biological interactions and tumor accumulation behaviors. Sci. Bull. 67, 1274–1283 (2022).

    Article  CAS  Google Scholar 

  19. Jia, T.-T. et al. Enantiomeric alkynyl-protected Au10 clusters with chirality-dependent radiotherapy enhancing effects. Nano Today 39, 101222 (2021).

    Article  CAS  Google Scholar 

  20. Tang, H., Li, Q., Yan, W. & Jiang, X. Reversing the chirality of surface ligands can improve the biosafety and pharmacokinetics of cationic gold nanoclusters. Angew. Chem. Int. Ed. 60, 13829–13834 (2021).

    Article  CAS  Google Scholar 

  21. Zhang, M., Zhang, H., Feng, J., Zhou, Y. & Wang, B. Synergistic chemotherapy, physiotherapy and photothermal therapy against bacterial and biofilms infections through construction of chiral glutamic acid functionalized gold nanobipyramids. Chem. Eng. J. 393, 124778 (2020).

    Article  CAS  Google Scholar 

  22. Wang, Z., Xu, W., Liu, L. & Zhu, T. F. A synthetic molecular system capable of mirror-image genetic replication and transcription. Nat. Chem. 8, 698–704 (2016).

    Article  CAS  Google Scholar 

  23. Xu, Y. & Zhu, T. F. Mirror-image T7 transcription of chirally inverted ribosomal and functional RNAs. Science 378, 405–412 (2022).

    Article  CAS  Google Scholar 

  24. Gal, J. Pasteur and the art of chirality. Nat. Chem. 9, 604–605 (2017).

    Article  CAS  Google Scholar 

  25. Zhou, C. et al. Chiral hierarchical structure of bone minerals. Nano Res. 15, 1295–1302 (2022).

    Article  Google Scholar 

  26. Jiang, W., Yi, X. & McKee, M. D. Chiral biomineralized structures and their biomimetic synthesis. Mater. Horiz. 6, 1974–1990 (2019).

    Article  CAS  Google Scholar 

  27. Kuroda, R., Endo, B., Abe, M. & Shimizu, M. Chiral blastomere arrangement dictates zygotic left–right asymmetry pathway in snails. Nature 462, 790–794 (2009).

    Article  CAS  Google Scholar 

  28. González-Rubio, G. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 368, 1472–1477 (2020).

    Article  Google Scholar 

  29. Lee, H.-E. et al. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 11, 263 (2020).

    Article  CAS  Google Scholar 

  30. Jiang, W. et al. Emergence of complexity in hierarchically organized chiral particles. Science 368, 642–648 (2020).

    Article  CAS  Google Scholar 

  31. Zhang, M. et al. Chiral carbon dots derived from serine with well-defined structure and enantioselective catalytic activity. Nano Lett. 22, 7203–7211 (2022).

    Article  CAS  Google Scholar 

  32. Zhang, M. et al. Maltase decorated by chiral carbon dots with inhibited enzyme activity for glucose level control. Small 15, 1901512 (2019).

    Article  CAS  Google Scholar 

  33. Gao, P., Xie, Z. & Zheng, M. Chiral carbon dots-based nanosensors for Sn(II) detection and lysine enantiomers recognition. Sens. Actuators B Chem. 319, 128265 (2020).

    Article  CAS  Google Scholar 

  34. Shi, B. et al. Chiral nanoparticles force neural stem cell differentiation to alleviate Alzheimer’s disease. Adv. Sci. 9, 2202475 (2022).

    Article  CAS  Google Scholar 

  35. Xu, L. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 601, 366–373 (2022).

    Article  CAS  Google Scholar 

  36. Yao, X., Wang, X. & Ding, J. Exploration of possible cell chirality using material techniques of surface patterning. Acta Biomater. 126, 92–108 (2021).

    Article  CAS  Google Scholar 

  37. Dong, L. et al. Chiral geometry regulates stem cell fate and activity. Biomaterials 222, 119456 (2019).

    Article  CAS  Google Scholar 

  38. Manoccio, M. et al. Femtomolar biodetection by a compact core–shell 3D chiral metamaterial. Nano Lett. 21, 6179–6187 (2021).

    Article  CAS  Google Scholar 

  39. Yuan, A. et al. Chiral CuxOS@ZIF-8 nanostructures for ultrasensitive quantification of hydrogen sulfide in vivo. Adv. Mater. 32, 1906580 (2020).

    Article  CAS  Google Scholar 

  40. Hao, C. et al. Chiral molecule-mediated porous CuxO nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 141, 1091–1099 (2019).

    Article  CAS  Google Scholar 

  41. Agnew-Francis, K. A. & Williams, C. M. Squaramides as bioisosteres in contemporary drug design. Chem. Rev. 120, 11616–11650 (2020).

    Article  CAS  Google Scholar 

  42. Holman, K. R., Stanko, A. M. & Reisman, S. E. Palladium-catalyzed cascade cyclizations involving C–C and C–X bond formation: strategic applications in natural product synthesis. Chem. Soc. Rev. 50, 7891–7908 (2021).

    Article  CAS  Google Scholar 

  43. Li, S. et al. The development of carbon dots: from the perspective of materials chemistry. Mater. Today 51, 188–207 (2021).

    Article  CAS  Google Scholar 

  44. Ðorđević, L., Arcudi, F., Cacioppo, M. & Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 17, 112–130 (2022).

    Article  Google Scholar 

  45. Ðorđević, L., Arcudi, F. & Prato, M. Preparation, functionalization and characterization of engineered carbon nanodots. Nat. Protoc. 14, 2931–2953 (2019).

    Article  Google Scholar 

  46. Arcudi, F., Đorđević, L. & Prato, M. Design, synthesis, and functionalization strategies of tailored carbon nanodots. Acc. Chem. Res. 52, 2070–2079 (2019).

    Article  CAS  Google Scholar 

  47. Di Noja, S. et al. Transfer of axial chirality to the nanoscale endows carbon nanodots with circularly polarized luminescence. Angew. Chem. Int. Ed. 61, e202202397 (2022).

    Google Scholar 

  48. Liu, Y. et al. Advances in carbon dots: from the perspective of traditional quantum dots. Mater. Chem. Front. 4, 1586–1613 (2020).

    Article  CAS  Google Scholar 

  49. Kang, Z. & Lee, S.-T. Carbon dots: advances in nanocarbon applications. Nanoscale 11, 19214–19224 (2019).

    Article  CAS  Google Scholar 

  50. Chen, Z., Liu, Y. & Kang, Z. Diversity and tailorability of photoelectrochemical properties of carbon dots. Acc. Chem. Res. 55, 3110–3124 (2022).

    Article  CAS  Google Scholar 

  51. Hutton, G. A. M., Martindale, B. C. M. & Reisner, E. Carbon dots as photosensitisers for solar-driven catalysis. Chem. Soc. Rev. 46, 6111–6123 (2017).

    Article  CAS  Google Scholar 

  52. Gao, W. et al. Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nat. Commun. 14, 160 (2023).

    Article  CAS  Google Scholar 

  53. d’Ischia, M., Napolitano, A., Ball, V., Chen, C.-T. & Buehler, M. J. Polydopamine and eumelanin: from structure–property relationships to a unified tailoring strategy. Acc. Chem. Res. 47, 3541–3550 (2014).

    Article  Google Scholar 

  54. Sun, M.-C. et al. Biomimetic melanosomes promote orientation-selective delivery and melanocyte pigmentation in the H2O2-induced vitiligo mouse model. ACS Nano 15, 17361–17374 (2021).

    Article  CAS  Google Scholar 

  55. Natarajan, V. T., Ganju, P., Ramkumar, A., Grover, R. & Gokhale, R. S. Multifaceted pathways protect human skin from UV radiation. Nat. Chem. Biol. 10, 542–551 (2014).

    Article  CAS  Google Scholar 

  56. Pommier, Y., Nussenzweig, A., Takeda, S. & Austin, C. Human topoisomerases and their roles in genome stability and organization. Nat. Rev. Mol. Cell Biol. 23, 407–427 (2022).

    Article  CAS  Google Scholar 

  57. Inzucchi, S. E. et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38, 140–149 (2015).

    Article  Google Scholar 

  58. Umpierrez, G. E. & Pasquel, F. J. Management of inpatient hyperglycemia and diabetes in older adults. Diabetes Care 40, 509–517 (2017).

    Article  Google Scholar 

  59. Lingvay, I., Sumithran, P., Cohen, R. V. & le Roux, C. W. Obesity management as a primary treatment goal for type 2 diabetes: time to reframe the conversation. Lancet 399, 394–405 (2022).

    Article  CAS  Google Scholar 

  60. Ahmad, E., Lim, S., Lamptey, R., Webb, D. R. & Davies, M. J. Type 2 diabetes. Lancet 400, 1803–1820 (2022).

    Article  Google Scholar 

  61. Rines, A. K., Sharabi, K., Tavares, C. D. J. & Puigserver, P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat. Rev. Drug Discov. 15, 786–804 (2016).

    Article  CAS  Google Scholar 

  62. Cao, M. et al. Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nat. Nanotechnol. 16, 708–716 (2021).

    Article  CAS  Google Scholar 

  63. Ren, J. et al. Chemical and biophysical signatures of the protein corona in nanomedicine. J. Am. Chem. Soc. 144, 9184–9205 (2022).

    Article  CAS  Google Scholar 

  64. Yan, H. et al. Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nat. Commun. 12, 7208 (2021).

    Article  CAS  Google Scholar 

  65. Mosquera, J. et al. Reversible control of protein corona formation on gold nanoparticles using host–guest interactions. ACS Nano 14, 5382–5391 (2020).

    Article  CAS  Google Scholar 

  66. Li, F. et al. Highly fluorescent chiral N-S-doped carbon dots from cysteine: affecting cellular energy metabolism. Angew. Chem. Int. Ed. 57, 2377–2382 (2018).

    Article  CAS  Google Scholar 

  67. Ma, Y. et al. Chiral carbon dots — a functional domain for tyrosinase Cu active site modulation via remote target interaction. Nanoscale 14, 1202–1210 (2022).

    Article  CAS  Google Scholar 

  68. Zhang, M. et al. Chiral control of carbon dots via surface modification for tuning the enzymatic activity of glucose oxidase. ACS Appl. Mater. Interfaces 13, 5877–5886 (2021).

    Article  CAS  Google Scholar 

  69. Gao, P. et al. Chiral carbon dots-enzyme nanoreactors with enhanced catalytic activity for cancer therapy. ACS Appl. Mater. Interfaces 13, 56456–56464 (2021).

    Article  CAS  Google Scholar 

  70. Liu, H., Xie, Z. & Zheng, M. Unprecedented chiral nanovaccines for significantly enhanced cancer immunotherapy. ACS Appl. Mater. Interfaces 14, 39858–39865 (2022).

    Article  CAS  Google Scholar 

  71. Zhang, M. et al. One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale 10, 12734–12742 (2018).

    Article  CAS  Google Scholar 

  72. Victoria, F., Manioudakis, J., Zaroubi, L., Findlay, B. & Naccache, R. Tuning residual chirality in carbon dots with anti-microbial properties. RSC Adv. 10, 32202–32210 (2020).

    Article  CAS  Google Scholar 

  73. Wang, W. et al. The development of chiral nanoparticles to target NK cells and CD8+ T cells for cancer immunotherapy. Adv. Mater. 34, 2109354 (2022).

    Article  CAS  Google Scholar 

  74. Lee, H.-E. et al. Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360–365 (2018).

    Article  CAS  Google Scholar 

  75. Ma, Y. et al. Controlled synthesis of Au chiral propellers from seeded growth of Au nanoplates for chiral differentiation of biomolecules. J. Phys. Chem. C 124, 24306–24314 (2020).

    Article  CAS  Google Scholar 

  76. Qu, A. et al. Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nat. Biomed. Eng. 5, 103–113 (2021).

    Article  CAS  Google Scholar 

  77. Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Prim. 3, 17013 (2017).

    Article  Google Scholar 

  78. Shi, B. et al. Chiral CuxCoyS supraparticles ameliorate Parkinson’s disease. CCS Chem. 4, 2440–2451 (2022).

    Article  CAS  Google Scholar 

  79. Chen, P. et al. Peptide-directed synthesis of chiral nano-bipyramids for controllable antibacterial application. Chem. Sci. 13, 10281–10290 (2022).

    Article  CAS  Google Scholar 

  80. Wang, G. et al. Six-pointed star chiral cobalt superstructures with strong antibacterial activity. Small 18, 2204219 (2022).

    Article  CAS  Google Scholar 

  81. Liu, Z. et al. Nano-kirigami with giant optical chirality. Sci. Adv. 4, eaat4436 (2018).

    Article  Google Scholar 

  82. Wei, X. et al. Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures. Nat. Chem. 12, 551–559 (2020).

    Article  CAS  Google Scholar 

  83. Palermo, G. et al. Biomolecular sensing at the interface between chiral metasurfaces and hyperbolic metamaterials. ACS Appl. Mater. Interfaces 12, 30181–30188 (2020).

    Article  CAS  Google Scholar 

  84. García-Guirado, J., Svedendahl, M., Puigdollers, J. & Quidant, R. Enantiomer-selective molecular sensing using racemic nanoplasmonic arrays. Nano Lett. 18, 6279–6285 (2018).

    Article  Google Scholar 

  85. Elnathan, R. et al. Biointerface design for vertical nanoprobes. Nat. Rev. Mater. 7, 953–973 (2022).

    Article  CAS  Google Scholar 

  86. Yao, X., Hu, Y., Cao, B., Peng, R. & Ding, J. Effects of surface molecular chirality on adhesion and differentiation of stem cells. Biomaterials 34, 9001–9009 (2013).

    Article  CAS  Google Scholar 

  87. Peng, Y. et al. Degradation rate affords a dynamic cue to regulate stem cells beyond varied matrix stiffness. Biomaterials 178, 467–480 (2018).

    Article  CAS  Google Scholar 

  88. Ye, K. et al. Matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate. Nano Lett. 15, 4720–4729 (2015).

    Article  CAS  Google Scholar 

  89. Tang, J., Peng, R. & Ding, J. The regulation of stem cell differentiation by cell–cell contact on micropatterned material surfaces. Biomaterials 31, 2470–2476 (2010).

    Article  CAS  Google Scholar 

  90. Yao, X., Peng, R. & Ding, J. Cell–material interactions revealed via material techniques of surface patterning. Adv. Mater. 25, 5257–5286 (2013).

    Article  CAS  Google Scholar 

  91. Wang, Y. et al. Micropattern-controlled chirality of focal adhesions regulates the cytoskeletal arrangement and gene transfection of mesenchymal stem cells. Biomaterials 271, 120751 (2021).

    Article  CAS  Google Scholar 

  92. Yao, X. & Ding, J. Effects of microstripe geometry on guided cell migration. ACS Appl. Mater. Interfaces 12, 27971–27983 (2020).

    Article  CAS  Google Scholar 

  93. Zhang, J. et al. The osteogenic response to chirality-patterned surface potential distribution of CFO/P(VDF-TrFE) membranes. Biomater. Sci. 10, 4576–4587 (2022).

    Article  CAS  Google Scholar 

  94. von Erlach, T. C. et al. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate. Nat. Mater. 17, 237–242 (2018).

    Article  Google Scholar 

  95. Murphy, W. L., McDevitt, T. C. & Engler, A. J. Materials as stem cell regulators. Nat. Mater. 13, 547–557 (2014).

    Article  CAS  Google Scholar 

  96. Zhou, C. et al. Enantioselective interaction between cells and chiral hydroxyapatite films. Chem. Mater. 34, 53–62 (2022).

    Article  Google Scholar 

  97. Hansel, T. T., Kropshofer, H., Singer, T., Mitchell, J. A. & George, A. J. T. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 9, 325–338 (2010).

    Article  CAS  Google Scholar 

  98. Scott, A. M., Wolchok, J. D. & Old, L. J. Antibody therapy of cancer. Nat. Rev. Cancer 12, 278–287 (2012).

    Article  CAS  Google Scholar 

  99. Kong, Y. et al. Regulation of stem cell fate using nanostructure-mediated physical signals. Chem. Soc. Rev. 50, 12828–12872 (2021).

    Article  CAS  Google Scholar 

  100. Wan, X., Liu, Z. & Li, L. Manipulation of stem cells fates: the master and multifaceted roles of biophysical cues of biomaterials. Adv. Funct. Mater. 31, 2010626 (2021).

    Article  CAS  Google Scholar 

  101. Hao, Y. et al. Mechanical properties of single cells: measurement methods and applications. Biotechnol. Adv. 45, 107648 (2020).

    Article  CAS  Google Scholar 

  102. Hang, X. et al. Nanosensors for single cell mechanical interrogation. Biosens. Bioelectron. 179, 113086 (2021).

    Article  CAS  Google Scholar 

  103. Finbloom, J. A., Huynh, C., Huang, X. & Desai, T. A. Bioinspired nanotopographical design of drug delivery systems. Nat. Rev. Bioeng. 1, 139–152 (2023).

    Article  Google Scholar 

  104. Sun, L. et al. Ultrastructural organization of NompC in the mechanoreceptive organelle of Drosophila campaniform mechanoreceptors. Proc. Natl Acad. Sci. USA 116, 7343–7352 (2019).

    Article  CAS  Google Scholar 

  105. Franks, M. E., Macpherson, G. R. & Figg, W. D. Thalidomide. Lancet 363, 1802–1811 (2004).

    Article  CAS  Google Scholar 

  106. Ðorđević, L. et al. Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nat. Commun. 9, 3442 (2018).

    Article  Google Scholar 

  107. Fan, C., Deng, Q. & Zhu, T. F. Bioorthogonal information storage in l-DNA with a high-fidelity mirror-image Pfu DNA polymerase. Nat. Biotechnol. 39, 1548–1555 (2021).

    Article  CAS  Google Scholar 

  108. Weidmann, J., Schnölzer, M., Dawson, P. E. & Hoheisel, J. D. Copying life: synthesis of an enzymatically active mirror-image DNA-ligase made of d-amino acids. Cell Chem. Biol. 26, 645–651.e3 (2019).

    Article  CAS  Google Scholar 

  109. Park, J. E. et al. On-demand dynamic chirality selection in flower corolla-like micropillar arrays. ACS Nano 16, 18101–18109 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dedicated to the 70th birthday of M. Prato. The authors greatly acknowledge the financial support from the National Natural Science Foundation of China (No. 82100974), Shandong Province Key Research and Development Program (No. 2021ZDSYS18), Shandong Province Natural Science Foundation (No. ZR2021QH241), Young Elite Scientist Support Program by CSA (No. 2021PYRC001) and Qilu Young Scholars Program of Shandong University. This work was partly supported by the Interdisciplinary Thematic Institute SysChem via the IdEx Unistra (ANR-10-IDEX-0002) within the programme ‘Investissement d’Avenir’. A.B. acknowledges the Centre National de la Recherche Scientifique and the International Center for Frontier Research in Chemistry.

Author information

Authors and Affiliations

Authors

Contributions

B.M. and A.B. envisioned and prepared the Perspective article, carried out the literature survey, analysed the data, prepared the figures and wrote the paper.

Corresponding authors

Correspondence to Baojin Ma or Alberto Bianco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Ki Tae Nam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Bianco, A. Regulation of biological processes by intrinsically chiral engineered materials. Nat Rev Mater 8, 403–413 (2023). https://doi.org/10.1038/s41578-023-00561-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00561-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing