Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Phase-pure two-dimensional layered perovskite thin films

Abstract

Two-dimensional layered metal-halide perovskites (2D-LMHPs) are a promising family of organic–inorganic hybrid semiconductor materials because of their superior electronic and optical properties and high stability. To date, solution-processed 2D-LMHP thin films have a multiple quantum wells (QWs) structure, which has seriously impeded further progress in optoelectronics. Compared with 2D-LMHPs with multiple QWs, 2D-LMHPs with phase-pure QWs have a flattened energy landscape, resulting in less energy or charge-transfer losses and making them less susceptible to degradation. They would thus be attractive to promote the development of perovskite-based devices. In this Perspective article, we first elucidate the structure and optoelectronic properties of phase-pure 2D-LMHP films. Second, we systematically discuss their precursor engineering, focusing on stoichiometry, ligand design, chemical compositional engineering and formation energy aspects. Third, we comprehensively summarize the intermediate phase growth mechanism, in situ dynamic transformation observation and methodologies for the formation of quasi-2D perovskites with phase-pure structures. Finally, we deliberate the prospects and challenges of phase-pure 2D perovskites as a new family of semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and optical properties of 2D perovskites.
Fig. 2: Quantum well distribution of 2D perovskite films.
Fig. 3: Phase purity engineering of 2D perovskites.
Fig. 4: Phase evolution for 2D perovskites.
Fig. 5: Photovoltaic behaviours in phase-pure 2D perovskites.
Fig. 6: Advanced applications for phase-pure 2D perovskites.

Similar content being viewed by others

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Google Scholar 

  2. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

    CAS  Google Scholar 

  3. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    CAS  Google Scholar 

  4. Manser, J. S. & Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photon. 8, 737–743 (2014).

    CAS  Google Scholar 

  5. Jeong, J. et al. Pseudo-halide anion engineering for a-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    CAS  Google Scholar 

  6. Sun, S. et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399–407 (2014).

    CAS  Google Scholar 

  7. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    CAS  Google Scholar 

  8. Blancon, J. C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).

    CAS  Google Scholar 

  9. Li, P. et al. Phase pure 2D perovskite for high-performance 2D–3D heterostructured perovskite solar cells. Adv. Mater. 30, 1805323 (2018).

    Google Scholar 

  10. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    CAS  Google Scholar 

  11. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    CAS  Google Scholar 

  12. Shan, Q. et al. Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light. Sci. Appl. 9, 163 (2020).

    CAS  Google Scholar 

  13. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    CAS  Google Scholar 

  14. Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020).

    CAS  Google Scholar 

  15. Liang, Y. et al. Lasing from mechanically exfoliated 2D homologous Ruddlesden–Popper perovskite engineered by inorganic layer thickness. Adv. Mater. 31, 1903030 (2019).

    Google Scholar 

  16. Ji, C. et al. Inch-size single crystal of a lead-free organic–inorganic hybrid perovskite for high-performance photodetector. Adv. Funct. Mater. 28, 1705467 (2018).

    Google Scholar 

  17. Ji, C. et al. 2D hybrid perovskite ferroelectric enables highly sensitive X‐ray detection with low driving voltage. Adv. Funct. Mater. 30, 1905529 (2019).

    Google Scholar 

  18. Liang, C. et al. High‐performance flexible perovskite photodetectors based on single‐crystal‐like two‐dimensional Ruddlesden–Popper thin films. Carbon Energy 5, e251  (2022).

    Google Scholar 

  19. Wei, M. et al. Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. Nat. Energy 4, 197–205 (2019).

    CAS  Google Scholar 

  20. Zhang, Y. et al. Synthesis, properties, and optical applications of low-dimensional perovskites. Chem. Commun. 52, 13637–13655 (2016).

    CAS  Google Scholar 

  21. Saidaminov, M. I., Mohammed, O. F. & Bakr, O. M. Low-dimensional-networked metal halide perovskites: the next big thing. ACS Energy Lett. 2, 889–896 (2017).

    CAS  Google Scholar 

  22. Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. & Kanatzidis, M. G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).

    CAS  Google Scholar 

  23. Chen, Y. et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30, 1703487 (2018).

    Google Scholar 

  24. Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2655 (2016).

    CAS  Google Scholar 

  25. Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    CAS  Google Scholar 

  26. Soe, C. M. M. et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl Acad. Sci. USA 116, 58–66 (2019).

    Google Scholar 

  27. Lin, Y. et al. Unveiling the operation mechanism of layered perovskite solar cells. Nat. Commun. 10, 1008 (2019).

    Google Scholar 

  28. Quintero-Bermudez, R. et al. Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nat. Mater. 17, 900–907 (2018).

    CAS  Google Scholar 

  29. Stoumpos, C. C. et al. High members of the 2D Ruddlesden–Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem 2, 427–440 (2017).

    CAS  Google Scholar 

  30. Mao, L. et al. Seven-layered 2D hybrid lead iodide perovskites. Chem 5, 2593–2604 (2019).

    CAS  Google Scholar 

  31. Chen, A. Z. et al. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nat. Commun. 9, 1336 (2018).

    Google Scholar 

  32. Giovanni, D. et al. The physics of interlayer exciton delocalization in Ruddlesden–Popper lead halide perovskites. Nano Lett. 21, 405–413 (2021).

    CAS  Google Scholar 

  33. Zibouche, N. & Islam, M. S. Structure-electronic property relationships of 2D Ruddlesden–Popper tin- and lead-based iodide perovskites. ACS Appl. Mater. Interfaces 12, 15328–15337 (2020).

    CAS  Google Scholar 

  34. Mao, L., Stoumpos, C. C. & Kanatzidis, M. G. Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019).

    CAS  Google Scholar 

  35. Wang, K., Wu, C., Yang, D., Jiang, Y. & Priya, S. Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano 12, 4919–4929 (2018).

    CAS  Google Scholar 

  36. Wei, Y. et al. Reverse‐graded 2D Ruddlesden–Popper perovskites for efficient air‐stable solar cells. Adv. Energy Mater. 9, 1900612 (2019).

    Google Scholar 

  37. Chen, Y., Yu, S., Sun, Y. & Liang, Z. Phase engineering in quasi-2D Ruddlesden–Popper perovskites. J. Phys. Chem. Lett. 9, 2627–2631 (2018).

    CAS  Google Scholar 

  38. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    CAS  Google Scholar 

  39. Liu, J., Leng, J., Wu, K., Zhang, J. & Jin, S. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc. 139, 1432–1435 (2017).

    CAS  Google Scholar 

  40. Williams, O. F. et al. Energy transfer mechanisms in layered 2D perovskites. J. Chem. Phys. 148, 134706 (2018).

    Google Scholar 

  41. Shang, Q. et al. Unveiling structurally engineered carrier dynamics in hybrid quasi-two-dimensional perovskite thin films toward controllable emission. J. Phys. Chem. Lett. 8, 4431–4438 (2017).

    CAS  Google Scholar 

  42. Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017).

    CAS  Google Scholar 

  43. Yantara, N. et al. Designing efficient energy funneling kinetics in Ruddlesden–Popper perovskites for high-performance light-emitting diodes. Adv. Mater. 30, 1800818 (2018).

    Google Scholar 

  44. Lu, J. et al. Layer number dependent exciton dissociation and carrier recombination in 2D Ruddlesden–Popper halide perovskites. J. Mater. Chem. C 9, 8966–8974 (2021).

    CAS  Google Scholar 

  45. Zhang, J., Zhu, X., Wang, M. & Hu, B. Establishing charge-transfer excitons in 2D perovskite heterostructures. Nat. Commun. 11, 2618 (2020).

    CAS  Google Scholar 

  46. Passarelli, J. V. et al. Tunable exciton binding energy in 2D hybrid layered perovskites through donor–acceptor interactions within the organic layer. Nat. Chem. 12, 672–682 (2020).

    CAS  Google Scholar 

  47. Deng, S. et al. Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites. Nat. Commun. 11, 664 (2020).

    CAS  Google Scholar 

  48. Shi, E. et al. Extrinsic and dynamic edge states of two-dimensional lead halide perovskites. ACS Nano 13, 1635–1644 (2019).

    CAS  Google Scholar 

  49. Fang, H. H. et al. Band‐edge exciton fine structure and exciton recombination dynamics in single crystals of layered hybrid perovskites. Adv. Funct. Mater. 30, 1907979 (2019).

    Google Scholar 

  50. Zhang, Q., Chu, L., Zhou, F., Ji, W. & Eda, G. Excitonic properties of chemically synthesized 2D organic–inorganic hybrid perovskite nanosheets. Adv. Mater. 30, 1704055 (2018).

    Google Scholar 

  51. Silver, S., Yin, J., Li, H., Brédas, J. L. & Kahn, A. Characterization of the valence and conduction band levels of n = 1 2D perovskites: a combined experimental and theoretical investigation. Adv. Energy Mater. 8, 1703468 (2018).

    Google Scholar 

  52. Lin, Y. et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2, 1571–1572 (2017).

    CAS  Google Scholar 

  53. Zhao, X., Liu, T. & Loo, Y. L. Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities. Adv. Mater. 34, e2105849 (2022).

    Google Scholar 

  54. Etgar, L. The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite? Energy Environ. Sci. 11, 234–242 (2018).

    CAS  Google Scholar 

  55. Gao, P., Bin Mohd Yusoff, A. R. & Nazeeruddin, M. K. Dimensionality engineering of hybrid halide perovskite light absorbers. Nat. Commun. 9, 5028 (2018).

    Google Scholar 

  56. Huang, J., Yuan, Y., Shao, Y. & Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017).

    CAS  Google Scholar 

  57. Blancon, J. C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9, 2254 (2018).

    Google Scholar 

  58. Yan, J., Qiu, W., Wu, G., Heremans, P. & Chen, H. Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells. J. Mater. Chem. A 6, 11063–11077 (2018).

    CAS  Google Scholar 

  59. Grancini, G. & Nazeeruddin, M. K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 4, 4–22 (2018).

    Google Scholar 

  60. Krishna, A., Gottis, S., Nazeeruddin, M. K. & Sauvage, F. Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells? Adv. Funct. Mater. 29, 1806482 (2019).

    Google Scholar 

  61. He, T., Jiang, Y., Xing, X. & Yuan, M. Structured perovskite light absorbers for efficient and stable photovoltaics. Adv. Mater. 32, 1903937 (2020).

    CAS  Google Scholar 

  62. Chen, Z., Guo, Y., Wertz, E. & Shi, J. Merits and challenges of Ruddlesden–Popper soft halide perovskites in electro-optics and optoelectronics. Adv. Mater. 31, 1803514 (2019).

    Google Scholar 

  63. Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019).

    CAS  Google Scholar 

  64. Yan, L. et al. Charge-carrier transport in quasi-2D Ruddlesden–Popper perovskite solar cells. Adv. Mater. 34, e2106822 (2022).

    Google Scholar 

  65. Tsai, H. et al. Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat. Commun. 9, 2130 (2018).

    Google Scholar 

  66. Peng, S. et al. Regulation of quantum wells width distribution in 2D perovskite films for photovoltaic application. Adv. Funct. Mater. 32, 202205289 (2022).

    Google Scholar 

  67. Venkatesan, N. R. et al. Phase intergrowth and structural defects in organic metal halide Ruddlesden–Popper thin films. Chem. Mater. 30, 8615–8623 (2018).

    CAS  Google Scholar 

  68. Rogers, J. T., Schmidt, K., Toney, M. F., Bazan, G. C. & Kramer, E. J. Time-resolved structural evolution of additive-processed bulk heterojunction solar cells. J. Am. Chem. Soc. 134, 2884–2887 (2012).

    CAS  Google Scholar 

  69. Song, J. et al. Unraveling the crystallization kinetics of 2D perovskites with sandwich-type structure for high-performance photovoltaics. Adv. Mater. 32, 2002784 (2020).

    CAS  Google Scholar 

  70. Li, X., Hoffman, J. M. & Kanatzidis, M. G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230–2291 (2021).

    CAS  Google Scholar 

  71. Gu, H. et al. Nanoscale hybrid multidimensional perovskites with alternating cations for high performance photovoltaic. Nano Energy 65, 104050 (2019).

    CAS  Google Scholar 

  72. Quan, L. N. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 17, 3701–3709 (2017).

    CAS  Google Scholar 

  73. Wang, C. et al. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nat. Commun. 11, 6428 (2020).

    CAS  Google Scholar 

  74. Leng, K., Li, R., Lau, S. P. & Loh, K. P. Ferroelectricity and Rashba effect in 2D organic–inorganic hybrid perovskites. Trends Chem. 3, 716–732 (2021).

    CAS  Google Scholar 

  75. Liang, C. et al. Ruddlesden–Popper perovskite for stable solar cells. Energy Environ. Mater. 1, 221–231 (2018).

    CAS  Google Scholar 

  76. Han, C. et al. Tailoring phase alignment and interfaces via polyelectrolyte anchoring enables large-area 2D perovskite solar cells. Angew. Chem. Int. Ed. 61, e202205111 (2022).

    CAS  Google Scholar 

  77. Caiazzo, A. & Janssen, R. A. J. High efficiency quasi‐2D Ruddlesden–Popper perovskite solar cells. Adv. Energy Mater. 12, 2202830 (2022).

    CAS  Google Scholar 

  78. Ji, C. et al. The first 2D hybrid perovskite ferroelectric showing broadband white‐light emission with high color rendering index. Adv. Funct. Mater. 29, 1805038 (2018).

    Google Scholar 

  79. Leng, K., Fu, W., Liu, Y., Chhowalla, M. & Loh, K. P. From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5, 482–500 (2020).

    CAS  Google Scholar 

  80. Giovanni, D. et al. Ultrafast long-range spin-funneling in solution-processed Ruddlesden–Popper halide perovskites. Nat. Commun. 10, 3456 (2019).

    Google Scholar 

  81. Han, Y., Park, S., Kim, C., Lee, M. & Hwang, I. Phase control of quasi-2D perovskites and improved light-emitting performance by excess organic cations and nanoparticle intercalation. Nanoscale 11, 3546–3556 (2019).

    CAS  Google Scholar 

  82. Duim, H., Adjokatse, S., Kahmann, S., ten Brink, G. H. & Loi, M. A. The impact of stoichiometry on the photophysical properties of Ruddlesden–Popper perovskites. Adv. Funct. Mater. 30, 1907505 (2019).

    Google Scholar 

  83. Shang, Y. et al. Highly stable hybrid perovskite light-emitting diodes based on Dion–Jacobson structure. Sci. Adv. 5, eaaw8072 (2019).

    CAS  Google Scholar 

  84. Byun, J. et al. Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28, 7515–7520 (2016).

    CAS  Google Scholar 

  85. Worku, M. et al. Phase control and in situ passivation of quasi-2D metal halide perovskites for spectrally stable blue light-emitting diodes. ACS Appl. Mater. Interfaces 12, 45056–45063 (2020).

    CAS  Google Scholar 

  86. Hua, Y. et al. Identification of the band gap energy of two-dimensional (OA)2(MA)n−1PbnI3n+1 perovskite with up to 10 layers. J. Phys. Chem. Lett. 10, 7025–7030 (2019).

    CAS  Google Scholar 

  87. Jiang, Y. et al. Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 10, 1868 (2019).

    Google Scholar 

  88. Wang, Q. et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat. Commun. 10, 5633 (2019).

    CAS  Google Scholar 

  89. Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photon. 13, 760–764 (2019).

    CAS  Google Scholar 

  90. Proppe, A. H. et al. Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. J. Am. Chem. Soc. 140, 2890–2896 (2018).

    CAS  Google Scholar 

  91. Hu, J. et al. Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nat. Commun. 10, 1276 (2019).

    Google Scholar 

  92. Cheng, P. et al. Ligand-size related dimensionality control in metal halide perovskites. ACS Energy Lett. 4, 1830–1838 (2019).

    CAS  Google Scholar 

  93. Weidman, M. C., Seitz, M., Stranks, S. D. & Tisdale, W. A. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 10, 7830–7839 (2016).

    CAS  Google Scholar 

  94. Xing, J. et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 9, 3541 (2018).

    Google Scholar 

  95. Fu, W. et al. Tailoring the functionality of organic spacer cations for efficient and stable quasi‐2D perovskite solar cells. Adv. Funct. Mater. 29, 1900221 (2019).

    Google Scholar 

  96. Li, X. et al. Two-dimensional Dion–Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 141, 12880–12890 (2019).

    CAS  Google Scholar 

  97. Vasileiadou, E. S. et al. Insight on the stability of thick layers in 2D Ruddlesden–Popper and Dion–Jacobson lead iodide perovskites. J. Am. Chem. Soc. 143, 2523–2536 (2021).

    CAS  Google Scholar 

  98. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    CAS  Google Scholar 

  99. Draguta, S. et al. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites. Nat. Commun. 8, 200 (2017).

    Google Scholar 

  100. Qin, C. et al. Triplet management for efficient perovskite light-emitting diodes. Nat. Photon. 14, 70–75 (2020).

    CAS  Google Scholar 

  101. Li, Z. et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat. Commun. 10, 1027 (2019).

    Google Scholar 

  102. Odysseas Kosmatos, K. et al. Μethylammonium chloride: a key additive for highly efficient, stable, and up‐scalable perovskite solar cells. Energy Environ. Mater. 2, 79–92 (2019).

    CAS  Google Scholar 

  103. Li, H., Lu, J., Zhang, T., Shen, Y. & Wang, M. Cation-assisted restraint of a wide quantum well and interfacial charge accumulation in two-dimensional perovskites. ACS Energy Lett. 3, 1815–1823 (2018).

    Google Scholar 

  104. Ahmad, S. et al. Dion–Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 3, 794–806 (2019).

    CAS  Google Scholar 

  105. Li, P. et al. Low-dimensional perovskites with diammonium and monoammonium alternant cations for high-performance photovoltaics. Adv. Mater. 31, 1901966 (2019).

    Google Scholar 

  106. Liang, C. et al. Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6, 38–45 (2021).

    Google Scholar 

  107. Yuan, Z. et al. Postsynthetic crystalline transformation in two-dimensional perovskites via organothiol-based chemistry. CCS Chem. 4, 855–863 (2022).

    CAS  Google Scholar 

  108. Shi, J. et al. Fluorinated low-dimensional Ruddlesden–Popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv. Mater. 31, e1901673 (2019).

    Google Scholar 

  109. Proppe, A. H. et al. Photochemically cross-linked quantum well ligands for 2D/3D perovskite photovoltaics with improved photovoltage and stability. J. Am. Chem. Soc. 141, 14180–14189 (2019).

    CAS  Google Scholar 

  110. Qing, J. et al. Aligned and graded type-II Ruddlesden–Popper perovskite films for efficient solar cells. Adv. Energy Mater. 8, 1800185 (2018).

    Google Scholar 

  111. Yang, X. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 570 (2018).

    Google Scholar 

  112. Yang, Y. et al. Expanded phase distribution in low average layer‐number 2D perovskite films: toward efficient semitransparent solar cells. Adv. Funct. Mater. 31, 2104868 (2021).

    CAS  Google Scholar 

  113. Hu, Y. et al. Identifying and controlling phase purity in 2D hybrid perovskite thin films. J. Mater. Chem. A 6, 22215–22225 (2018).

    CAS  Google Scholar 

  114. Cui, S. et al. Rubidium ions enhanced crystallinity for Ruddlesden–Popper perovskites. Adv. Sci. 7, 2002445 (2020).

    CAS  Google Scholar 

  115. Pang, P. et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes. ACS Nano 14, 11420–11430 (2020).

    CAS  Google Scholar 

  116. He, T. et al. Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nat. Commun. 11, 1672 (2020).

    CAS  Google Scholar 

  117. Ashari-Astani, N. et al. Ruddlesden–Popper phases of methylammonium-based two-dimensional perovskites with 5-ammonium valeric acid AVA2MAn−1PbnI3n+1 with n = 1, 2, and 3. J. Phys. Chem. Lett. 10, 3543–3549 (2019).

    CAS  Google Scholar 

  118. Liu, T. et al. Tailoring vertical phase distribution of quasi-two-dimensional perovskite films via surface modification of hole-transporting layer. Nat. Commun. 10, 878 (2019).

    Google Scholar 

  119. Zhou, M., Fei, C., Sarmiento, J. S. & Wang, H. Manipulating the phase distributions and carrier transfers in hybrid quasi‐two‐dimensional perovskite films. Sol. RRL 3, 1800359 (2019).

    Google Scholar 

  120. Pan, H. et al. Controlling layered Ruddlesden–Popper perovskites via solvent additives. Nanoscale 12, 7330–7338 (2020).

    CAS  Google Scholar 

  121. Shin, M. et al. Low-dimensional formamidinium lead perovskite architectures via controllable solvent intercalation. J. Mater. Chem. C. 7, 3945–3951 (2019).

    CAS  Google Scholar 

  122. Lin, J. T. et al. A universal approach for controllable synthesis of n-specific layered 2D perovskite nanoplates. Angew. Chem. Int. Ed. 60, 7866–7872 (2021).

    CAS  Google Scholar 

  123. Cevallos-Toledo, R. B. et al. Ruddlesden–Popper hybrid lead bromide perovskite nanosheets of phase pure n = 2: stabilized colloids stored in the solid state. Angew. Chem. Int. Ed. 60, 27312–27317 (2021).

    CAS  Google Scholar 

  124. Dessimoz, M. et al. Phase-pure quasi-2D perovskite by protonation of neutral amine. J. Phys. Chem. Lett. 12, 11323–11329 (2021).

    CAS  Google Scholar 

  125. Sidhik, S. et al. High-phase purity two-dimensional perovskites with 17.3% efficiency enabled by interface engineering of hole transport layer. Cell Rep. Phys. Sci. 2, 100601 (2021).

    CAS  Google Scholar 

  126. Quintero-Bermudez, R. et al. Ligand-induced surface charge density modulation generates local type-II band alignment in reduced-dimensional perovskites. J. Am. Chem. Soc. 141, 13459–13467 (2019).

    CAS  Google Scholar 

  127. Zhang, Y. et al. Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics. J. Am. Chem. Soc. 141, 2684–2694 (2019).

    CAS  Google Scholar 

  128. Luo, T. et al. Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%. Adv. Mater. 31, e1903848 (2019).

    Google Scholar 

  129. Ma, C., Lo, M.-F. & Lee, C.-S. A simple method for phase control in two-dimensional perovskite solar cells. J. Mater. Chem. A 6, 18871–18876 (2018).

    CAS  Google Scholar 

  130. Zhang, Y. et al. Highly efficient and thermal stable guanidinium-based two-dimensional perovskite solar cells via partial substitution with hydrophobic ammonium. Sci. China Chem. 62, 859–865 (2019).

    CAS  Google Scholar 

  131. Gong, J., Hao, M., Zhang, Y., Liu, M. & Zhou, Y. Layered 2D halide perovskites beyond the Ruddlesden–Popper phase: tailored interlayer chemistries for high-performance solar cells. Angew. Chem. Int. Ed. 61, e202112022 (2022).

    CAS  Google Scholar 

  132. Zhang, F. et al. Efficient blue perovskite light‐emitting diodes boosted by 2D/3D energy cascade channels. Adv. Funct. Mater. 30, 2001732 (2020).

    CAS  Google Scholar 

  133. Dahlman, C. J. et al. Controlling solvate intermediate growth for phase-pure organic lead iodide Ruddlesden–Popper (C4H9NH3)2(CH3NH3)n−1PbnI3n+1 perovskite thin films. Chem. Mater. 31, 5832–5844 (2019).

    CAS  Google Scholar 

  134. Chen, J. et al. Chloride-incorporated quasi-2D perovskite films via dynamic processing for spectrum-stable blue light-emitting diodes. J. Mater. Chem. C 9, 9637–9642 (2021).

    CAS  Google Scholar 

  135. Guo, J. et al. Phase tailoring of Ruddlesden–Popper perovskite at fixed large spacer cation ratio. Small 17, 2100560 (2021).

    CAS  Google Scholar 

  136. Zhang, Y. et al. Two-dimensional perovskites with alternating cations in the interlayer space for stable light-emitting diodes. Nanophotonics 10, 2145–2156 (2020).

    Google Scholar 

  137. Xia, J. et al. Surface passivation toward efficient and stable perovskite solar cells. Energy Environ. Mater. 6, e12296 (2023).

    CAS  Google Scholar 

  138. Qing, J. et al. High-quality Ruddlesden–Popper perovskite films based on in situ formed organic spacer cations. Adv. Mater. 31, 1904243 (2019).

    CAS  Google Scholar 

  139. Qin, Y. et al. Coordination engineering of single‐crystal precursor for phase control in Ruddlesden–Popper perovskite solar cells. Adv. Energy Mater. 10, 1904050 (2020).

    CAS  Google Scholar 

  140. Ke, W. et al. Compositional and solvent engineering in Dion–Jacobson 2D perovskites boosts solar cell efficiency and stability. Adv. Energy Mater. 9, 1803384 (2019).

    Google Scholar 

  141. Zheng, Y. et al. Oriented and uniform distribution of Dion–Jacobson phase perovskites controlled by quantum well barrier thickness. Sol. RRL 3, 1900090 (2019).

    Google Scholar 

  142. Zhang, X. et al. Film formation control for high performance Dion–Jacobson 2D perovskite solar cells. Adv. Energy Mater. 11, 2002733 (2021).

    CAS  Google Scholar 

  143. Liu, C. et al. Donor–acceptor–donor type organic spacer for regulating the quantum wells of Dion–Jacobson 2D perovskites. Nano Energy 93, 106800 (2022).

    CAS  Google Scholar 

  144. Herckens, R. et al. Multi-layered hybrid perovskites templated with carbazole derivatives: optical properties, enhanced moisture stability and solar cell characteristics. J. Mater. Chem. A 6, 22899–22908 (2018).

    CAS  Google Scholar 

  145. Li, Z. et al. Solvent–solute coordination engineering for efficient perovskite luminescent solar concentrators. Joule 4, 631–643 (2020).

    CAS  Google Scholar 

  146. Wang, Y. K. et al. Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters. Nat. Commun. 11, 3674 (2020).

    CAS  Google Scholar 

  147. Zhang, X. et al. Phase transition control for high performance Ruddlesden–Popper perovskite solar cells. Adv. Mater. 30, 1707166 (2018).

    Google Scholar 

  148. Zhang, J. et al. Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule 3, 3061–3071 (2019).

    CAS  Google Scholar 

  149. Liu, Y. et al. Self-assembly of two-dimensional perovskite nanosheet building blocks into ordered Ruddlesden–Popper perovskite phase. J. Am. Chem. Soc. 141, 13028–13032 (2019).

    CAS  Google Scholar 

  150. Li, X. et al. Non-preheating processed quasi-2D perovskites for efficient and stable solar cells. Small 16, 1906997 (2020).

    CAS  Google Scholar 

  151. Lin, H. et al. Single-phase alkylammonium cesium lead iodide quasi-2D perovskites for color-tunable and spectrum-stable red LEDs. Nanoscale 11, 16907–16918 (2019).

    CAS  Google Scholar 

  152. Kim, D. B. et al. Uniform and large‐area cesium‐based quasi‐2D perovskite light‐emitting diodes using hot‐casting method. Adv. Mater. Interfaces 7, 1902158 (2020).

    CAS  Google Scholar 

  153. Liu, N. et al. Probing phase distribution in 2D perovskites for efficient device design. ACS Appl. Mater. Interfaces 12, 3127–3133 (2020).

    CAS  Google Scholar 

  154. Nah, Y. et al. Narrowing the phase distribution of quasi-2D perovskites for stable deep-blue electroluminescence. Adv. Sci. 9, e2201807 (2022).

    Google Scholar 

  155. Hoffman, J. M. et al. In situ grazing-incidence wide-angle scattering reveals mechanisms for phase distribution and disorientation in 2D halide perovskite films. Adv. Mater. 32, 2002812 (2020).

    CAS  Google Scholar 

  156. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    CAS  Google Scholar 

  157. La-Placa, M.-G. et al. Dual-source vacuum deposition of pure and mixed halide 2D perovskites: thin film characterization and processing guidelines. J. Mater. Chem. C. 8, 1902–1908 (2020).

    CAS  Google Scholar 

  158. Choi, Y. et al. A vertically oriented two-dimensional Ruddlesden–Popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 15, 3369–3378 (2022).

    CAS  Google Scholar 

  159. Zheng, Z. H. et al. Single source thermal evaporation of two-dimensional perovskite thin films for photovoltaic applications. Sci. Rep. 9, 17422 (2019).

    Google Scholar 

  160. La-Placa, M.-G. et al. Vacuum-deposited 2D/3D perovskite heterojunctions. ACS Energy Lett. 4, 2893–2901 (2019).

    CAS  Google Scholar 

  161. Chen, C. et al. Vacuum‐assisted preparation of high‐quality quasi‐2D perovskite thin films for large‐area light‐emitting diodes. Adv. Funct. Mater. 32, 2107644 (2021).

    Google Scholar 

  162. Lan, C., Zhou, Z., Wei, R. & Ho, J. C. Two-dimensional perovskite materials: from synthesis to energy-related applications. Mater. Today Energy 11, 61–82 (2019).

    CAS  Google Scholar 

  163. Mitzi, D. B. et al. Hybrid field-effect transistor based on a low-temperature melt-processed channel layer. Adv. Mater. 14, 1772–1776 (2002).

    CAS  Google Scholar 

  164. Li, T., Dunlap-Shohl, W. A., Reinheimer, E. W., Le Magueres, P. & Mitzi, D. B. Melting temperature suppression of layered hybrid lead halide perovskites via organic ammonium cation branching. Chem. Sci. 10, 1168–1175 (2019).

    CAS  Google Scholar 

  165. Li, T. et al. Phase-pure hybrid layered lead iodide perovskite films based on a two-step melt-processing approach. Chem. Mater. 31, 4267–4274 (2019).

    CAS  Google Scholar 

  166. Li, T., Dunlap-Shohl, W. A., Han, Q. & Mitzi, D. B. Melt processing of hybrid organic–inorganic lead iodide layered perovskites. Chem. Mater. 29, 6200–6204 (2017).

    CAS  Google Scholar 

  167. Sidhik, S. et al. Memory seeds enable high structural phase purity in 2D perovskite films for high-efficiency devices. Adv. Mater. 33, 2007176 (2021).

    CAS  Google Scholar 

  168. Soe, C. M. M. et al. Understanding film formation morphology and orientation in high member 2D Ruddlesden–Popper perovskites for high‐efficiency solar cells. Adv. Energy Mater. 8, 1700979 (2017).

    Google Scholar 

  169. Tsai, H. et al. Stable light-emitting diodes using phase-pure Ruddlesden–Popper layered perovskites. Adv. Mater. 30, 1704217 (2018).

    Google Scholar 

  170. Li, H. et al. Pseudo-halide anion engineering for efficient quasi-2D Ruddlesden–Popper tin perovskite solar cells. Cell Rep. Phys. Sci. 3, 101060 (2022).

    Google Scholar 

  171. Zhang, Y. & Park, N.-G. Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. ACS Energy Lett. 7, 757–765 (2022).

    CAS  Google Scholar 

  172. Cho, K. T. et al. Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ. Sci. 11, 952–959 (2018).

    CAS  Google Scholar 

  173. Yoo, J. J. et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12, 2192–2199 (2019).

    CAS  Google Scholar 

  174. Jang, Y.-W. et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021).

    CAS  Google Scholar 

  175. Azmi, R. et al. Damp heat–stable perovskite solar cells with tailored-dimensionality 2D–3D heterojunctions. Science 376, 73–77 (2022).

    CAS  Google Scholar 

  176. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022).

    CAS  Google Scholar 

  177. Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).

    CAS  Google Scholar 

  178. Zhang, F. et al. Metastable Dion–Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022).

    CAS  Google Scholar 

  179. Tan, S. et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605, 268–273 (2022).

    CAS  Google Scholar 

  180. Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019).

    Google Scholar 

  181. Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).

    Google Scholar 

  182. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    CAS  Google Scholar 

  183. He, R. et al. Pure 2D perovskite formation by interfacial engineering yields a high open-circuit voltage beyond 1.28 V for 1.77-eV wide-bandgap perovskite solar cells. Adv. Sci. 9, e2203210 (2022).

    Google Scholar 

  184. Tong, J. et al. Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 7, 642–651 (2022).

    CAS  Google Scholar 

  185. Gharibzadeh, S. et al. 2D/3D heterostructure for semitransparent perovskite solar cells with engineered bandgap enables efficiencies exceeding 25% in four‐terminal tandems with silicon and CIGS. Adv. Funct. Mater. 30, 1909919 (2020).

    CAS  Google Scholar 

  186. Kim, D. et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020).

    CAS  Google Scholar 

  187. Duong, T. et al. High efficiency perovskite‐silicon tandem solar cells: effect of surface coating versus bulk incorporation of 2D perovskite. Adv. Energy Mater. 10, 1903553 (2020).

    CAS  Google Scholar 

  188. Wang, D. et al. Interfacial engineering of wide‐bandgap perovskites for efficient perovskite/CZTSSe tandem solar cells. Adv. Funct. Mater. 32, 2107359 (2021).

    Google Scholar 

  189. Cheng, L. et al. Multiple-quantum-well perovskites for high-performance light-emitting diodes. Adv. Mater. 32, e1904163 (2020).

    Google Scholar 

  190. Sun, C. et al. High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 2207 (2021).

    CAS  Google Scholar 

  191. Yang, L. et al. Pure red light-emitting diodes based on quantum confined quasi-two-dimensional perovskites with cospacer cations. ACS Energy Lett. 6, 2386–2394 (2021).

    CAS  Google Scholar 

  192. Guo, Z. et al. Promoting energy transfer via manipulation of crystallization kinetics of quasi-2D perovskites for efficient green light-emitting diodes. Adv. Mater. 33, e2102246 (2021).

    Google Scholar 

  193. Ren, Z. et al. High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers. Adv. Mater. 33, e2005570 (2021).

    Google Scholar 

  194. Liu, S. et al. Zwitterions narrow distribution of perovskite quantum wells for blue light-emitting diodes with efficiency exceeding 15%. Adv. Mater. 35, e2208078 (2022).

    Google Scholar 

  195. Jiang, N. et al. 2D/3D heterojunction perovskite light-emitting diodes with tunable ultrapure blue emissions. Nano Energy 97, 107181 (2022).

    CAS  Google Scholar 

  196. Li, Y. et al. Lasing from laminated quasi‐2D/3D perovskite planar heterostructures. Adv. Funct. Mater. 32, 2200772 (2022).

    CAS  Google Scholar 

  197. Wang, C. et al. Low-threshold blue quasi-2D perovskite laser through domain distribution control. Nano Lett. 22, 1338–1344 (2022).

    CAS  Google Scholar 

  198. Li, J. et al. Amplified spontaneous emission with a low threshold from quasi‐2D perovskite films via phase engineering and surface passivation. Adv. Opt. Mater. 10, 2102563 (2022).

    CAS  Google Scholar 

  199. Zhang, Q. et al. Advances in small perovskite-based lasers. Small Methods 1, 1700163 (2017).

    Google Scholar 

  200. Chu, Z. et al. Quasi 2D perovskite single-mode vertical-cavity lasers through large-area film transfer. Appl. Phys. Lett. 120, 121104 (2022).

    CAS  Google Scholar 

  201. Shi, E. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020).

    CAS  Google Scholar 

  202. Gao, Y. et al. Molecular engineering of organic-inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019).

    CAS  Google Scholar 

  203. Wang, J. et al. Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors. ACS Nano 13, 5473–5484 (2019).

    CAS  Google Scholar 

  204. Matsushima, T. et al. Solution-processed organic–inorganic perovskite field-effect transistors with high hole mobilities. Adv. Mater. 28, 10275–10281 (2016).

    CAS  Google Scholar 

  205. Pan, D. et al. Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden–Popper halide perovskites. Nat. Nanotechnol. 16, 159–165 (2021).

    CAS  Google Scholar 

  206. Leng, K. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 17, 908–914 (2018).

    CAS  Google Scholar 

  207. Wang, J. et al. Room temperature coherently coupled exciton–polaritons in two-dimensional organic–inorganic perovskite. ACS Nano 12, 8382–8389 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Science and Technology Development Fund, Macao SAR (File nos FDCT-0044/2020/A1, 0082/2021/A2, 0010/2022/AMJ and 006/2022/ALC), UM’s research fund (File nos MYRG2020-00151-IAPME, MYRG2022-00241-IAPME and MYRG-CRG2022-00009-FHS), the research fund from Wuyi University (EF38/IAPME-XGC/2022/WYU), the Jiangsu Provincial Departments of Science and Technology (grant no. BE2022023 and BK20220010), the Innovation Project of Optics Valley Laboratory (grant no. OVL2021BG006), the Open Project Program of Wuhan National Laboratory for Optoelectronics (2021WNLOKF003), the Natural Science Foundation of China (51972172, 61935017, 62175268 and 62105292) and Shenzhen-Hong Kong-Macao Science and Technology Innovation Project (Category C) (SGDX2020110309360100).

Author information

Authors and Affiliations

Authors

Contributions

H.G., C.L. and G.X. discussed the content. H.G. prepared the first draft, with help from J.X. All authors contributed to the review and editing of the manuscript.

Corresponding authors

Correspondence to Chao Liang, Yonghua Chen, Wei Huang or Guichuan Xing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Kian Ping Loh, Sang Il Seok and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, H., Xia, J., Liang, C. et al. Phase-pure two-dimensional layered perovskite thin films. Nat Rev Mater 8, 533–551 (2023). https://doi.org/10.1038/s41578-023-00560-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00560-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing