Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The fundamentals and applications of ferroelectric HfO2

A Publisher Correction to this article was published on 20 April 2022

This article has been updated

Abstract

Since the first report of ferroelectricity in a Si-doped HfO2 film in 2011, HfO2-based materials have attracted much interest from the ferroelectric materials and devices community. However, in HfO2-based bulk materials, the ferroelectric phase is not the one with the lowest free energy. It is, therefore, crucial to identify the possible thermodynamic and kinetic drivers for such an unexpected phase formation. The main difference between this type of material and conventional perovskite-based ferroelectrics is the movement of oxygen ions upon polarization switching, which complicates the structural examination of samples. Nonetheless, concerted efforts in academia and industry have substantially improved our understanding of the material properties and root causes of the unexpected formation of the ferroelectric phase. These insights help us understand how to induce the polar phase even in bulk materials. In this Review, we discuss in depth the properties and origin of ferroelectricity in HfO2-based materials, carefully evaluating numerous reports in the field, which are sometimes contradictory, and showing how thermodynamic and kinetic factors influence phase formation almost equally. We also survey possible applications and prospects for further development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase diagrams of HfO2 and ZrO2 and temperature-dependent phase transitions.
Fig. 2: Ferroelectric phase formation in HfO2 bulk samples and epitaxial thin films.
Fig. 3: Factors affecting ferroelectricity in HfO2 thin films.
Fig. 4: Domain dynamics and polarization switching kinetics.
Fig. 5: Memory devices based on ferroelectric materials.

Similar content being viewed by others

Change history

References

  1. Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475 (1921).

    Article  CAS  Google Scholar 

  2. Thurnauer, H. & Deaderick, J. (American Lava Corp.) Insulating material. US Patent No. US2429588A (1941).

  3. Shirane, G. & Takeda, A. Phase transitions in solid solutions of PbZrO3 and PbTiO3 (I) small concentrations of PbTiO3. J. Phys. Soc. Jpn 7, 5–11 (1952).

    Article  CAS  Google Scholar 

  4. Setter, N. et al. Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).

    Article  CAS  Google Scholar 

  5. Buck, D. A. Ferroelectrics for Digital Information Storage and Switching (Massachusetts Institute Of Technology, Cambridge Digital Computer Lab, 1952).

  6. Moll, J. & Tarui, Y. A new solid state memory resistor. IEEE Trans. Electron. Devices 10, 338–338 (1963).

    Article  Google Scholar 

  7. Haeni, J. et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004).

    Article  CAS  Google Scholar 

  8. Fichtner, S., Wolff, N., Lofink, F., Kienle, L. & Wagner, B. AlScN: a III–V semiconductor based ferroelectric. J. Appl. Phys. 125, 114103 (2019).

    Article  CAS  Google Scholar 

  9. Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

    Article  CAS  Google Scholar 

  10. Muller, J. et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12, 4318–4323 (2012).

    Article  CAS  Google Scholar 

  11. Min Hyuk, P. et al. Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl. Phys. Lett. 102, 242905 (2013).

    Article  CAS  Google Scholar 

  12. Starschich, S., Schenk, T., Schroeder, U. & Boettger, U. Ferroelectric and piezoelectric properties of Hf(1-x)ZrxO(2) and pure ZrO2 films. Appl. Phys. Lett. 110, 182905 (2017).

    Article  CAS  Google Scholar 

  13. Silva, J. P. B. et al. Wake-up free ferroelectric rhombohedral phase in epitaxially strained ZrO2 thin films. ACS Appl. Mater. Interf. 13, 51383–51392 (2021).

    Article  CAS  Google Scholar 

  14. Materlik, R., Künneth, C. & Kersch, A. The origin of ferroelectricity in Hf1−xZrxO2: a computational investigation and a surface energy model. J. Appl. Phys. 117, 134109 (2015).

    Article  CAS  Google Scholar 

  15. Ohtaka, O. et al. Phase relations and volume changes of hafnia under high pressure and high temperature. J. Am. Ceram. Soc. 84, 1369–1373 (2001).

    Article  CAS  Google Scholar 

  16. Ohtaka, O. et al. Phase relations and equations of state of ZrO2 under high temperature and high pressure. Phys. Rev. B 63, 174108 (2001).

    Article  CAS  Google Scholar 

  17. Lowther, J. E., Dewhurst, J. K., Leger, J. M. & Haines, J. Relative stability of ZrO2 and HfO2 structural phases. Phys. Rev. B 60, 14485–14488 (1999).

    Article  CAS  Google Scholar 

  18. Lee, H.-J. et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 369, 1343–1347 (2020).

    Article  CAS  Google Scholar 

  19. Park, M. H. et al. Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes. Appl. Phys. Lett. 102, 112914 (2013).

    Article  CAS  Google Scholar 

  20. Böscke, T., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors. in International Electron Devices Meeting 24.5.1–24.5.4 (IEEE, 2011).

  21. Dünkel, S. et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond. in International Electron Devices Meeting (IEDM) 19.7.1–19.7.4 (IEEE, 2017).

  22. Müller, J. et al. Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. in Symposium on VLSI Technology (VLSIT) 25–26 (IEEE, 2012).

  23. Müller, J. et al. Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. in IEEE International Electron Devices Meeting 10.8.1–10.8.4 (IEEE, 2013).

  24. Xu, X. et al. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y. Nat. Mater. 20, 826–832 (2021).

    Article  CAS  Google Scholar 

  25. Kersch, A. & Falkowski, M. New low-energy crystal structures in ZrO2 and HfO2. Phys. Status Solidi Rapid Res. Lett. 15, 2100074 (2021).

    Article  CAS  Google Scholar 

  26. Guan, S.-H., Zhang, X.-J. & Liu, Z.-P. Energy landscape of zirconia phase transitions. J. Am. Chem. Soc. 137, 8010–8013 (2015).

    Article  CAS  Google Scholar 

  27. Huan, T. D., Sharma, V., Rossetti, G. A. & Ramprasad, R. Pathways towards ferroelectricity in hafnia. Phys. Rev. B 90, 064111 (2014).

    Article  CAS  Google Scholar 

  28. Wei, Y. et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat. Mater. 17, 1095–1100 (2018).

    Article  CAS  Google Scholar 

  29. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 2001).

  30. Böscke, T. et al. Phase transitions in ferroelectric silicon doped hafnium oxide. Appl. Phys. Lett. 99, 112904 (2011).

    Article  CAS  Google Scholar 

  31. Shimizu, T. et al. The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film. Sci. Rep. 6, 32931 (2016).

  32. Mimura, T., Shimizu, T., Sakata, O. & Funakubo, H. Large thermal hysteresis of ferroelectric transition in HfO2-based ferroelectric films. Appl. Phys. Lett. 118, 112903 (2021).

    Article  CAS  Google Scholar 

  33. Park, M. H. et al. Origin of temperature‐dependent ferroelectricity in Si‐doped HfO2. Adv. Electron. Mater. 4, 1700489 (2018).

    Article  CAS  Google Scholar 

  34. Park, M. H. et al. Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1− xO2 films. Nano Energy 12, 131–140 (2015).

    Article  CAS  Google Scholar 

  35. Hoffmann, M. et al. Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy 18, 154–164 (2015).

    Article  CAS  Google Scholar 

  36. Materano, M. et al. Interplay between oxygen defects and dopants: effect on structure and performance of HfO2-based ferroelectrics. Inorg. Chem. Front. 8, 2650–2672 (2021).

    Article  CAS  Google Scholar 

  37. Plonka, R., Dittmann, R., Pertsev, N. A., Vasco, E. & Waser, R. Impact of the top-electrode material on the permittivity of single-crystalline Ba0.7Sr0.3TiO3 thin films. Appl. Phys. Lett. 86, 202908 (2005).

    Article  CAS  Google Scholar 

  38. Sternik, M. & Parlinski, K. Lattice vibrations in cubic, tetragonal, and monoclinic phases of ZrO2. J. Chem. Phys. 122, 064707 (2005).

    Article  CAS  Google Scholar 

  39. Van Santen, R. The Ostwald step rule. J. Phys. Chem. 88, 5768–5769 (1984).

    Article  Google Scholar 

  40. Park, M. H., Lee, Y. H. & Hwang, C. S. Understanding ferroelectric phase formation in doped HfO2 thin films based on classical nucleation theory. Nanoscale 11, 19477–19487 (2019).

    Article  CAS  Google Scholar 

  41. Park, M. H., Lee, Y. H., Mikolajick, T., Schroeder, U. & Hwang, C. S. Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides. Adv. Electron. Mater. 5, 1800522 (2019).

    Article  CAS  Google Scholar 

  42. Batra, R., Huan, T. D., Rossetti, G. A. Jr & Ramprasad, R. Dopants promoting ferroelectricity in Hafnia: insights from a comprehensive chemical space exploration. Chem. Mater. 29, 9102–9109 (2017).

    Article  CAS  Google Scholar 

  43. Künneth, C., Materlik, R. & Kersch, A. Modeling ferroelectric film properties and size effects from tetragonal interlayer in Hf1–xZrxO2 grains. J. Appl. Phys. 121, 205304 (2017).

    Article  CAS  Google Scholar 

  44. Liu, J., Liu, S., Liu, L., Hanrahan, B. & Pantelides, S. Origin of pyroelectricity in ferroelectric HfO2. Phys. Rev. Appl. 12, 034032 (2019).

    Article  CAS  Google Scholar 

  45. Nukala, P. et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices. Science 372, 630–635 (2021).

    Article  CAS  Google Scholar 

  46. Ito, T. et al. Laser-diode-heated floating zone (LDFZ) method appropriate to crystal growth of incongruently melting materials. J. Cryst. Growth 363, 264–269 (2013).

    Article  CAS  Google Scholar 

  47. Müller, J. et al. Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 110, 114113 (2011).

    Article  CAS  Google Scholar 

  48. Olsen, T. et al. Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties. Appl. Phys. Lett. 101, 082905 (2012).

    Article  CAS  Google Scholar 

  49. Materlik, R., Künneth, C., Falkowski, M., Mikolajick, T. & Kersch, A. Al-, Y-, and La-doping effects favoring intrinsic and field induced ferroelectricity in HfO2: a first principles study. J. Appl. Phys. 123, 164101 (2018).

    Article  CAS  Google Scholar 

  50. Mimura, T. et al. Effects of heat treatment and in situ high-temperature X-ray diffraction study on the formation of ferroelectric epitaxial Y-doped HfO2 film. Jpn. J. Appl. Phys. 58, SBBB09 (2019).

    Article  CAS  Google Scholar 

  51. Liu, S. & Hanrahan, B. M. Effects of growth orientations and epitaxial strains on phase stability of HfO2 thin films. Phys. Rev. Mater. 3, 054404 (2019).

    Article  CAS  Google Scholar 

  52. Estandía, S. et al. Engineering ferroelectric Hf0.5Zr0.5O2 thin films by epitaxial stress. ACS Appl. Electron. Mater. 1, 1449–1457 (2019).

    Article  Google Scholar 

  53. Estandia, S., Dix, N., Chisholm, M. F., Fina, I. & Sanchez, F. Domain-matching epitaxy of ferroelectric Hf0.5Zr0.5O2(111) on La2/3Sr1/3MnO3(001). Cryst. Growth Des. 20, 3801–3806 (2020).

    Article  CAS  Google Scholar 

  54. Lee, C.-K., Cho, E., Lee, H.-S., Hwang, C. S. & Han, S. First-principles study on doping and phase stability of HfO2. Phys. Rev. B 78, 012102 (2008).

    Article  CAS  Google Scholar 

  55. Katayama, K. et al. Orientation control and domain structure analysis of {100}-oriented epitaxial ferroelectric orthorhombic HfO2-based thin films. Jpn. J. Appl. Phys. 119, 134101 (2016).

    Article  CAS  Google Scholar 

  56. Liu, S. & Hanrahan, B. M. Effects of growth orientations and epitaxial strains on phase stability of HfO2 thin films. Phys. Rev. Mater. 3, 054404 (2019).

    Article  CAS  Google Scholar 

  57. Batra, R., Tran, H. D. & Ramprasad, R. Stabilization of metastable phases in hafnia owing to surface energy effects. Appl. Phys. Lett. 108, 172902 (2016).

    Article  CAS  Google Scholar 

  58. Schroeder, U. et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn. J. Appl. Phys. 53, 08LE02 (2014).

    Article  CAS  Google Scholar 

  59. Künneth, C., Materlik, R., Falkowski, M. & Kersch, A. Impact of four-valent doping on the crystallographic phase formation for ferroelectric HfO2 from first-principles: implications for ferroelectric memory and energy-related applications. ACS Appl. Nano Mater. 1, 254–264 (2017).

    Article  CAS  Google Scholar 

  60. Park, M. H., Schenk, T. & Schroeder, U. in Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices (eds Schroeder, U., Hwang, C. S. & Funakubo, H.) 49–74 (Woodhead Publishing, 2019).

  61. Schroeder, U., Hwang, C. S. & Funakubo, H. Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices 127–143 (Woodhead Publishing, 2019).

  62. Scott, J. & Dawber, M. Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics. Appl. Phys. Lett. 76, 3801–3803 (2000).

    Article  CAS  Google Scholar 

  63. Lee, Y. H. et al. Preparation and characterization of ferroelectric Hf0.5Zr0.5O2 thin films grown by reactive sputtering. Nanotechnology 28, 305703 (2017).

    Article  CAS  Google Scholar 

  64. Mittmann, T. et al. Impact of iridium oxide electrodes on the ferroelectric phase of thin Hf0.5Zr0.5O2 films. Phys. Status Solidi Rapid Res. Lett. 15, 2100012 (2021).

    Article  CAS  Google Scholar 

  65. Hamouda, W. et al. Physical chemistry of the TiN/Hf0.5Zr0.5O2 interface. J. Appl. Phys. 127, 064105 (2020).

    Article  CAS  Google Scholar 

  66. Park, M. H. et al. Understanding the formation of the metastable ferroelectric phase in hafnia–zirconia solid solution thin films. Nanoscale 10, 716–725 (2018).

    Article  CAS  Google Scholar 

  67. Polakowski, P. & Müller, J. Ferroelectricity in undoped hafnium oxide. Appl. Phys. Lett. 106, 232905 (2015).

    Article  CAS  Google Scholar 

  68. Ku, B., Choi, S., Song, Y. & Choi, C. Fast Thermal Quenching on the Ferroelectric Al:HfO2 Thin Film with Record Polarization Density and Flash Memory Application. in Symposium on VLSI Technology 1–2 (IEEE, 2020).

  69. Kisi, E. H., Howard, C. J. & Hill, R. J. Crystal structure of orthorhombic zirconia in partially stabilized zirconia. J. Am. Ceram. Soc. 72, 1757–1760 (1989).

    Article  CAS  Google Scholar 

  70. Kim, S. J. et al. Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget. Appl. Phys. Lett. 111, 242901 (2017).

    Article  CAS  Google Scholar 

  71. Shiraishi, T. et al. Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films. Appl. Phys. Lett. 108, 262904 (2016).

    Article  CAS  Google Scholar 

  72. Schenk, T. Formation of Ferroelectricity in Hafnium Oxide Based Thin Films (BoD–Books on Demand, 2017).

  73. Schenk, T. et al. On the origin of the large remanent polarization in La:HfO2. Adv. Electron. Mater. 5, 1900303 (2019).

    Article  CAS  Google Scholar 

  74. Cao, J., Shi, S., Zhu, Y. & Chen, J. An overview of ferroelectric hafnia and epitaxial growth. Phys. Status Solidi Rapid Res. Lett. 15, 2100025 (2021).

    Article  CAS  Google Scholar 

  75. Park, M. H., Kim, H. J., Kim, Y. J., Moon, T. & Hwang, C. S. The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl. Phys. Lett. 104, 5 (2014).

    Google Scholar 

  76. Abadias, G. et al. Review article: stress in thin films and coatings: current status, challenges, and prospects. J. Vac. Sci. Technol. A 36, 020801 (2018).

    Article  CAS  Google Scholar 

  77. Grimley, E. D. et al. Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films. Adv. Electron. Mater. 2, 1600173 (2016).

    Article  CAS  Google Scholar 

  78. Lomenzo, P. D., Richter, C., Mikolajick, T. & Schroeder, U. Depolarization as driving force in antiferroelectric hafnia and ferroelectric wake-up. ACS Appl. Electron. Mater. 2, 1583–1595 (2020).

    Article  CAS  Google Scholar 

  79. Park, M. H. et al. Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia–zirconia: a comparison of model and experiment. Nanoscale 9, 9973–9986 (2017).

    Article  CAS  Google Scholar 

  80. Oh, S., Kim, H., Kashir, A. & Hwang, H. Effect of dead layers on the ferroelectric property of ultrathin HfZrOx film. Appl. Phys. Lett. 117, 252906 (2020).

    Article  CAS  Google Scholar 

  81. Sulzbach, M. C. et al. Unraveling ferroelectric polarization and ionic contributions to electroresistance in epitaxial Hf0.5Zr0.5O2 tunnel junctions. Adv. Electron. Mater. 6, 1900852 (2020).

    Article  CAS  Google Scholar 

  82. Kim, B. Y. et al. Enhanced ferroelectric properties in Hf0.5Zr0.5O2 films using a HfO0.61N0.72 interfacial layer. Adv. Electron. Mater. https://doi.org/10.1002/aelm.202100042 (2021).

    Article  Google Scholar 

  83. Gao, Z. et al. Identification of ferroelectricity in a capacitor with ultra-thin (1.5-nm) Hf0.5Zr0.5O2 film. IEEE Electron. Device Lett. 42, 1303–1306 (2021).

    Article  CAS  Google Scholar 

  84. Cheema, S. S. et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 580, 478–482 (2020).

    Article  CAS  Google Scholar 

  85. Mimura, T., Shimizu, T. & Funakubo, H. Ferroelectricity in YO1.5-HfO2 films around 1 μm in thickness. Appl. Phys. Lett.115, 032901 (2019).

    Article  CAS  Google Scholar 

  86. Kittel, C. Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965–971 (1946).

    Article  CAS  Google Scholar 

  87. Kiguchi, T., Shiraishi, T., Shimizu, T., Funakubo, H. & Konno, T. J. Domain orientation relationship of orthorhombic and coexisting monoclinic phases of YO1.5-doped HfO2 epitaxial thin films. Jpn. J. Appl. Phys. 57, 11UF16 (2018).

    Article  Google Scholar 

  88. Ding, W., Zhang, Y., Tao, L., Yang, Q. & Zhou, Y. The atomic-scale domain wall structure and motion in HfO2-based ferroelectrics: a first-principle study. Acta Mater. 196, 556–564 (2020).

    Article  CAS  Google Scholar 

  89. Choe, D.-H. et al. Unexpectedly low barrier of ferroelectric switching in HfO2 via topological domain walls. Mater. Today 50, 8–15 (2021).

    Article  CAS  Google Scholar 

  90. Grimley, E. D., Schenk, T., Mikolajick, T., Schroeder, U. & LeBeau, J. M. Atomic structure of domain and interphase boundaries in ferroelectric HfO2. Adv. Mater. Interfaces 5, 1701258 (2018).

    Article  CAS  Google Scholar 

  91. Lee, K. et al. Stable subloop behavior in ferroelectric Si-doped HfO2. ACS Appl. Mater. Interfaces 11, 38929–38936 (2019).

    Article  CAS  Google Scholar 

  92. Buragohain, P. et al. Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors. Appl. Phys. Lett. 112, 222901 (2018).

    Article  CAS  Google Scholar 

  93. Mimura, T., Shimizu, T., Uchida, H., Sakata, O. & Funakubo, H. Thickness-dependent crystal structure and electric properties of epitaxial ferroelectric Y2O3–HfO2 films. Appl. Phys. Lett. 113, 102901 (2018).

    Article  CAS  Google Scholar 

  94. Fina, I. & Sanchez, F. Epitaxial ferroelectric HfO2 films: growth, properties, and devices. ACS Appl. Electron. Mater. 3, 1530–1549 (2021).

    Article  CAS  Google Scholar 

  95. Materano, M. et al. Polarization switching in thin doped HfO2 ferroelectric layers. Appl. Phys. Lett. 117, 262904 (2020).

    Article  CAS  Google Scholar 

  96. Toriumi, A. et al. Material perspectives of HfO2-based ferroelectric films for device applications. in International Electron Devices Meeting (IEDM) 15.1.1–15.1.4 (IEEE, 2019).

  97. Tagantsev, A. K., Stolichnov, I., Setter, N., Cross, J. S. & Tsukada, M. Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B 66, 214109 (2002).

    Article  CAS  Google Scholar 

  98. Zhukov, S., Genenko, Y. A. & von Seggern, H. Experimental and theoretical investigation on polarization reversal in unfatigued lead-zirconate-titanate ceramic. J. Appl. Phys. 108, 014106 (2010).

    Article  CAS  Google Scholar 

  99. Lee, K. et al. Enhanced ferroelectric switching speed of Si-doped HfO2 thin film tailored by oxygen deficiency. Sci. Rep. 11, 6290 (2021).

    Article  CAS  Google Scholar 

  100. Lee, T. Y. et al. Ferroelectric polarization-switching dynamics and wake-up effect in Si-doped HfO2. ACS Appl. Mater. Interf. 11, 3142–3149 (2019).

    Article  CAS  Google Scholar 

  101. Hyun, S. D. et al. Dispersion in ferroelectric switching performance of polycrystalline Hf0.5Zr0.5O2 thin films. Acs Appl. Mater. Interf. 10, 35374–35384 (2018).

    Article  CAS  Google Scholar 

  102. Li, Y. X. et al. Switching dynamics of ferroelectric HfO2–ZrO2 with various ZrO2 contents. Appl. Phys. Lett. 114, 142902 (2019).

    Article  CAS  Google Scholar 

  103. Mulaosmanovic, H. et al. Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors. ACS Appl. Mater. Interf. 9, 3792–3798 (2017).

    Article  CAS  Google Scholar 

  104. Mulaosmanovic, H. et al. in International Electron Devices Meeting (IEDM) (IEEE, 2017).

  105. Banerjee, K. et al. First demonstration of ferroelectric Si:HfO2 based 3D FE-FET with trench architecture for dense nonvolatile memory application. in International Memory Workshop (IMW) 1–4 (IEEE, 2021).

  106. Bondurant, D. & Gnadinger, F. Ferroelectrics for nonvolatile RAMs. IEEE Spectr. 26, 30–33 (1989).

    Article  Google Scholar 

  107. Pinnow, C.-U. & Mikolajick, T. Material aspects in emerging nonvolatile memories. J. Electrochem. Soc. 151, K13 (2004).

    Article  CAS  Google Scholar 

  108. Fox, G., Chu, F. & Davenport, T. Current and future ferroelectric nonvolatile memory technology. J. Vac. Sci. Technol. B 19, 1967–1971 (2001).

    Article  CAS  Google Scholar 

  109. Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric. DigitalCommons@University of Nebraska, Lincoln https://digitalcommons.unl.edu/physicstsymbal/22 (2006).

  110. Max, B., Hoffmann, M., Slesazeck, S. & Mikolajick, T. Direct correlation of ferroelectric properties and memory characteristics in ferroelectric tunnel junctions. IEEE J. Electron. Devices Soc. 7, 1175–1181 (2019).

    Article  CAS  Google Scholar 

  111. Mueller, S., Muller, J., Schroeder, U. & Mikolajick, T. Reliability characteristics of ferroelectric Si:HfO2 thin films for memory applications. IEEE Trans. Device Mater. Reliab. 13, 93–97 (2012).

    Article  CAS  Google Scholar 

  112. Mulaosmanovic, H. et al. Reliability aspects of ferroelectric hafnium oxide for application in non-volatile memories. in International Reliability Physics Symposium (IRPS) 1–6 (IEEE, 2021).

  113. Ma, T. & Han, J.-P. Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron. Device Lett. 23, 386–388 (2002).

    Article  CAS  Google Scholar 

  114. Lomenzo, P. D. et al. Ferroelectric Hf1-xZrxO2 memories: device reliability and depolarization fields. in 19th Non-Volatile Memory Technology Symposium (NVMTS) 1–8 (IEEE, 2019).

  115. Mehmood, F. et al. Bulk depolarization fields as a major contributor to the ferroelectric reliability performance in lanthanum doped Hf0.5Zr0.5O2 capacitors. Adv. Mater. Interf. 6, 1901180 (2019).

    Article  CAS  Google Scholar 

  116. Warren, W. et al. Voltage shifts and imprint in ferroelectric capacitors. Appl. Phys. Lett. 67, 866–868 (1995).

    Article  CAS  Google Scholar 

  117. Tagantsev, A. K., Stolichnov, I., Setter, N. & Cross, J. S. Nature of nonlinear imprint in ferroelectric films and long-term prediction of polarization loss in ferroelectric memories. J. Appl. Phys. 96, 6616–6623 (2004).

    Article  CAS  Google Scholar 

  118. Zhou, D. et al. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 103, 192904 (2013).

    Article  CAS  Google Scholar 

  119. Pešić, M. et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv. Funct. Mater. 26, 4601–4612 (2016).

    Article  CAS  Google Scholar 

  120. Beyer, S. et al. FeFET: A versatile CMOS compatible device with game-changing potential. in International Memory Workshop (IMW) 1–4 (IEEE, 2020).

  121. Yurchuk, E. et al. Origin of the endurance degradation in the novel HfO2-based 1T ferroelectric non-volatile memories. in International Reliability Physics Symposium 2E.5.1–2E.5.5 (IEEE, 2014).

  122. Francois, T. et al. Impact of area scaling on the ferroelectric properties of back-end of line compatible Hf0.5Zr0.5O2 and Si:HfO2-based MFM capacitors. Appl. Phys. Lett. 118, 062904 (2021).

    Article  CAS  Google Scholar 

  123. Okuno, J. et al. SoC compatible 1T1C FeRAM memory array based on ferroelectric Hf0.5Zr0.5O2. in Symposium on VLSI Technology 1–2 (IEEE, 2020).

  124. Polakowski, P. et al. Ferroelectric deep trench capacitors based on Al:HfO2 for 3D nonvolatile memory applications. in 6th International Memory Workshop (IMW) 1–4 (IEEE, 2014).

  125. Mulaosmanovic, H., Breyer, E. T., Mikolajick, T. & Slesazeck, S. Ferroelectric FETs with 20-nm-thick HfO2 layer for large memory window and high performance. IEEE Trans. Electron. Devices 66, 3835–3840 (2019).

    Article  Google Scholar 

  126. Mulaosmanovic, H. et al. Ferroelectric transistors with asymmetric double gate for memory window exceeding 12 V and disturb-free read. Nanoscale (2021).

  127. Takahashi, M. & Sakai, S. Area-scalable 109-cycle-high-endurance FeFET of strontium bismuth tantalate using a dummy-gate process. Nanomaterials 11, 101 (2021).

    Article  CAS  Google Scholar 

  128. Gong, N. & Ma, T.-P. Why is FE–HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? A retention perspective. IEEE Electron. Device Lett. 37, 1123–1126 (2016).

    Article  CAS  Google Scholar 

  129. Mueller, J. et al. High endurance strategies for hafnium oxide based ferroelectric field effect transistor. in 16th Non-Volatile Memory Technology Symposium (NVMTS) 1–7 (IEEE, 2016).

  130. Tan, A. J. et al. Ferroelectric HfO2 memory transistors with high-κ interfacial layer and write endurance exceeding 1010 cycles. IEEE Electron. Device Lett. 42, 994–997 (2021).

    Article  CAS  Google Scholar 

  131. Sharma, A. A. et al. High speed memory operation in channel-last, back-gated ferroelectric transistors. in International Electron Devices Meeting (IEDM) 18.5.1–18.5.4 (IEEE, 2020).

  132. Cheema, S. S. et al. One nanometer HfO2-based ferroelectric tunnel junctions on silicon. Adv. Electron. Mater. https://doi.org/10.1002/aelm.202100499 (2022).

  133. Slesazeck, S. et al. Uniting the trinity of ferroelectric HfO2 memory devices in a single memory cell. in 11th International Memory Workshop (IMW) 1–4 (IEEE, 2019).

  134. Breyer, E. T., Mulaosmanovic, H., Mikolajick, T. & Slesazeck, S. Perspective on ferroelectric, hafnium oxide based transistors for digital beyond von-Neumann computing. Appl. Phys. Lett. 118, 050501 (2021).

    Article  CAS  Google Scholar 

  135. Max, B., Hoffmann, M., Mulaosmanovic, H., Slesazeck, S. & Mikolajick, T. Hafnia-based double-layer ferroelectric tunnel junctions as artificial synapses for neuromorphic computing. ACS Appl. Electron. Mater. 2, 4023–4033 (2020).

    Article  CAS  Google Scholar 

  136. Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    Article  CAS  Google Scholar 

  137. Hoffmann, M., Slesazeck, S., Schroeder, U. & Mikolajick, T. What’s next for negative capacitance electronics? Nat. Electron. 3, 504–506 (2020).

    Article  Google Scholar 

  138. Park, H. W., Roh, J., Lee, Y. B. & Hwang, C. S. Modeling of negative capacitance in ferroelectric thin films. Adv. Mater. 31, 1805266 (2019).

    Article  CAS  Google Scholar 

  139. Mikolajick, T. et al. Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021).

    Article  CAS  Google Scholar 

  140. Park, H. W., Lee, J. G. & Hwang, C. S. Review of ferroelectric field‐effect transistors for three‐dimensional storage applications. Nano Sel. 2, 1187–1207 (2021).

    Article  CAS  Google Scholar 

  141. Yoon, K. J., Kim, Y. & Hwang, C. S. What will come after V‐NAND — vertical resistive switching memory? Adv. Electron. Mater. 5, 1800914 (2019).

    Article  CAS  Google Scholar 

  142. Noor-A-Alam, M., Z. Olszewski, O. & Nolan, M. Ferroelectricity and large piezoelectric response of AlN/ScN superlattice. ACS Appl. Mater. Interfaces 11, 20482–20490 (2019).

    Article  CAS  Google Scholar 

  143. Ye, K. H., Han, G., Yeu, I. W., Hwang, C. S. & Choi, J.-H. Atomistic understanding of the ferroelectric properties of a wurtzite-structure (AlN)n/(ScN)m superlattice. Phys. Status Solidi Rapid Res. Lett. 15, 2100009 (2021).

    Article  CAS  Google Scholar 

  144. Ferri, K. et al. Ferroelectrics everywhere: ferroelectricity in magnesium substituted zinc oxide thin films. J. Appl. Phys. 130, 044101 (2021).

    Article  CAS  Google Scholar 

  145. Materano, M. et al. Influence of oxygen content on the structure and reliability of ferroelectric HfxZr1−xO2 layers. ACS Appl. Electron. Mater. 2, 3618–3626 (2020).

    Article  CAS  Google Scholar 

  146. Hoffmann, M. et al. Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 118, 072006 (2015).

    Article  CAS  Google Scholar 

  147. Mulaosmanovic, H., Chicca, E., Bertele, M., Mikolajick, T. & Slesazeck, S. Mimicking biological neurons with a nanoscale ferroelectric transistor. Nanoscale 10, 21755–21763 (2018).

    Article  CAS  Google Scholar 

  148. Tomida, K., Kita, K. & Toriumi, A. Dielectric constant enhancement due to Si incorporation into HfO2. Appl. Phys. Lett. 89, 142902 (2006).

    Article  CAS  Google Scholar 

  149. Yurchuk, E. et al. HfO2-based ferroelectric field-effect transistors with 260 nm channel length and long data retention. in 4th International Memory Workshop 1–4 (IEEE, 2012).

  150. Müller, J. et al. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl. Phys. Lett. 99, 112901 (2011).

    Article  CAS  Google Scholar 

  151. Park, M. H. et al. Thin HfxZr1‐xO2 films: a new lead‐free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4, 1400610 (2014).

    Article  CAS  Google Scholar 

  152. Sang, X., Grimley, E. D., Schenk, T., Schroeder, U. & LeBeau, J. M. On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 106, 162905 (2015).

    Article  CAS  Google Scholar 

  153. Mueller, S. et al. Incipient ferroelectricity in Al‐doped HfO2 thin films. Adv. Funct. Mater. 22, 2412–2417 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Kersch for valuable discussions. U.S. and T.M. were financially supported out of the Saxonian State budget approved by the delegates of the Saxon State Parliament. M.H.P. was supported by the National Research Foundation of Korea (2020R1C1C1008193). C.S.H. was supported by the National Research Foundation of Korea (2020R1A3B2079882).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Cheol Seong Hwang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Ignasi Fina and Hiroshi Funakubo for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schroeder, U., Park, M.H., Mikolajick, T. et al. The fundamentals and applications of ferroelectric HfO2. Nat Rev Mater 7, 653–669 (2022). https://doi.org/10.1038/s41578-022-00431-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00431-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing