Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stability challenges for the commercialization of perovskite–silicon tandem solar cells

Subjects

Abstract

Driven by the growing dominance of balance of system costs in photovoltaic installations, next-generation solar cell technologies must deliver significant increases in power conversion efficiency. Presently, the most promising combination of facile fabrication and power conversion efficiency potential is found in tandem solar cells (TSCs) comprising silicon (Si) bottom cells with wide-bandgap perovskite top cells. However, unsolved issues in perovskite stability have important implications for real-world energy yields, challenging the prospect of widespread commercialization. Here, we present an overview of the current state of the art in stability of perovskite–Si TSCs and elucidate key tandem-specific degradation mechanisms at the cell and module levels. From this perspective, we consider the impact of perovskite phase segregation and strain, the novel challenges faced by perovskite films on textured surfaces and when using TSC-specific electrode designs as well as the exacerbating effects of current matching constraints. We also consider economic factors and determine the lifetime energy yield necessary for perovskite–Si TSCs to compete with single-junction Si solar cells. To conclude, we outline key future research directions to achieve the long-term stability necessary for the successful commercialization of this promising TSC technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Perovskite–Si TSCs architectures and progression of notable perovskite–Si TSC efficiency and stability.
Fig. 2: Progression of notable perovskite–Si TSCs stability depending on the test conditions.
Fig. 3: Instabilities induced by phase segregation.
Fig. 4: Instabilities induced by strain, current mismatch and electrode design in perovskite–Si TSCs.
Fig. 5: Effect of the textured Si surface on perovskite film quality for two-terminal perovskite–Si tandem solar cell devices.
Fig. 6: Failure modes for perovskite–Si tandem modules.

Similar content being viewed by others

References

  1. Enkhardt, S. BloombergNEF says global solar will cross 200 GW mark for first time this year, expects lower panel prices. pv magazine https://www.pv-magazine.com/2022/02/01/bloombergnef-says-global-solar-will-cross-200-gw-mark-for-first-time-this-year-expects-lower-panel-prices/ (2022).

  2. Gupta, U. Solar module price increases to affect returns on 4.4 GW of Indian solar. pv magazine https://www.pv-magazine.com/2022/07/01/solar-module-price-increases-to-affect-returns-on-4-4-gw-of-indian-solar/ (2022).

  3. Bellini, E. Global cumulative PV capacity may reach 1.3 TW in 2023, SolarPower Europe says. pv magazine https://www.pv-magazine.com/2019/05/14/global-cumulative-pv-capacity-may-reach-1-3-tw-in-2023-solarpower-europe-says/ (2019).

  4. Shukla, H. Solar module manufacturers in Asia account of 92% of the global production: report. Mercom https://mercomindia.com/solar-module-manufacturers-global-production-report/ (2021).

  5. Clover, I. SunPower claims 22.8 per cent solar module efficiency record. Renew Economy https://reneweconomy.com.au/sunpower-claims-22-8-per-cent-solar-module-efficiency-record-12523/ (2016).

  6. Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H. & Park, N.-G. High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020).

    Article  CAS  Google Scholar 

  7. Messmer, C. et al. Efficiency roadmap for evolutionary upgrades of PERC solar cells by TOPCon: impact of parasitic absorption. IEEE J. Photovolt. 10, 335–342 (2020).

    Article  Google Scholar 

  8. Battaglia, C., Cuevas, A. & De Wolf, S. High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ. Sci. 9, 1552–1576 (2016).

    Article  CAS  Google Scholar 

  9. Li, J., Alvianto, E. & Hou, Y. Developing the next-generation perovskite/Si tandems: toward efficient, stable, and commercially viable photovoltaics. ACS Appl. Mater. Interfaces 14, 34262–34268 (2022).

    Article  CAS  Google Scholar 

  10. Smith, D. D. et al. in 2016 IEEE 43rd Photovoltaic Specialists Conf. 3351–3355 (IEEE, 2016).

  11. Bellini, E. CSEM, EPFL achieve 31.25% efficiency for tandem perovskite–silicon solar cell. pv magazine https://www.pv-magazine.com/2022/07/07/csem-epfl-achieve-31-25-efficiency-for-tandem-perovskite-silicon-solar-cell/ (2022). This work reports the current record PCE of 31.3% for 2-T perovskiteSi TSCs.

  12. Jean, J., Woodhouse, M. & Bulović, V. Accelerating photovoltaic market entry with module replacement. Joule 3, 2824–2841 (2019).

    Article  Google Scholar 

  13. Papapetrou, M. & Kosmadakis, G. in Salinity Gradient Heat Engines (eds Tamburini, A., Cipollina, A. & Micale, G.) 319–353 (Woodhead, 2022).

  14. Yu, Z. J., Carpenter, J. V. & Holman, Z. C. Techno-economic viability of silicon-based tandem photovoltaic modules in the United States. Nat. Energy 3, 747–753 (2018).

    Article  CAS  Google Scholar 

  15. Richter, A., Hermle, M. & Glunz, S. W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013).

    Article  Google Scholar 

  16. Yu, Z., Leilaeioun, M. & Holman, Z. Selecting tandem partners for silicon solar cells. Nat. Energy 1, 16137 (2016).

    Article  Google Scholar 

  17. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

    Article  CAS  Google Scholar 

  18. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  CAS  Google Scholar 

  19. Kim, M. et al. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022).

    Article  CAS  Google Scholar 

  20. nrel.gov. Best research-cell efficiency chart. NREL https://www.nrel.gov/pv/cell-efficiency.html (2022).

  21. Wang, R. et al. Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 15, 411–425 (2021).

    Article  CAS  Google Scholar 

  22. Shen, H. et al. Monolithic perovskite/Si tandem solar cells: pathways to over 30% efficiency. Adv. Energy Mater. 10, 1902840 (2020).

    Article  CAS  Google Scholar 

  23. Chen, B. et al. Insights into the development of monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 12, 2003628 (2022).

    Article  CAS  Google Scholar 

  24. Abbasiyan, A., Noori, M. & Baghban, H. A highly efficient 4-terminal perovskite/silicon tandem solar cells using QIBC and IBC configurations in the top and bottom cells, respectively. Mater. Today Energy 28, 101055 (2022).

    Article  CAS  Google Scholar 

  25. Green, M. A. et al. Solar cell efficiency tables (version 60). Prog. Photovolt. 30, 687–701 (2022). This work comprehensively summarizes the recent progress in solar cell efficiency.

    Article  Google Scholar 

  26. Kirk, D. Production of 2T pero/Si tandem modules Tandem PV (Tandem PV, 2022).

  27. Shen, H. et al. In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells. Sci. Adv. 4, eaau9711 (2018).

    Article  CAS  Google Scholar 

  28. Li, Y. et al. Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours. Adv. Energy Mater. 11, 2102046 (2021).

    Article  CAS  Google Scholar 

  29. Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022). This work demonstrates the state-of-the-art damp-heat stability for PSCs.

    Article  CAS  Google Scholar 

  30. Choi, H. et al. A review on reducing grain boundaries and morphological improvement of perovskite solar cells from methodology and material-based perspectives. Small Methods 4, 1900569 (2020).

    Article  CAS  Google Scholar 

  31. Fan, Y., Meng, H., Wang, L. & Pang, S. Review of stability enhancement for formamidinium-based perovskites. Sol. RRL 3, 1900215 (2019).

    Article  Google Scholar 

  32. Fu, R. et al. Stability challenges for perovskite solar cells. ChemNanoMat 5, 253–265 (2019).

    Article  CAS  Google Scholar 

  33. Niu, G., Guo, X. & Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015).

    Article  CAS  Google Scholar 

  34. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020). This work summarizes stability test protocols for perovskite-based solar cells.

    Article  Google Scholar 

  35. Rao, M. K., Sangeetha, D. N., Selvakumar, M., Sudhakar, Y. N. & Mahesha, M. G. Review on persistent challenges of perovskite solar cells’ stability. Sol. Energy 218, 469–491 (2021).

    Article  Google Scholar 

  36. Li, N., Niu, X., Chen, Q. & Zhou, H. Towards commercialization: the operational stability of perovskite solar cells. Chem. Soc. Rev. 49, 8235–8286 (2020).

    Article  CAS  Google Scholar 

  37. Tao, L. et al. Stability of mixed-halide wide bandgap perovskite solar cells: strategies and progress. J. Energy Chem. 61, 395–415 (2021).

    Article  CAS  Google Scholar 

  38. Wang, D., Wright, M., Elumalai, N. K. & Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cell 147, 255–275 (2016).

    Article  CAS  Google Scholar 

  39. Wang, R. et al. A review of perovskites solar cell stability. Adv. Funct. Mater. 29, 1808843 (2019).

    Article  CAS  Google Scholar 

  40. Wohlgemuth, J. IEC 61215: what it is and isn’t (presentation) (NREL, 2012).

  41. Holzhey, P. & Saliba, M. A full overview of international standards assessing the long-term stability of perovskite solar cells. J. Mater. Chem. A 6, 21794–21808 (2018).

    Article  CAS  Google Scholar 

  42. SunPower. SunPower Maxeon solar panels. SunPower https://sunpower.maxeon.com/au/solar-panel-products/maxeon-solar-panels (2019).

  43. Reese, M. O. et al. Consensus stability testing protocols for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cell 95, 1253–1267 (2011).

    Article  CAS  Google Scholar 

  44. International Electrotechnical Commission. IEC 61215-1-3:2021/AMD1:2022. IEC https://webstore.iec.ch/publication/68747 (2022).

  45. The Perovskite database. the Perovskite database project. Perovskitedatabase https://www.perovskitedatabase.com/ (2022).

  46. Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).

    Article  CAS  Google Scholar 

  47. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020). This work reports a state-of-the-art 2-T perovskite/Si TSC with a PCE of 29.2%.

    Article  CAS  Google Scholar 

  48. Yan, L. L., Han, C., Shi, B., Zhao, Y. & Zhang, X. D. A review on the crystalline silicon bottom cell for monolithic perovskite/silicon tandem solar cells. Mater. Today Nano 7, 100045 (2019).

    Article  Google Scholar 

  49. Street, R. A. Hydrogenated Amorphous Silicon (Cambridge Univ. Press, 1991).

  50. Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020).

    Article  CAS  Google Scholar 

  51. Zhumagali, S. et al. Linked nickel oxide/perovskite interface passivation for high-performance textured monolithic tandem solar cells. Adv. Energy Mater. 11, 2101662 (2021).

    Article  CAS  Google Scholar 

  52. Mohammadi, M. et al. Encapsulation strategies for highly stable perovskite solar cells under severe stress testing: damp heat, freezing, and outdoor illumination conditions. ACS Appl. Mater. Interfaces 13, 45455–45464 (2021).

    Article  CAS  Google Scholar 

  53. Liu, J. et al. 28.2%-Efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5, 3169–3186 (2021). This work demonstrates the state-of-the-art outdoor stability for 2-T perovskite/Si TSCs.

    Article  CAS  Google Scholar 

  54. Liu, J. et al. Efficient and stable perovskite–silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022).

    Article  CAS  Google Scholar 

  55. Cheacharoen, R. et al. Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustain. Energy Fuels 2, 2398–2406 (2018).

    Article  CAS  Google Scholar 

  56. Faine, P., Kurtz, S. R., Riordan, C. & Olson, J. M. The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells. Sol. Cell 31, 259–278 (1991).

    Article  CAS  Google Scholar 

  57. Aydin, E. et al. Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells. Nat. Energy 5, 851–859 (2020).

    Article  CAS  Google Scholar 

  58. De Bastiani, M. et al. Toward stable monolithic perovskite/silicon tandem photovoltaics: a six-month outdoor performance study in a hot and humid climate. ACS Energy Lett. 6, 2944–2951 (2021).

    Article  Google Scholar 

  59. Tress, W. Metal halide perovskites as mixed electronic–ionic conductors: challenges and opportunities — from hysteresis to memristivity. J. Phys. Chem. Lett. 8, 3106–3114 (2017).

    Article  CAS  Google Scholar 

  60. Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article  CAS  Google Scholar 

  61. Kim, M. et al. Halide ion migration and its role at the interfaces in perovskite solar cells. Eur. J. Inorg. Chem. 2021, 4781–4789 (2021).

    Article  CAS  Google Scholar 

  62. McGovern, L., Futscher, M. H., Muscarella, L. A. & Ehrler, B. Understanding the stability of MAPbBr3 versus MAPbI3: suppression of methylammonium migration and reduction of halide migration. J. Phys. Chem. Lett. 11, 7127–7132 (2020).

    Article  CAS  Google Scholar 

  63. Philippe, B. et al. Valence level character in a mixed perovskite material and determination of the valence band maximum from photoelectron spectroscopy: variation with photon energy. J. Phys. Chem. C. 121, 26655–26666 (2017).

    Article  CAS  Google Scholar 

  64. Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).

    Article  CAS  Google Scholar 

  65. Wang, Y. et al. Stabilizing heterostructures of soft perovskite semiconductors. Science 365, 687–691 (2019).

    Article  CAS  Google Scholar 

  66. Zhang, T., Hu, C. & Yang, S. Ion migration: a ‘double-edged sword’ for halide-perovskite-based electronic devices. Small Methods 4, 1900552 (2020). This work summarizes the effect of ion migration in PSCs comprehensively.

    Article  Google Scholar 

  67. Brennan, M. C., Draguta, S., Kamat, P. V. & Kuno, M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 3, 204–213 (2018).

    Article  CAS  Google Scholar 

  68. Tong, Y. et al. Wide-bandgap organic–inorganic lead halide perovskite solar cells. Adv. Sci. 9, 2105085 (2022).

    Article  CAS  Google Scholar 

  69. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  CAS  Google Scholar 

  70. Draguta, S. et al. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites. Nat. Commun. 8, 200 (2017).

    Article  Google Scholar 

  71. Yoon, S. J. et al. Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation. ACS Energy Lett. 1, 290–296 (2016).

    Article  CAS  Google Scholar 

  72. Kuno, M. & Brennan, M. C. What exactly causes light-induced halide segregation in mixed-halide perovskites? Matter 2, 21–23 (2020). This work analyses the phase segregation effect in the perovskite in detail.

    Article  Google Scholar 

  73. Kerner, R. A., Xu, Z., Larson, B. W. & Rand, B. P. The role of halide oxidation in perovskite halide phase separation. Joule 5, 2273–2295 (2021).

    Article  CAS  Google Scholar 

  74. Beal, R. E. et al. Structural origins of light-induced phase segregation in organic–inorganic halide perovskite photovoltaic materials. Matter 2, 207–219 (2020).

    Article  Google Scholar 

  75. Marshall, A. D. et al. Probing the origin of light-enhanced ion diffusion in halide perovskites. ACS Appl. Mater. Interfaces 13, 33609–33617 (2021).

    Article  CAS  Google Scholar 

  76. Knight, A. J., Patel, J. B., Snaith, H. J., Johnston, M. B. & Herz, L. M. Trap states, electric fields, and phase segregation in mixed-halide perovskite photovoltaic devices. Adv. Energy Mater. 10, 1903488 (2020).

    Article  CAS  Google Scholar 

  77. Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424 (2017).

    Article  CAS  Google Scholar 

  78. Rehman, W. et al. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv. Mater. 27, 7938–7944 (2015).

    Article  CAS  Google Scholar 

  79. Beal, R. E. et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746–751 (2016).

    Article  CAS  Google Scholar 

  80. Knight, A. J. & Herz, L. M. Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13, 2024–2046 (2020). This work summarizes the recent progress in preventing phase segregation.

    Article  CAS  Google Scholar 

  81. Caprioglio, P. et al. Nano-emitting heterostructures violate optical reciprocity and enable efficient photoluminescence in halide-segregated methylammonium-free wide bandgap perovskites. ACS Energy Lett. 6, 419–428 (2021).

    Article  CAS  Google Scholar 

  82. Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016).

    Article  CAS  Google Scholar 

  83. Duong, T. et al. Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7, 1700228 (2017).

    Article  Google Scholar 

  84. Ji, S. G. et al. Stable pure-iodide wide-band-gap perovskites for efficient Si tandem cells via kinetically controlled phase evolution. Joule 6, 2390–2405 (2022).

    Article  CAS  Google Scholar 

  85. Zhou, Y., Poli, I., Meggiolaro, D., De Angelis, F. & Petrozza, A. Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6, 986–1002 (2021).

    Article  Google Scholar 

  86. Mao, W. et al. Light-induced reversal of ion segregation in mixed-halide perovskites. Nat. Mater. 20, 55–61 (2021). This work demonstrates that photoinduced phase segregation can be reversed at sufficiently high illumination intensities.

    Article  CAS  Google Scholar 

  87. Braly, I. L. et al. Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design. ACS Energy Lett. 2, 1841–1847 (2017).

    Article  CAS  Google Scholar 

  88. Hu, M., Bi, C., Yuan, Y., Bai, Y. & Huang, J. Stabilized wide bandgap MAPbBrxI3–x perovskite by enhanced grain size and improved crystallinity. Adv. Sci. 3, 1500301 (2016).

    Article  Google Scholar 

  89. Zhou, Y. et al. Composition-tuned wide bandgap perovskites: from grain engineering to stability and performance improvement. Adv. Funct. Mater. 28, 1803130 (2018).

    Article  Google Scholar 

  90. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    Article  CAS  Google Scholar 

  91. Li, W. et al. Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells. Adv. Energy Mater. 7, 1700946 (2017).

    Article  Google Scholar 

  92. Gao, F., Zhao, Y., Zhang, X. & You, J. Recent progresses on defect passivation toward efficient perovskite solar cells. Adv. Energy Mater. 10, 1902650 (2020).

    Article  CAS  Google Scholar 

  93. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).

    Article  CAS  Google Scholar 

  94. Zhang, H., Nazeeruddin, M. K. & Choy, W. C. H. Perovskite photovoltaics: the significant role of ligands in film formation, passivation, and stability. Adv. Mater. 31, 1805702 (2019).

    Article  Google Scholar 

  95. Xu, J. et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    Article  CAS  Google Scholar 

  96. Isikgor, F. H. et al. Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule 5, 1566–1586 (2021).

    Article  CAS  Google Scholar 

  97. Rehman, W. et al. Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 10, 361–369 (2017).

    Article  CAS  Google Scholar 

  98. Xie, Y.-M. et al. FA-assistant iodide coordination in organic–inorganic wide-bandgap perovskite with mixed halides. Small 16, 1907226 (2020).

    Article  CAS  Google Scholar 

  99. Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019).

    Article  CAS  Google Scholar 

  100. Rolston, N. et al. Mechanical integrity of solution-processed perovskite solar cells. Extrem. Mech. Lett. 9, 353–358 (2016).

    Article  Google Scholar 

  101. Zhao, Y.-C. et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light. Sci. Appl. 6, e16243 (2017).

    Article  CAS  Google Scholar 

  102. Okada, Y. & Tokumaru, Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. Appl. Phys. Lett. 56, 314–320 (1984).

    CAS  Google Scholar 

  103. Pisoni, A. et al. Ultra-low thermal conductivity in organic–inorganic hybrid perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 5, 2488–2492 (2014).

    Article  CAS  Google Scholar 

  104. Li, B. et al. Polar rotor scattering as atomic-level origin of low mobility and thermal conductivity of perovskite CH3NH3PbI3. Nat. Commun. 8, 16086 (2017).

    Article  CAS  Google Scholar 

  105. Heiderhoff, R. et al. Thermal conductivity of methylammonium lead halide perovskite single crystals and thin films: a comparative study. J. Phys. Chem. C. 121, 28306–28311 (2017).

    Article  CAS  Google Scholar 

  106. Kawano, S., Tadano, T. & Iikubo, S. Effect of halogen ions on the low thermal conductivity of cesium halide perovskite. J. Phys. Chem. C. 125, 91–97 (2021).

    Article  CAS  Google Scholar 

  107. Rolston, N. et al. Engineering stress in perovskite solar cells to improve stability. Adv. Energy Mater. 8, 1802139 (2018).

    Article  Google Scholar 

  108. Meng, W. et al. Revealing the strain-associated physical mechanisms impacting the performance and stability of perovskite solar cells. Joule 6, 458–475 (2022).

    Article  CAS  Google Scholar 

  109. Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Sci. Adv. 370, 108–112 (2020).

    CAS  Google Scholar 

  110. Kapil, G. et al. Strain relaxation and light management in tin–lead perovskite solar cells to achieve high efficiencies. ACS Energy Lett. 4, 1991–1998 (2019).

    Article  CAS  Google Scholar 

  111. Jones, T. W. et al. Lattice strain causes non-radiative losses in halide perovskites. Energy Environ. Sci. 12, 596–606 (2019).

    Article  CAS  Google Scholar 

  112. Liu, D. et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021). This work summarizes the effect of the strains in PSCs comprehensively.

    Article  CAS  Google Scholar 

  113. Dewi, H. A. et al. Excellent intrinsic long-term thermal stability of co-evaporated MAPbI3 solar cells at 85 °C. Adv. Funct. Mater. 31, 2100557 (2021).

    Article  CAS  Google Scholar 

  114. Lee, S.-W. et al. Perovskites fabricated on textured silicon surfaces for tandem solar cells. Commun. Chem. 3, 37 (2020).

    Article  CAS  Google Scholar 

  115. Yang, N. et al. Improving heat transfer enables durable perovskite solar cells. Adv. Energy Mater. 12, 2200869 (2022).

    Article  CAS  Google Scholar 

  116. Xue, D.-J. et al. Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020).

    Article  CAS  Google Scholar 

  117. Wang, L. et al. Strain modulation for light-stable n–i–p perovskite/silicon tandem solar cells. Adv. Mater. 34, 2201315 (2022). This work demonstrates a strain modulation strategy to fabricate light-stable perovskite/Si TSCs.

    Article  CAS  Google Scholar 

  118. Jošt, M. et al. Subcell operation and long-term stability analysis of perovskite-based tandem solar cells using a bichromatic light emitting diode light source. Sol. RRL 5, 2100311 (2021).

    Article  Google Scholar 

  119. Duong, T. et al. Light and electrically induced phase segregation and its impact on the stability of quadruple cation high bandgap perovskite solar cells. ACS Appl. Mater. Interfaces 9, 26859–26866 (2017).

    Article  CAS  Google Scholar 

  120. De Bastiani, M. et al. Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nat. Energy 6, 167–175 (2021). This work reports the state-of-the-art bifacial perovskite/Si tandems with outdoor stability tests.

    Article  Google Scholar 

  121. Tress, W. et al. Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat. Energy 4, 568–574 (2019).

    Article  CAS  Google Scholar 

  122. Kato, Y. et al. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 1500195 (2015).

    Article  Google Scholar 

  123. Rehman, A. U. et al. Electrode metallization for scaled perovskite/silicon tandem solar cells: challenges and opportunities. Prog. Photovolt. https://doi.org/10.1002/pip.3499 (2021).

    Article  Google Scholar 

  124. Boyd, C. C. et al. Barrier design to prevent metal-induced degradation and improve thermal stability in perovskite solar cells. ACS Energy Lett. 3, 1772–1778 (2018).

    Article  CAS  Google Scholar 

  125. Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).

    Article  CAS  Google Scholar 

  126. Cheng, Y. & Ding, L. Perovskite/Si tandem solar cells: fundamentals, advances, challenges, and novel applications. SusMat 1, 324–344 (2021).

    Article  CAS  Google Scholar 

  127. Svanström, S. et al. Degradation mechanism of silver metal deposited on lead halide perovskites. ACS Appl. Mater. Interfaces 12, 7212–7221 (2020).

    Article  Google Scholar 

  128. Lee, H. & Lee, C. Analysis of ion-diffusion-induced interface degradation in inverted perovskite solar cells via restoration of the Ag electrode. Adv. Energy Mater. 8, 1702197 (2018).

    Article  Google Scholar 

  129. Bush, K. A. et al. 23.6%-Efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article  CAS  Google Scholar 

  130. Schloemer, T. H. et al. The molybdenum oxide interface limits the high-temperature operational stability of unencapsulated perovskite solar cells. ACS Energy Lett. 5, 2349–2360 (2020).

    Article  CAS  Google Scholar 

  131. Ji, S. Combined MoOx Buffer Layer with Metal Oxide Nanoparticle for Improved Stability and Performance of Semi-transparent Perovskite Solar Cell. Thesis, Graduate School of UNIST (2019).

  132. Das, C. et al. Atomic layer-deposited aluminum oxide hinders iodide migration and stabilizes perovskite solar cells. Cell Rep. Phys. Sci. 1, 100112 (2020).

    Article  Google Scholar 

  133. Ramos, F. J. et al. Versatile perovskite solar cell encapsulation by low-temperature ALD-Al2O3 with long-term stability improvement. Sustain. Energy Fuels 2, 2468–2479 (2018).

    Article  CAS  Google Scholar 

  134. Subhan, F. E. et al. Optical optimization of double-side-textured monolithic perovskite–silicon tandem solar cells for improved light management. RSC Adv. 10, 26631–26638 (2020).

    Article  CAS  Google Scholar 

  135. School of Engineering. New world records: perovskite-on-silicon-tandem solar cells. EPFL https://actu.epfl.ch/news/new-world-records-perovskite-on-silicon-tandem-sol/ (2022).

  136. Roß, M. et al. Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 11, 2101460 (2021).

    Article  Google Scholar 

  137. Chen, B. et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4, 850–864 (2020).

    Article  CAS  Google Scholar 

  138. Tennyson, E. M. et al. Multimodal microscale imaging of textured perovskite–silicon tandem solar cells. ACS Energy Lett. 6, 2293–2304 (2021).

    Article  CAS  Google Scholar 

  139. Jordan, D. C., Silverman, T. J., Wohlgemuth, J. H., Kurtz, S. R. & VanSant, K. T. Photovoltaic failure and degradation modes. Prog. Photovolt. Res. Appl. 25, 318–326 (2017).

    Article  CAS  Google Scholar 

  140. Razera, R. A. Z. et al. Instability of p–i–n perovskite solar cells under reverse bias. J. Mater. Chem. A 8, 242–250 (2020).

    Article  CAS  Google Scholar 

  141. Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019).

    Article  Google Scholar 

  142. Qian, J., Thomson, A. F., Wu, Y., Weber, K. J. & Blakers, A. W. Impact of perovskite/silicon tandem module design on hot-spot temperature. ACS Appl. Energy Mater. 1, 3025–3029 (2018).

    Article  CAS  Google Scholar 

  143. Bogachuk, D. et al. Perovskite photovoltaic devices with carbon-based electrodes withstanding reverse-bias voltages up to –9 V and surpassing IEC 61215:2016 international standard. Sol. RRL 6, 2100527 (2022).

    Article  CAS  Google Scholar 

  144. Bowring, A. R., Bertoluzzi, L., O’Regan, B. C. & McGehee, M. D. Reverse bias behavior of halide perovskite solar cells. Adv. Energy Mater. 8, 1702365 (2018).

    Article  Google Scholar 

  145. Qian, J. et al. Destructive reverse bias pinning in perovskite/silicon tandem solar modules caused by perovskite hysteresis under dynamic shading. Sustain. Energy Fuels 4, 4067–4075 (2020).

    Article  CAS  Google Scholar 

  146. Wolf, E. J., Gould, I. E., Bliss, L. B., Berry, J. J. & McGehee, M. D. Designing modules to prevent reverse bias degradation in perovskite solar cells when partial shading occurs. Sol. RRL 6, 2100239 (2022).

    Article  CAS  Google Scholar 

  147. Koch, S., Berghold, J., Okoroafor, O., Krauter, S. & Grunow, P. in Proc. 27th Eur. Photovoltaic Solar Energy Conf. 1991–1995 (EUREC, 2012).

  148. Pingel, S. et al. in 2010 35th IEEE Photovoltaic Specialists Conf. 002817–002822 (IEEE, 2010).

  149. Schütze, M. et al. in 2011 37th IEEE Photovoltaic Specialists Conf. 000821–000826 (IEEE, 2011).

  150. Hacke, P. et al. Development of an IEC test for crystalline silicon modules to qualify their resistance to system voltage stress. Prog. Photovolt. Res. Appl. 22, 775–783 (2014).

    Article  Google Scholar 

  151. Xiong, Z., Walsh, T. M. & Aberle, A. G. PV module durability testing under high voltage biased damp heat conditions. Energy Procedia 8, 384–389 (2011).

    Article  CAS  Google Scholar 

  152. Kersten, F. et al. System performance loss due to LeTID. Energy Procedia 124, 540–546 (2017).

    Article  CAS  Google Scholar 

  153. Luo, W. et al. Potential-induced degradation in photovoltaic modules: a critical review. Energy Environ. Sci. 10, 43–68 (2017). This work summarizes the PID in solar cells comprehensively.

    Article  CAS  Google Scholar 

  154. Yamaguchi, S., Van Aken, B. B., Masuda, A. & Ohdaira, K. Potential-induced degradation in high-efficiency n-type crystalline-silicon photovoltaic modules: a literature review. Sol. RRL 5, 2100708 (2021).

    Article  CAS  Google Scholar 

  155. Dhimish, M. & Tyrrell, A. M. Power loss and hotspot analysis for photovoltaic modules affected by potential induced degradation. npj Mater. Degrad. 6, 11 (2022).

    Article  CAS  Google Scholar 

  156. Carolus, J. et al. Potential-induced degradation and recovery of perovskite solar cells. Sol. RRL 3, 1900226 (2019).

    Article  CAS  Google Scholar 

  157. Purohit, Z. et al. Impact of potential-induced degradation on different architecture-based perovskite solar cells. Sol. RRL 5, 2100349 (2021).

    Article  CAS  Google Scholar 

  158. Brecl, K. et al. Are perovskite solar cell potential-induced degradation proof? Sol. RRL 6, 2100815 (2022).

    Article  CAS  Google Scholar 

  159. Xu, L. et al. Potential-induced degradation in perovskite/silicon tandem photovoltaic modules. Cell Rep. Phys. Sci. 3, 101026 (2022). This work is so far the only work that analysed the PID in perovskite–Si TSCs in detail.

    Article  CAS  Google Scholar 

  160. Cheacharoen, R. et al. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018).

    Article  CAS  Google Scholar 

  161. De Bastiani, M. et al. Mechanical reliability of fullerene/tin oxide interfaces in monolithic perovskite/silicon tandem cells. ACS Energy Lett. 7, 827–833 (2022).

    Article  Google Scholar 

  162. Rombach, F. M., Haque, S. A. & Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 14, 5161–5190 (2021).

    Article  CAS  Google Scholar 

  163. Lee, I., Rolston, N., Brunner, P.-L. & Dauskardt, R. H. Hole-transport layer molecular weight and doping effects on perovskite solar cell efficiency and mechanical behavior. ACS Appl. Mater. Interfaces 11, 23757–23764 (2019).

    Article  CAS  Google Scholar 

  164. Watson, B. L., Rolston, N., Bush, K. A., Taleghani, L. & Dauskardt, R. H. Synthesis and use of a hyper-connecting cross-linking agent in the hole-transporting layer of perovskite solar cells. J. Mater. Chem. A 5, 19267–19279 (2017).

    Article  CAS  Google Scholar 

  165. Peters, I. M., Rodriguez Gallegos, C. D., Sofia, S. E. & Buonassisi, T. The value of efficiency in photovoltaics. Joule 3, 2732–2747 (2019).

    Article  CAS  Google Scholar 

  166. Peters, I. M., Sofia, S., Mailoa, J. & Buonassisi, T. Techno-economic analysis of tandem photovoltaic systems. RSC Adv. 6, 66911–66923 (2016).

    Article  CAS  Google Scholar 

  167. Werner, J., Niesen, B. & Ballif, C. Perovskite/silicon tandem solar cells: marriage of convenience or true love story? — An overview. Adv. Mater. Interfaces 5, 1700731 (2018).

    Article  Google Scholar 

  168. Peters, I. M., Hauch, J., Brabec, C. & Sinha, P. The value of stability in photovoltaics. Joule 5, 3137–3153 (2021). This work performs a state-of-the-art economic analysis for PV modules.

    Article  Google Scholar 

  169. Li, Z. et al. Cost analysis of perovskite tandem photovoltaics. Joule 2, 1559–1572 (2018).

    Article  CAS  Google Scholar 

  170. Zafoschnig, L. A., Nold, S. & Goldschmidt, J. C. The race for lowest costs of electricity production: techno-economic analysis of silicon, perovskite and tandem solar cells. IEEE J. Photovolt. 10, 1632–1641 (2020).

    Article  Google Scholar 

  171. Messmer, C. et al. The race for the best silicon bottom cell: efficiency and cost evaluation of perovskite–silicon tandem solar cells. Prog. Photovolt. Res. Appl. 29, 744–759 (2021).

    Article  CAS  Google Scholar 

  172. Chang, N. L. et al. A bottom-up cost analysis of silicon–perovskite tandem photovoltaics. Prog. Photovolt. Res. Appl. 29, 401–413 (2021).

    Article  CAS  Google Scholar 

  173. Duan, L. et al. Quantum dots for photovoltaics: a tale of two materials. Adv. Energy Mater. 11, 2100354 (2021).

    Article  CAS  Google Scholar 

  174. Yoon, S. M. et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule 5, 183–196 (2021).

    Article  CAS  Google Scholar 

  175. Wu, Y. et al. 27.6% Perovskite/c-Si tandem solar cells using industrial fabricated TOPCon device. Adv. Energy Mater. 12, 2200821 (2022).

    Article  CAS  Google Scholar 

  176. Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015).

    Article  CAS  Google Scholar 

  177. Salhi, B., Wudil, Y. S., Hossain, M. K., Al-Ahmed, A. & Al-Sulaiman, F. A. Review of recent developments and persistent challenges in stability of perovskite solar cells. Renew. Sustain. Energy Rev. 90, 210–222 (2018).

    Article  CAS  Google Scholar 

  178. Lu, Q. et al. A review on encapsulation technology from organic light emitting diodes to organic and perovskite solar cells. Adv. Funct. Mater. 31, 2100151 (2021).

    Article  CAS  Google Scholar 

  179. Li, J. et al. Encapsulation of perovskite solar cells for enhanced stability: structures, materials and characterization. J. Power Sources 485, 229313 (2021).

    Article  CAS  Google Scholar 

  180. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    Article  CAS  Google Scholar 

  181. Xiao, K. et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376, 762–767 (2022).

    Article  CAS  Google Scholar 

  182. Wen, J. et al. Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv. Mater. 34, 2110356 (2022).

    Article  CAS  Google Scholar 

  183. Unger, E. L. et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A 5, 11401–11409 (2017).

    Article  CAS  Google Scholar 

  184. Leijtens, T., Prasanna, R., Gold-Parker, A., Toney, M. F. & McGehee, M. D. Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Lett. 2, 2159–2165 (2017).

    Article  CAS  Google Scholar 

  185. Bellini, E. Solliance hits 29.2% efficiency on perovskite/silicon tandem solar cell. pv magazine https://www.pv-magazine.com/2021/11/01/solliance-hits-29-2-efficiency-on-perovskite-silicon-tandem-solar-cell/ (2021).

  186. Hutchins, M. IMEC hits 27.1% on perovskite/silicon tandem cell. pv magazine https://www.pv-magazine.com/2018/07/24/imec-hits-27-1-on-perovskite-silicon-tandem-cell/ (2018).

  187. Solliance. Scaled perovskite solar modules pass three critical stability tests. Solliance https://www.solliance.eu/2020/scaled-perovskite-solar-modules-pass-three-critical-stability-tests/ (2022).

  188. Microquanta. Microquanta’s 4 T perovskite-silicon tandem module achieves a certified efficiency of 26.63%. Microquanta http://www.microquanta.com/en/newsinfo/7B9313A75307E7FA/ (2021).

  189. Microquanta. 21.4%! Microquanta sets new efficiency world record for perovskite minimodule. Microquanta http://www.microquanta.com/en/newsinfo/80D096B5B598F211/ (2021).

  190. Microquanta. Microquanta demonstrates high stability beyond IEC standards. Microquanta http://www.microquanta.com/en/newsinfo/112E5B4ABC180F9D/ (2020).

  191. Green, M. et al. Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl. 29, 3–15 (2021).

    Article  Google Scholar 

  192. Eperon, G. Opportunities and challenges for commercialization of perovskite tandem photovoltaics. Presented at Advanced PV 2030 (2022).

  193. Ling, C. The efficiency of perovskite/PERC tandem cell reaches 26.1%. 21 SPV http://www.21spv.com/news/show.php?itemid=79313 (2020).

  194. van Mierlo, F. CubicPV — Direct wafer, tandem, perovskite solar technology. YouTube https://www.youtube.com/watch?v=1pUVSr2tBZo (2021).

  195. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article  Google Scholar 

  196. Mishima, R. et al. 28.3% Efficient perovskite-silicon tandem solar cells with mixed self-assembled monolayers. Appl. Phys. Express 15, 076503 (2022).

    Article  Google Scholar 

  197. Changzhou Photovoltaic Industry Association. The target efficiency is greater than 29%! Trina Solar is researching perovskite/TOPCon tandem cells. czguangfu http://www.czguangfu.org/ChangzhouNews/6912.html (2021).

  198. Bellini, E. Trina Solar achieves 23.03% efficiency for 210 mm PERC solar module. pv magazine https://www.pv-magazine.com/2021/07/02/trina-solar-achieves-23-03-efficiency-for-210-mm-perc-solar-module/ (2021).

  199. Bellini, E. Trina Solar achieves 24.24% efficiency for 210 mm n-type TOPCon solar cell. pv magazine https://www.pv-magazine.com/2022/08/26/trina-solar-achieves-24-24-efficiency-for-210-mm-n-type-topcon-solar-cell/ (2022).

  200. Sohu. LONGi announces patents for perovskite/Si tandem solar cells! Sohu https://www.sohu.com/a/451650406_713393 (2021).

  201. Institut National de l'Energie Solaire. Tandem perovskite-silicium ENEL Green Power and CEA achieve 24.9% cell efficiency on 9 cm2. INES https://www.ines-solaire.org/en/news/enel-green-power-and-cea-achieve-24.9-efficiency-percent/ (2022).

  202. Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).

    Article  CAS  Google Scholar 

  203. Bi, D. et al. Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nat. Commun. 9, 4482 (2018).

    Article  Google Scholar 

  204. Cao, Q. et al. Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Sci. Adv. 7, eabg0633 (2021).

    Article  CAS  Google Scholar 

  205. Christians, J. A. et al. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nat. Energy 3, 68–74 (2018).

    Article  CAS  Google Scholar 

  206. Grancini, G. et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017).

    Article  CAS  Google Scholar 

  207. Hou, Y. et al. A generic interface to reduce the efficiency–stability–cost gap of perovskite solar cells. Science 358, 1192–1197 (2017).

    Article  CAS  Google Scholar 

  208. Liu, Y. et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, eaaw2543 (2019).

    Article  CAS  Google Scholar 

  209. Luo, Q. et al. All-carbon-electrode-based endurable flexible perovskite solar cells. Adv. Funct. Mater. 28, 1706777 (2018).

    Article  Google Scholar 

  210. Mei, A. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).

    Article  CAS  Google Scholar 

  211. Shang, R. et al. Disodium benzodipyrrole sulfonate as neutral hole-transporting materials for perovskite solar cells. J. Am. Chem. Soc. 140, 5018–5022 (2018).

    Article  CAS  Google Scholar 

  212. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    Article  CAS  Google Scholar 

  213. Wu, W.-Q. et al. Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells. J. Am. Chem. Soc. 142, 3989–3996 (2020).

    Article  CAS  Google Scholar 

  214. Zhang, F. et al. Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells. Energy Environ. Sci. 11, 3480–3490 (2018).

    Article  CAS  Google Scholar 

  215. Lin, X. et al. In situ growth of graphene on both sides of a Cu–Ni alloy electrode for perovskite solar cells with improved stability. Nat. Energy 7, 520–527 (2022).

    Article  CAS  Google Scholar 

  216. Lai, C. S. et al. A financial model for lithium-ion storage in a photovoltaic and biogas energy system. Appl. Energy 251, 113179 (2019).

    Article  Google Scholar 

  217. Lai, C. S. et al. Levelized cost of electricity for photovoltaic/biogas power plant hybrid system with electrical energy storage degradation costs. Energy Convers. Manag. 153, 34–47 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Australian Government through the Australian Renewable Energy Agency and the Australian Research Council. T.W. is a recipient of an Australian Research Council Australian Future Fellowship (project number FT180100302). Responsibility for the views, information or advice expressed herein is not accepted by the Australian Government.

Author information

Authors and Affiliations

Authors

Contributions

L.D. and H.S. wrote the article. L.D. researched data for the article. All authors made substantial contributions to the discussion of the content, reviewed and edited the manuscript.

Corresponding authors

Correspondence to Leiping Duan, Kylie Catchpole or Heping Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Martin Stolterfoht and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Balance of system

(BOS). All components of a photovoltaic system excluding the solar modules.

Bifacial modules

Photovoltaic module that allows the front side of the module to capture the sunlight and the back side of the module to capture the reflected light and convert them into electricity.

External quantum efficiency

(EQE). Ratio of the number of charge carriers collected and the number of photons received by a photovoltaic device.

Fill factor

The ratio of maximum power output to the product of the open-circuit voltage and short-circuit current of solar cells.

Grain boundaries

General planar defects that separate regions of different crystalline orientations within a polycrystalline material.

IEC standards

Stability test standards for photovoltaic modules developed by the International Electrotechnical Commission.

Interdigitated back contacts architectures

Si solar cells without optical shading loss from the metal electrode grid at the front obtained by placing both contacts on the rear side of the cell.

ISOS protocols

Consensus protocols developed at the International Summit on Organic PV Stability in Denmark to standardize device ageing measurements.

Levelized cost of electricity

(LCOE). The average cost of producing electricity over the lifetime of a generator using a discounted cash flow analysis, which is a valuation method that estimates the value of an investment using its expected future cash flow.

Maximum power point

(MPP). The point stands for the maximum power output on the current-to-voltage (I–V) curve of solar cells or PV modules under 1-sun illumination.

Monofacial modules

The photovoltaic module only converts sunlight from the front surface of the module into electricity.

Net present value

The difference between the revenue and the costs of a project using discount rates to reflect the time value of money including considering inflation.

Open-circuit voltage

(Voc). The maximum voltage that a photovoltaic device can produce with no external load.

Parasitic absorption loss

The optical absorption loss without generating electrons and holes in a photovoltaic device.

Passivation

Technique to reduce the recombination of generated electrons and holes and remove defects in a photovoltaic device.

Perovskites

Materials exhibiting a cubic crystal structure, which can be described by the general formula ABX3. Here, A represents monovalent cations including rubidium (Rb+), caesium (Cs+), formamidinium (FA+) and methylammonium (MA+), B is a bivalent metal cation such as lead (Pb2+) and tin (Sn2+) and X stands for halides including iodide (I), bromide (Br) and chloride (Cl).

Power conversion efficiency

(PCE). The ratio between the received optical power and the generated electrical power in a photovoltaic device.

Trap states

Energy states within the bandgap of a semiconductor that can trap generated electrons and holes until they recombine.

Tunnel-oxide-passivated contact

(TOPCon). Si solar cells with passivated contact based on an ultra-thin tunnel oxide in combination with a thin heavily doped silicon layer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Walter, D., Chang, N. et al. Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nat Rev Mater 8, 261–281 (2023). https://doi.org/10.1038/s41578-022-00521-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00521-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing