Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards micro-PeLED displays

Abstract

The miniaturization of conventional light-emitting diodes (LEDs) is a growing trend for emerging virtual and augmented reality and ultrahigh-resolution display applications. However, at present, the downscaling and integration of group III–V LED chips face great challenges, including efficiency droop, inhomogeneous emissions and side-wall losses upon top-down etching and mass-transfer processing. Perovskite LEDs (PeLEDs) are a promising alternative candidate for displays. Within a decade, they have achieved competitive performance owing to their narrowband emission, wide colour gamut and facile fabrication protocols. In particular, solution-processed perovskite emitting layers can be arranged into microscale pixels using various patterning techniques and show great potential for the development of advanced microscale PeLED (micro-PeLED) devices. In this Perspective article, we summarize the recent progress in perovskite patterning techniques and in the fabrication of micro-PeLED demos. We also share our viewpoint regarding the unique advantages of hybrid perovskites for microscale and nanoscale miniaturization, and we conclude by discussing the future challenges and technical roadmap for the development of micro-PeLED displays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulation strategies in state-of-the-art perovskite light-emitting diodes.
Fig. 2: Microscale perovskite emitting structures in state-of-the-art perovskite light-emitting diodes.
Fig. 3: Comparison of perovskite patterning techniques.
Fig. 4: Advances in perovskite patterning techniques.
Fig. 5: Progress in micro-perovskite light-emitting diodes.
Fig. 6: Future directions for micro-PeLEDs.

Similar content being viewed by others

References

  1. Day, J. et al. III-Nitride full-scale high-resolution microdisplays. Appl. Phys. Lett. 99, 031116 (2011).

    Article  Google Scholar 

  2. Li, P. et al. Size-independent low voltage of InGaN micro-light-emitting diodes with epitaxial tunnel junctions using selective area growth by metalorganic chemical vapor deposition. Opt. Express 28, 18707 (2020).

    Article  CAS  Google Scholar 

  3. Li, P. et al. Demonstration of high efficiency cascaded blue and green micro-light-emitting diodes with independent junction control. Appl. Phys. Lett. 118, 261104 (2021).

    Article  CAS  Google Scholar 

  4. Gandrothula, S. et al. Optical and electrical characterizations of micro-LEDs grown on lower defect density epitaxial layers. Appl. Phys. Lett. 119, 142103 (2021).

    Article  CAS  Google Scholar 

  5. Oh, J. T. et al. Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures. Opt. Express 26, 11194 (2018).

    Article  CAS  Google Scholar 

  6. Jiang, H., Jin, S., Li, J., Shakya, J. & Lin, J. III-nitride blue microdisplays. Appl. Phys. Lett. 78, 1303–1305 (2001).

    Article  CAS  Google Scholar 

  7. Lin, J. & Jiang, H. Development of microLED. Appl. Phys. Lett. 116, 100502 (2020).

    Article  CAS  Google Scholar 

  8. Wong, M. S. et al. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments. Opt. Express 28, 5787 (2020).

    Article  Google Scholar 

  9. Wierer, J. J. Jr. & Tansu, N. III-Nitride micro-LEDs for efficient emissive displays. Laser Photon. Rev. 13, 1900141 (2019).

    Article  Google Scholar 

  10. Zhao, Y. et al. 2000 PPI silicon-based AlGaInP red micro-LED arrays fabricated via wafer bonding and epilayer lift-off. Opt. Express 29, 20217 (2021).

    Article  CAS  Google Scholar 

  11. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018). This study presents the first report of isolated submicron-scale perovskite crystallites as emitters in near-infrared LEDs.

    Article  CAS  Google Scholar 

  12. Liu, Y. et al. Synergistic passivation and stepped-dimensional perovskite analogs enable high-efficiency near-infrared light-emitting diodes. Nat. Common. 13, 7425 (2022).

    Article  CAS  Google Scholar 

  13. Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotech. 15, 668–674 (2020).

    Article  CAS  Google Scholar 

  14. Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021).

    Article  CAS  Google Scholar 

  15. Kim, Y.-H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).

    Article  CAS  Google Scholar 

  16. Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021). This study reports state-of-the-art PeLEDs with over 25% efficiency, obtained by homogenizing the polydispersity of perovskite quantum wells.

    Article  CAS  Google Scholar 

  17. Jiang, J. et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations. Adv. Mater. 34, 2204460 (2022).

    Article  CAS  Google Scholar 

  18. Luo, D., Su, R., Zhang, W., Gong, Q. & Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2020).

    Article  CAS  Google Scholar 

  19. Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).

    Article  CAS  Google Scholar 

  20. Chen, Y. & Zhou, H. Defects chemistry in high-efficiency and stable perovskite solar cells. J. Appl. Phys. 128, 060903 (2020).

    Article  CAS  Google Scholar 

  21. Yang, X. et al. Multiple-defect management for efficient perovskite photovoltaics. ACS Energy Lett. 6, 2404–2412 (2021).

    Article  CAS  Google Scholar 

  22. Sun, K. et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375, 307–310 (2022).

    Article  CAS  Google Scholar 

  23. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  CAS  Google Scholar 

  24. Tu, Y. et al. Perovskite solar cells for space applications: progress and challenges. Adv. Mater. 33, 2006545 (2021).

    Article  CAS  Google Scholar 

  25. Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015).

    Article  CAS  Google Scholar 

  26. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018). This study reports a spontaneously formed quasi-core–shell perovskite emitting structure for green LEDs.

    Article  CAS  Google Scholar 

  27. Zhao, L. et al. Thermal management enables bright and stable perovskite light-emitting diodes. Adv. Mater. 32, 2000752 (2020).

    Article  CAS  Google Scholar 

  28. Krotkus, S., Kasemann, D., Lenk, S., Leo, K. & Reineke, S. Adjustable white-light emission from a photo-structured micro-OLED array. Light Sci. Appl. 5, e16121 (2016).

    Article  CAS  Google Scholar 

  29. Kim, S. K. et al. Primary color generation from white organic light-emitting diodes using a cavity control layer for AR/VR applications. Org. Electron. 87, 105938 (2020).

    Article  CAS  Google Scholar 

  30. Zhou, X. et al. Dewetting-Assisted Patterning of Organic Semiconductors for Micro-OLED Arrays with a Pixel Size of 1 μm. Small 6, 2101509 (2022).

    Article  CAS  Google Scholar 

  31. Yang, X., Wu, J., Liu, T. & Zhu, R. Patterned perovskites for optoelectronic applications. Small Methods 2, 1800110 (2018).

    Article  Google Scholar 

  32. Zou, Y., Cai, L., Song, T. & Sun, B. Recent progress on patterning strategies for perovskite light-emitting diodes toward a full-color display prototype. Small Sci. 1, 2000050 (2021).

    Article  CAS  Google Scholar 

  33. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  Google Scholar 

  34. Yang, X. et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021).

    Article  CAS  Google Scholar 

  35. Luo, D. et al. Low-dimensional contact layers for enhanced perovskite photodiodes. Adv. Funct. Mater. 30, 2001692 (2020).

    Article  CAS  Google Scholar 

  36. Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87–91 (2017).

    Article  CAS  Google Scholar 

  37. Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020).

    Article  CAS  Google Scholar 

  38. Yang, X. et al. Superior carrier lifetimes exceeding 6 μs in polycrystalline halide perovskites. Adv. Mater. 32, 2002585 (2020).

    Article  CAS  Google Scholar 

  39. Zou, W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018).

    Article  Google Scholar 

  40. Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article  CAS  Google Scholar 

  41. Cui, J. et al. Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Sci. Adv. 7, eabg8458 (2021).

    Article  CAS  Google Scholar 

  42. Meredith, P. & Armin, A. LED technology breaks performance barrier. Nature 562, 197–198 (2018).

    Article  CAS  Google Scholar 

  43. Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photon. 13, 760–764 (2019).

    Article  CAS  Google Scholar 

  44. Singh, M., Haverinen, H. M., Dhagat, P. & Jabbour, G. E. Inkjet printing — process and its applications. Adv. Mater. 22, 673 (2010).

    Article  CAS  Google Scholar 

  45. Zheng, H. et al. All-solution processed polymer light-emitting diode displays. Nat. Commun. 4, 1971 (2013).

    Article  Google Scholar 

  46. Dai, X., Deng, Y., Peng, X. & Jin, Y. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv. Mater. 29, 1607022 (2017).

    Article  Google Scholar 

  47. Yunker, P. J., Still, T., Lohr, M. A. & Yodh, A. G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476, 308 (2011).

    Article  CAS  Google Scholar 

  48. Mampallil, D. & Eral, H. B. A review on suppression and utilization of the coffee-ring effect. Adv. Colloid Interface Sci. 252, 38 (2018).

    Article  CAS  Google Scholar 

  49. Liu, Y. et al. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing. ACS Nano 13, 2042 (2019).

    CAS  Google Scholar 

  50. Zhu, M. et al. Electrohydrodynamically printed high-resolution full-color hybrid perovskites. Adv. Funct. Mater. 29, 1903294 (2019).

    Article  Google Scholar 

  51. Chen, M., Xu, Z., Kim, J. H., Seol, S. K. & Kim, J. T. Meniscus-on-demand parallel 3D nanoprinting. ACS Nano 12, 4172 (2018).

    Article  CAS  Google Scholar 

  52. Zhu, M. et al. Electrohydrodynamically printed high-resolution full-color hybrid perovskites. Adv. Funct. Mater. 29, 1903294 (2019).

    Article  Google Scholar 

  53. Zhan, W. et al. In situ patterning perovskite quantum qots by direct laser writing fabrication. ACS Photon. 8, 765–770 (2021).

    Article  CAS  Google Scholar 

  54. Steele, J. A. et al. Direct laser writing of δ-to a-phase transformation in formamidinium lead iodide. ACS Nano 11, 8072–8083 (2017).

    Article  CAS  Google Scholar 

  55. Chou, S. S. et al. Laser direct write synthesis of lead halide perovskites. J. Phys. Chem. Lett. 7, 3736 (2016).

    Article  CAS  Google Scholar 

  56. Huang, X. et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photon. 14, 82–88 (2020).

    Article  CAS  Google Scholar 

  57. Liu, D. et al. Direct optical patterning of perovskite nanocrystals with ligand cross-linkers. Sci. Adv. 8, eabm8433 (2022). This study reports a universal method for the photolithographic patterning of perovskite nanocrystals based on ultraviolet light, resulting in PeLEDs with a record efficiency.

    Article  CAS  Google Scholar 

  58. Liu, S.-F. et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science 377, 1112–1116 (2022).

    Article  CAS  Google Scholar 

  59. Lu, S. et al. Beyond a linker: the role of photochemistry of crosslinkers in the direct optical patterning of colloidal nanocrystals. Angew. Chem. Int. Ed. 61, e202202633 (2022).

    Article  CAS  Google Scholar 

  60. Brittman, S. et al. Controlling crystallization to imprint nanophotonic structures into halide perovskites using soft lithography. J. Mater. Chem. C. 5, 8301 (2017).

    Article  CAS  Google Scholar 

  61. Mao, J. et al. Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Adv. Funct. Mater. 27, 1606525 (2017).

    Article  Google Scholar 

  62. Kim, W. et al. Oriented grains with preferred low-angle grain boundaries in halide perovskite films by pressure-induced crystallization. Adv. Energy Mater. 8, 1702369 (2017).

    Article  Google Scholar 

  63. Pourdavoud, N. et al. Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Adv. Mater. 29, 1605003 (2017).

    Article  Google Scholar 

  64. Jeong, B. et al. Polymer-assisted nanoimprinting for environment-and phase-stable perovskite nanopatterns. ACS Nano 14, 1645 (2020).

    Article  CAS  Google Scholar 

  65. Feng, J. et al. “Liquid knife” to fabricate patterning single-crystalline perovskite microplates toward high-performance laser arrays. Adv. Mater. 28, 3732 (2016).

    Article  CAS  Google Scholar 

  66. Fan, X. et al. Hierarchical confined assembly of bilayer heterostructures with programmable patterns. ACS Mater. Lett. 4, 770–778 (2022).

    Article  CAS  Google Scholar 

  67. Wang, K. et al. Geometry-programmable perovskite microlaser patterns for two-dimensional optical encryption. Nano Lett. 21, 6792–6799 (2021).

    Article  CAS  Google Scholar 

  68. Wu, J. et al. Pinhole-free hybrid perovskite film with arbitrarily-shaped micro-patterns for functional optoelectronic devices. Nano Lett. 17, 3563–3569 (2017).

    Article  CAS  Google Scholar 

  69. Wu, J. et al. Perovskite single-crystal microarrays for efficient photovoltaic devices. Chem. Mater. 30, 4590–4596 (2018).

    Article  CAS  Google Scholar 

  70. Sun, Y. et al. A three-dimensional confined crystallization strategy toward controllable growth of high-quality and large-area perovskite single crystals. Adv. Funct. Mater. 32, 2112758 (2022).

    Article  CAS  Google Scholar 

  71. Zhang, D. et al. Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires. Nat. Photon. 16, 284–290 (2022). This study reports quantum-scale perovskite wire arrays with superior radiative efficiencies and stabilities, obtained using a porous alumina membrane.

    Article  CAS  Google Scholar 

  72. Gu, L. et al. 3D Arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 28, 9713 (2016).

    Article  CAS  Google Scholar 

  73. Chiang, Y.-H., Anaya, M. & Stranks, S. D. Multisource vacuum deposition of methylammonium-free perovskite solar cells. ACS Energy Lett. 5, 2498–2504 (2020).

    Article  CAS  Google Scholar 

  74. Li, H. et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 8, eabo7422 (2022).

    Article  Google Scholar 

  75. Wang, S. et al. Over 24% efficient MA-free CsxFA1-xPbX3 perovskite solar cells. Joule 6, 1344–1356 (2022).

    Article  CAS  Google Scholar 

  76. Wei, H. et al. Flash-evaporation printing methodology for perovskite thin films. NPG Asia Mater. 9, e395 (2017).

    Article  CAS  Google Scholar 

  77. Alias, M. S. et al. Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications. J. Vac. Sci. Technol. B 33, 051207 (2015).

    Article  Google Scholar 

  78. Alias, M. S. et al. Enhanced etching, surface damage recovery, and submicron patterning of hybrid perovskites using a chemically gas-assisted focused-ion beam for subwavelength grating photonic applications. J. Phys. Chem. Lett. 7, 137 (2016).

    Article  CAS  Google Scholar 

  79. Hou, S. et al. Concurrent inhibition and redistribution of spontaneous emission from all inorganic perovskite photonic crystals. ACS Photon. 6, 1331–1337 (2019).

    Article  CAS  Google Scholar 

  80. Gao, Y. et al. Lead halide perovskite nanostructures for dynamic color display. ACS Nano 12, 8847–8854 (2018).

    Article  CAS  Google Scholar 

  81. Hsu, C. et al. Efficient mini/micro-perovskite light-emitting diodes. Cell Rep. Phys. Sci. 2, 100582 (2021).

    Article  CAS  Google Scholar 

  82. Li, Y. et al. Coffee-stain-free perovskite film for efficient printed light-emitting diode. Adv. Opt. Mater. 9, 2100553 (2021).

    Article  CAS  Google Scholar 

  83. Wang, J. et al. Inkjet-printed full-color matrix quasi-two-dimensional perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 13, 41773–41781 (2021).

    Article  CAS  Google Scholar 

  84. Zou, C., Chang, C., Sun, D., Bohringer, K. F. & Lin, L. Y. Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20, 3710–3717 (2020).

    Article  CAS  Google Scholar 

  85. Zhou, Y., Poli, I., Meggiolaro, D., Angelis, F. D. & Petrozza, A. Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6, 986–1002 (2021).

    Article  Google Scholar 

  86. Yin, Y. et al. Full-color micro-LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers. Adv. Mater. Tech. 5, 2000251 (2020).

    Article  CAS  Google Scholar 

  87. Mei, S. et al. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS Appl. Mater. Interfaces 10, 5641–5648 (2018).

    Article  CAS  Google Scholar 

  88. Wang, K. et al. Wettability-guided screen printing of perovskite microlaser arrays for current-driven displays. Adv. Mater. 32, 2001999 (2020).

    Article  CAS  Google Scholar 

  89. Liang, J. et al. Screen-overprinted perovskite RGB microdisk arrays based on wet solute-chemical dynamics for full-color laser displays. ACS Appl. Mater. Interfaces 14, 1774–1782 (2022).

    Article  CAS  Google Scholar 

  90. Liang, J. et al. Ultrahigh color rendering in RGB perovskite micro-light emitting diode arrays with resonance-enhanced photon recycling for next generation displays. Adv. Opt. Mater. 10, 2101642 (2022). This study presents a self-emissive RGB micro-PeLED array driven by microelectrodes that can dynamically show colourful Arabic numbers.

    Article  CAS  Google Scholar 

  91. Zou, C., Liu, Y., Ginger, D. S. & Lin, L. Y. Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano 14, 6076–6086 (2020).

    Article  CAS  Google Scholar 

  92. Kim, H. et al. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun. 9, 4893 (2018).

    Article  Google Scholar 

  93. Peng, B. et al. Pattern-selective molecular epitaxial growth of single-crystalline perovskite arrays toward ultrasensitive and ultrafast photodetector. Nano Lett. 22, 2948–2955 (2022).

    Article  CAS  Google Scholar 

  94. Wang, K. et al. Alternating current electroluminescence from GaN-based nanorod light-emitting diodes. Opt. Laser Tech. 140, 107044 (2021).

    Article  CAS  Google Scholar 

  95. Waag, A. et al. The nanorod approach: GaN NanoLEDs for solid state lighting. Phys. Status Sol. C 8, 2296–2301 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors disclose support for the research of this work from Beijing Natural Science Foundation (JQ21005), the National Key R&D Program of China (2021YFB3800100, 2021YFB3800101), the open research fund of Songshan Lake Materials Laboratory (2022SLABFK07), National Natural Science Foundation of China (91733301), the R&D Fruit Fund (20210001) and the Central Guidance on Local Science and Technology Development Fund of Beijing Province (Z201100004320007). The authors also thank X. Wang from School of Physics at Peking University for his professional and helpful discussion on micro-LEDs.

Author information

Authors and Affiliations

Authors

Contributions

X.Y. contributed to writing, supervising, reviewing and editing the manuscript and prepared the figures. C.L. and R.Z. contributed to reviewing and editing the manuscript and supervised the writing. All other authors contributed to reviewing and editing the manuscript.

Corresponding authors

Correspondence to Changjun Lu or Rui Zhu.

Ethics declarations

Competing Interests

X.Y., L.M., M.L., X.W. and C.L. work in Leyard Optoelectronic, a company commercializing micro-LED displays. L.L., Q.G. and R.Z. declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Myoung Hoon Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Ma, L., Li, L. et al. Towards micro-PeLED displays. Nat Rev Mater 8, 341–353 (2023). https://doi.org/10.1038/s41578-022-00522-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00522-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing