Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials, assemblies and reaction systems under rotation

Abstract

When liquids or solid materials rotate, they impart centrifugal and/or shear forces. This Review surveys rotary devices and systems in which such forces control small-scale flows, self-organization phenomena, materials synthesis or chemical reactivity at molecular and macromolecular levels. Centrifugal forces directed away from the rotation axis enable various separations or lab-on-a-disc systems and can shape interfaces or deposit thin films of functional materials. When these forces act on particles lighter than the rotating fluid, they can provide the basis for colloidal crystallization or trapping; when the direction of rotation changes, they can simulate microgravity conditions and affect motility patterns of living organisms. Shear forces, by contrast, can promote crystallization, couple to molecular-scale assembly and affect its chiral outcomes. Combining centrifugal and shear forces is useful in establishing rotating reactors to accelerate reaction kinetics, modulate chemical reactivity, enable multistep syntheses or support complex extractions. Through these and other examples, we illustrate that rotating reaction vessels can enable new types of chemical experimentation, with outcomes that are not always understood. We argue that rotating systems for studying such processes will become more common given advances in remotely controlled sensors and spectrometers that can monitor the contents of rotating vessels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Forces in rotating frames of reference.
Fig. 2: Unconventional centrifuges and lab-on-a-disc systems.
Fig. 3: Self-assembly and trapping in rotating liquids.
Fig. 4: Free liquid surfaces and thin films under rotation.
Fig. 5: Shear-enhanced growth of crystals in the presence of polymers.
Fig. 6: Concentric liquid layers and their use as chemical reactors.

Similar content being viewed by others

References

  1. Lynden-Bell, D. & Pringle, J. E. The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc. 168, 603–637 (1974).

    Article  Google Scholar 

  2. Jones, M. & Lambourne, R. in An Introduction to Galaxies and Cosmology 37–41 (Cambridge Univ. Press, 2004).

  3. Berg, H. C. & Anderson, R. A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973).

    Article  CAS  Google Scholar 

  4. Dreyfus, R. et al. Microscopic artificial swimmers. Nature 437, 862–865 (2005).

    Article  CAS  Google Scholar 

  5. Sharma, A. K. in Advanced Semiconductor Memories: Architectures, Designs, and Applications 549–622 (Wiley-IEEE Press, 2009).

  6. Han, S.-T., Zhou, Y. & Roy, V. A. L. Towards the development of flexible non-volatile memories. Adv. Mater. 25, 5425–5449 (2013).

    Article  CAS  Google Scholar 

  7. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Direct observation of the rotation of F-1-ATPase. Nature 386, 299–302 (1997).

    Article  CAS  Google Scholar 

  8. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  9. Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

    Article  CAS  Google Scholar 

  10. Eelkema, R. et al. Molecular machines: nanomotor rotates microscale objects. Nature 440, 163 (2006).

    Article  CAS  Google Scholar 

  11. Ruangsupapichat, N., Pollard, M. M., Harutyunyan, S. R. & Feringa, B. L. Reversing the direction in a light-driven rotary molecular motor. Nat. Chem. 3, 53–60 (2011).

    Article  CAS  Google Scholar 

  12. Faulkner, L. R. & Bard, A. J. in Electrochemical Methods: Fundamentals and Applications 335–360 (Wiley, 2002).

  13. Xing, W., Yin, G. & Zhang, J. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts (Elsevier, 2014).

  14. Grzybowski, B. A., Stone, H. A. & Whitesides, G. M. Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface. Nature 405, 1033–1036 (2000).

    Article  CAS  Google Scholar 

  15. Grzybowski, B. A. & Whitesides, G. M. Dynamic aggregation of chiral spinners. Science 296, 718–721 (2002).

    Article  CAS  Google Scholar 

  16. Grzybowski, B. A. & Whitesides, G. M. Directed dynamic self-assembly of objects rotating on two parallel fluid interfaces. J. Chem. Phys. 116, 8571–8577 (2002).

    Article  CAS  Google Scholar 

  17. Lenz, P., Joanny, J.-F., Jülicher, F. & Prost, J. Membranes with rotating motors. Phys. Rev. Lett. 91, 108104 (2003).

    Article  CAS  Google Scholar 

  18. Goto, Y. & Tanaka, H. Purely hydrodynamic ordering of rotating disks at a finite Reynolds number. Nat. Commun. 6, 5994 (2015).

    Article  CAS  Google Scholar 

  19. Yeo, K., Lushi, E. & Vlahovska, P. M. Collective dynamics in a binary mixture of hydrodynamically coupled microrotors. Phys. Rev. Lett. 114, 188301 (2015).

    Article  CAS  Google Scholar 

  20. Kokot, G., Snezhko, A. & Aranson, I. S. Emergent coherent states and flow rectification in active magnetic colloidal monolayers. Soft Matter 9, 6757–6760 (2013).

    Article  CAS  Google Scholar 

  21. Snezhko, A., Jacob, E., Ben & Aranson, I. S. Pulsating–gliding transition in the dynamics of levitating liquid nitrogen droplets. New J. Phys. 10, 43034 (2008).

    Article  CAS  Google Scholar 

  22. Xu, T., Gao, W., Xu, L.-P., Zhang, X. & Wang, S. Fuel-free synthetic micro-/nanomachines. Adv. Mater. 29, 1603250 (2017).

    Article  CAS  Google Scholar 

  23. Elgeti, J., Winkler, R. G. & Gompper, G. Physics of microswimmers — single particle motion and collective behavior: a review. Rep. Prog. Phys. 78, 056601 (2015).

    Article  CAS  Google Scholar 

  24. Alharbi, T. M. D. et al. Sub-micron moulding topological mass transport regimes in angled vortex fluidic flow. Nanoscale Adv. 3, 3064–3075 (2021).

    Article  CAS  Google Scholar 

  25. Strohmeier, O. et al. Centrifugal microfluidic platforms: advanced unit operations and applications. Chem. Soc. Rev. 44, 6187–6229 (2015).

    Article  CAS  Google Scholar 

  26. Ducrée, J., Glatzel, T., Brenner, T. & Zengerle, R. in MicroNano Integration 147–153 (Springer, 2004).

  27. Ducrée, J. et al. The centrifugal microfluidic Bio-Disk platform. J. Micromech. Microeng. 17, S103 (2007).

    Article  CAS  Google Scholar 

  28. Brenner, T., Glatzel, T., Zengerle, R. & Ducrée, J. Frequency-dependent transversal flow control in centrifugal microfluidics. Lab Chip 5, 146–150 (2005).

    Article  CAS  Google Scholar 

  29. Kassegne, S. et al. Coriolis force for facilitating DNA molecular migration and hybridization in compact disk microfluidic platforms. Microsyst. Technol. 21, 719–732 (2015).

    Article  CAS  Google Scholar 

  30. Stokes, G. G. On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Cambridge Philos. Soc. 8, 287–319 (1845).

    Google Scholar 

  31. Svedberg, T. & Rinde, H. The ultra-centrifuge, a new instrument for the determination of size and distribution of size of particle in amicroscopic colloids. J. Am. Chem. Soc. 46, 2677–2693 (1924).

    Article  Google Scholar 

  32. Van Holde, K. E. & Baldwin, R. L. Rapid attainment of sedimentation equilibrium. J. Phys. Chem. 62, 734–743 (1958).

    Article  Google Scholar 

  33. Bancroft, F. C. & Freifelder, D. Molecular weights of coliphages and coliphage DNA: I. Measurement of the molecular weight of bacteriophage T7 by high-speed equilibrium centrifugation. J. Mol. Biol. 54, 537–546 (1970).

    Article  CAS  Google Scholar 

  34. Ghirlando, R. The analysis of macromolecular interactions by sedimentation equilibrium. Methods 54, 145–156 (2011).

    Article  CAS  Google Scholar 

  35. Schildkraut, C. L., Marmur, J. & Doty, P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol. 4, 430–443 (1962).

    Article  CAS  Google Scholar 

  36. Durchschlag, H. in Thermodynamic Data for Biochemistry and Biotechnology 45–128 (Springer, 1986).

  37. Ralston, G. Introduction to Analytical Ultracentrifugation Vol. 35, 57–58 (Beckman Instruments, 1993).

  38. Stafford, W. F. III Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal. Biochem. 203, 295–301 (1992).

    Article  CAS  Google Scholar 

  39. Correia, J. J., Shire, S., Yphantis, D. A. & Schuster, T. M. Sedimentation equilibrium measurements of the intermediate-size tobacco mosaic virus protein polymers. Biochemistry 24, 3292–3297 (1985).

    Article  CAS  Google Scholar 

  40. Teller, D. C. in Methods in Enzymology Vol. 27, 346–441 (Elsevier, 1973).

  41. Vistica, J. et al. Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition. Anal. Biochem. 326, 234–256 (2004).

    Article  CAS  Google Scholar 

  42. Richards, E. G. & Schachman, H. K. Ultracentrifuge studies with Rayleigh interference optics. I. General application. J. Phys. Chem. 63, 1578–1591 (1959).

    Article  Google Scholar 

  43. Prakash, V. & Timasheff, S. N. Mechanism of interaction of vinca alkaloids with tubulin: catharanthine and vindoline. Biochemistry 30, 873–880 (1991).

    Article  CAS  Google Scholar 

  44. Akbulut, O. et al. Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett. 12, 4060–4064 (2012).

    Article  CAS  Google Scholar 

  45. Planken, K. L. & Cölfen, H. Analytical ultracentrifugation of colloids. Nanoscale 2, 1849–1869 (2010).

    Article  CAS  Google Scholar 

  46. Olander, D. R. The theory of uranium enrichment by the gas centrifuge. Prog. Nucl. Energy 8, 1–33 (1981).

    Article  CAS  Google Scholar 

  47. Whitley, S. Review of the gas centrifuge until 1962. Part I: Principles of separation physics. Rev. Mod. Phys. 56, 41–66 (1984).

    Article  CAS  Google Scholar 

  48. Ramshaw, C. & Mallinson, R. H. Mass transfer process. US Patent 4283255 (1981).

  49. Lin, C.-C., Liu, W.-T. & Tan, C.-S. Removal of carbon dioxide by absorption in a rotating packed bed. Ind. Eng. Chem. Res. 42, 2381–2386 (2003).

    Article  CAS  Google Scholar 

  50. Qian, Z., Li, Z.-H. & Guo, K. Industrial applied and modeling research on selective H2S removal using a rotating packed bed. Ind. Eng. Chem. Res. 51, 8108–8116 (2012).

    Article  CAS  Google Scholar 

  51. Ramshaw, C. “Higee” distillation-an example of process intensification. Chem. Eng. Lond. 389, 13–14 (1983).

    Google Scholar 

  52. Fowler, R. Higee-a status report. Chem. Eng. Lond. 456, 35–37 (1989).

    CAS  Google Scholar 

  53. Fowler, R., Gerdes, K. F. & Nygaard, H. F. in Offshore Technology Conference OTC-6121-MS (OnePetro, 1989).

  54. Munjal, S., Dudukovc´, M. P. & Ramachandran, P. Mass-transfer in rotating packed beds — I. Development of gas — liquid and liquid — solid mass-transfer correlations. Chem. Eng. Sci. 44, 2245–2256 (1989).

    Article  CAS  Google Scholar 

  55. Keyvani, M. & Gardner, N. C. Operating characteristics of rotating beds. Chem. Eng. Prog. 85, 48–52 (1989).

    CAS  Google Scholar 

  56. Peel, J., Howarth, C. R. & Ramshaw, C. Process intensification: Higee seawater deaeration. Chem. Eng. Res. Des. 76, 585–593 (1998).

    Article  CAS  Google Scholar 

  57. Chang, C.-C. et al. Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed. J. Hazard. Mater. 161, 287–293 (2009).

    Article  CAS  Google Scholar 

  58. Garcia, G. E. C., van der Schaaf, J. & Kiss, A. A. A review on process intensification in HiGee distillation. J. Chem. Technol. Biotechnol. 92, 1136–1156 (2017).

    Article  CAS  Google Scholar 

  59. Kiss, A. A. & Jobson, M. Taking reactive distillation to the next level of process intensification. Chem. Eng. Trans. 69, 553–558 (2018).

    Google Scholar 

  60. Gudena, K., Rangaiah, G. P. & Lakshminarayanan, S. Modeling and analysis of solid catalyzed reactive HiGee stripping. Chem. Eng. Sci. 80, 242–252 (2012).

    Article  CAS  Google Scholar 

  61. Yu, C.-H., Huang, C.-H. & Tan, C.-S. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12, 745–769 (2012).

    Article  CAS  Google Scholar 

  62. Oko, E., Wang, M. & Joel, A. S. Current status and future development of solvent-based carbon capture. Int. J. Coal Sci. Technol. 4, 5–14 (2017).

    Article  CAS  Google Scholar 

  63. Chen, J.-F., Wang, Y.-H., Guo, F., Wang, X.-M. & Zheng, C. Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation. Ind. Eng. Chem. Res. 39, 948–954 (2000).

    Article  CAS  Google Scholar 

  64. Brown, J. et al. A hand-powered, portable, low-cost centrifuge for diagnosing anemia in low-resource settings. Am. J. Trop. Med. Hyg. 85, 327–332 (2011).

    Article  Google Scholar 

  65. Wong, A. P., Gupta, M., Shevkoplyas, S. S. & Whitesides, G. M. Egg beater as centrifuge: isolating human blood plasma from whole blood in resource-poor settings. Lab Chip 8, 2032–2037 (2008).

    Article  CAS  Google Scholar 

  66. Bhamla, M. S. et al. Hand-powered ultralow-cost paper centrifuge. Nat. Biomed. Eng. 1, 0009 (2017).

    Article  CAS  Google Scholar 

  67. Gorkin, R. et al. Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758–1773 (2010).

    Article  CAS  Google Scholar 

  68. Madou, M. et al. Lab on a CD. Annu. Rev. Biomed. Eng. 8, 601–628 (2006).

    Article  CAS  Google Scholar 

  69. Siegrist, J. et al. Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples. Lab Chip 10, 363–371 (2010).

    Article  CAS  Google Scholar 

  70. Cho, Y.-K. et al. One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7, 565–573 (2007).

    Article  CAS  Google Scholar 

  71. Schembri, C. T., Burd, T. L., Kopf-Sill, A. R., Shea, L. R. & Braynin, B. Centrifugation and capillarity integrated into a multiple analyte whole blood analyser. J. Anal. Methods Chem. 17, 99–104 (1995).

    CAS  Google Scholar 

  72. Lai, S. et al. Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal. Chem. 76, 1832–1837 (2004).

    Article  CAS  Google Scholar 

  73. Lee, B. S. et al. A fully automated immunoassay from whole blood on a disc. Lab Chip 9, 1548–1555 (2009).

    Article  CAS  Google Scholar 

  74. Zhao, M. et al. High-speed interferometric detection of label-free immunoassays on the biological compact disc. Clin. Chem. 52, 2135–2140 (2006).

    Article  CAS  Google Scholar 

  75. Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

    Article  CAS  Google Scholar 

  76. Walker, G. M. & Beebe, D. J. A passive pumping method for microfluidic devices. Lab Chip 2, 131–134 (2002).

    Article  CAS  Google Scholar 

  77. Hwang, H., Kim, S. H., Kim, T. H., Park, J. K. & Cho, Y. K. Paper on a disc: balancing the capillary-driven flow with a centrifugal force. Lab Chip 11, 3404–3406 (2011).

    Article  CAS  Google Scholar 

  78. Kainz, D. M., Früh, S. M., Hutzenlaub, T., Zengerle, R. & Paust, N. Flow control for lateral flow strips with centrifugal microfluidics. Lab Chip 19, 2718–2727 (2019).

    Article  CAS  Google Scholar 

  79. Thiha, A. & Ibrahim, F. A colorimetric enzyme-linked immunosorbent assay (ELISA) detection platform for a point-of-care dengue detection system on a lab-on-compact-disc. Sensors 15, 11431–11441 (2015).

    Article  CAS  Google Scholar 

  80. Sayad, A. A. et al. A microfluidic lab-on-a-disc integrated loop mediated isothermal amplification for foodborne pathogen detection. Sens. Actuators B Chem. 227, 600–609 (2016).

    Article  CAS  Google Scholar 

  81. Nwankire, C. E. et al. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Biosens. Bioelectron. 68, 382–389 (2015).

    Article  CAS  Google Scholar 

  82. Morais, S., Tamarit-López, J., Carrascosa, J., Puchades, R. & Maquieira, Á. Analytical prospect of compact disk technology in immunosensing. Anal. Bioanal. Chem. 391, 2837–2844 (2008).

    Article  CAS  Google Scholar 

  83. Kinahan, D. J., Kearney, S. M., Dimov, N., Glynn, M. T. & Ducrée, J. Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms. Lab Chip 14, 2249–2258 (2014).

    Article  Google Scholar 

  84. Miyazaki, C. M. et al. Label-free, spatially multiplexed SPR detection of immunoassays on a highly integrated centrifugal Lab-on-a-Disc platform. Biosens. Bioelectron. 119, 86–93 (2018).

    Article  CAS  Google Scholar 

  85. Kinahan, D. J. et al. Paper imbibition for timing of multi-step liquid handling protocols on event-triggered centrifugal microfluidic lab-on-a-disc platforms. RSC Adv. 5, 1818–1826 (2015).

    Article  CAS  Google Scholar 

  86. Kinahan, D. J. et al. Xurography actuated valving for centrifugal flow control. Lab Chip 16, 3454–3459 (2016).

    Article  CAS  Google Scholar 

  87. Kinahan, D. et al. Baking powder actuated centrifugo-pneumatic valving for automation of multi-step bioassays. Micromachines 7, 175 (2016).

    Article  Google Scholar 

  88. McArdle, H. et al. “TORNADO” — Theranostic one-step RNA detector; microfluidic disc for the direct detection of microRNA-134 in plasma and cerebrospinal fluid. Sci. Rep. 7, 1750 (2017).

    Article  CAS  Google Scholar 

  89. Nwankire, C. et al. Fluidic automation of nitrate and nitrite bioassays in whole blood by dissolvable-film based centrifugo-pneumatic actuation. Sensors 13, 11336–11349 (2013).

    Article  CAS  Google Scholar 

  90. Hess, J. F. et al. Review on pneumatic operations in centrifugal microfluidics. Lab Chip 19, 3745–3770 (2019).

    Article  CAS  Google Scholar 

  91. Schwemmer, F. et al. LabDisk for SAXS: a centrifugal microfluidic sample preparation platform for small-angle X-ray scattering. Lab Chip 16, 1161–1170 (2016).

    Article  CAS  Google Scholar 

  92. Woo, H.-K. et al. Exodisc for rapid, size-selective, and efficient isolation and analysis of nanoscale extracellular vesicles from biological samples. ACS Nano 11, 1360–1370 (2017).

    Article  CAS  Google Scholar 

  93. Klatt, J.-N. et al. Miniaturization, parallelization, and automation of endotoxin detection by centrifugal microfluidics. Anal. Chem. 93, 8508–8516 (2021).

    Article  CAS  Google Scholar 

  94. Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010).

    Article  CAS  Google Scholar 

  95. Rissin, D. M. et al. Simultaneous detection of single molecules and singulated ensembles of molecules enables immunoassays with broad dynamic range. Anal. Chem. 83, 2279–2285 (2011).

    Article  CAS  Google Scholar 

  96. Wilson, D. H. et al. The Simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J. Lab. Autom. 21, 533–547 (2016).

    Article  CAS  Google Scholar 

  97. Prado, E. et al. Non-targeted sportomics analyses by mass spectrometry to understand exercise-induced metabolic stress in soccer players. Int. J. Mass. Spectrom. 418, 1–5 (2017).

    Article  CAS  Google Scholar 

  98. Land, K. J., Boeras, D. I., Chen, X. S., Ramsay, A. R. & Peeling, R. W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 4, 46–54 (2019).

    Article  CAS  Google Scholar 

  99. Miyazaki, C. M., Carthy, E. & Kinahan, D. J. Biosensing on the centrifugal microfluidic lab-on-a-disc platform. Processes 8, 1360 (2020).

    Article  Google Scholar 

  100. Zhang, L. et al. Hand-powered centrifugal microfluidic platform inspired by the spinning top for sample-to-answer diagnostics of nucleic acids. Lab Chip 18, 610–619 (2018).

    Article  CAS  Google Scholar 

  101. Michael, I. et al. A fidget spinner for the point-of-care diagnosis of urinary tract infection. Nat. Biomed. Eng. 4, 591–600 (2020).

    Article  CAS  Google Scholar 

  102. Ebhota, W. S., Karun, A. S. & Inambao, F. L. Centrifugal casting technique baseline knowledge, applications, and processing parameters: overview. Int. J. Mater. Res. 107, 960–969 (2016).

    Article  CAS  Google Scholar 

  103. Pradeep, A. D. & Rameshkumar, T. Review on centrifugal casting of functionally graded materials. Mater. Today Proc. 45, 729–734 (2021).

    Article  CAS  Google Scholar 

  104. Watanabe, Y., Inaguma, Y., Sato, H. & Miura-Fujiwara, E. A novel fabrication method for functionally graded materials under centrifugal force: the centrifugal mixed-powder method. Materials 2, 2510–2525 (2009).

    Article  CAS  Google Scholar 

  105. Saleh, B. et al. Review on the influence of different reinforcements on the microstructure and wear behavior of functionally graded aluminum matrix composites by centrifugal casting. Met. Mater. Int. 26, 933–960 (2020).

    Article  CAS  Google Scholar 

  106. Zygmuntowicz, J. et al. Investigation on fabrication and property of graded composites obtained via centrifugal casting in the magnetic field. Compos. B Eng. 173, 106999 (2019).

    Article  CAS  Google Scholar 

  107. Zhong, J. et al. Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 9, 3484 (2018).

    Article  CAS  Google Scholar 

  108. Kim, J. Y. et al. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films. Nat. Commun. 6, 7772 (2015).

    Article  Google Scholar 

  109. Mujiyono, M., Suharto, S., Mukhammad, A. F. H., Nurhadiyanto, D. & Sumowidagdo, A. L. Manufacture of nickel collimator for BNCT: smelting of nickel using electrical arc furnace and centrifugal casting preparation. Indones. J. Phys. Nucl. Appl. 3, 21–28 (2018).

    Google Scholar 

  110. Richards, R. G., MacHunter, D. M., Gates, P. J. & Palmer, M. K. Gravity separation of ultra-fine (−0.1 mm) minerals using spiral separators. Miner. Eng. 13, 65–77 (2000).

    Article  CAS  Google Scholar 

  111. Pardee, F. Separator for ore, coal, &c. US Patent 629595 (1899).

  112. Stokes, Y. M. Computing flow in a spiral particle separator. Computing 10, 14 (2001).

    Google Scholar 

  113. Matthews, B. W., Fletcher, C. A. J. & Partridge, A. C. Computational simulation of fluid and dilute particulate flows on spiral concentrators. Appl. Math. Model. 22, 965–979 (1998).

    Article  Google Scholar 

  114. Vonnegut, B. Rotating bubble method for the determination of surface and interfacial tensions. Rev. Sci. Instrum. 13, 6–9 (1942).

    Article  CAS  Google Scholar 

  115. Princen, H. M., Zia, I. Y. Z. & Mason, S. G. Measurement of interfacial tension from the shape of a rotating drop. J. Colloid Interface Sci. 23, 99–107 (1967).

    Article  CAS  Google Scholar 

  116. Grzybowski, B. A., Fitzner, K., Paczesny, J. & Granick, S. From dynamic self-assembly to networked chemical systems. Chem. Soc. Rev. 46, 5647–5678 (2017).

    Article  CAS  Google Scholar 

  117. Lee, T., Gizynski, K. & Grzybowski, B. A. Non-equilibrium self-assembly of monocomponent and multicomponent tubular structures in rotating fluids. Adv. Mater. 29, 1704274 (2017).

    Article  CAS  Google Scholar 

  118. Winkelmann, J., Mughal, A., Williams, D. B., Weaire, D. & Hutzler, S. Theory of rotational columnar structures of soft spheres. Phys. Rev. E 99, 020602 (2019).

    Article  CAS  Google Scholar 

  119. Winkelmann, J., Mughal, A., Weaire, D. & Hutzler, S. Equilibrium configurations of hard spheres in a cylindrical harmonic potential. EPL 127, 44002 (2019).

    Article  CAS  Google Scholar 

  120. Adler, I., Barabe, D. & Jean, R. V. A history of the study of phyllotaxis. Ann. Bot. 80, 231–244 (1997).

    Article  Google Scholar 

  121. Erickson, R. O. Tubular packing of spheres in biological fine structure. Science 181, 705–716 (1973).

    Article  CAS  Google Scholar 

  122. Hutzler, S., Weaire, D., Elias, F. & Janiaud, E. Juggling with bubbles in cylindrical ferrofluid foams. Philos. Mag. Lett. 82, 297–301 (2002).

    Article  CAS  Google Scholar 

  123. Yan, J., Bloom, M., Bae, S. C., Luijten, E. & Granick, S. Linking synchronization to self-assembly using magnetic Janus colloids. Nature 491, 578–581 (2012).

    Article  CAS  Google Scholar 

  124. Zhou, Y. et al. Biomimetic hierarchical assembly of helical supraparticles from chiral nanoparticles. ACS Nano 10, 3248–3256 (2016).

    Article  CAS  Google Scholar 

  125. Lee, T., Sobolev, Y. I., Cybulski, O. & Grzybowski, B. A. Dynamic assembly of small parts in vortex–vortex traps established within a rotating fluid. Adv. Mater. 31, 1902298 (2019).

    Article  CAS  Google Scholar 

  126. Timonen, J. V. I. & Grzybowski, B. A. Tweezing of magnetic and non-magnetic objects with magnetic fields. Adv. Mater. 29, 1603516 (2017).

    Article  CAS  Google Scholar 

  127. Gibson, B. K. Liquid mirror telescopes-history. J. R. Astron. Soc. Can. 85, 158–171 (1991).

    Google Scholar 

  128. Skey, H. Art. XI — An astronomical telescope on a new construction. Trans. Proc. N. Z. Inst. 5, 119 (1872).

    Google Scholar 

  129. Wood, R. W. The mercury paraboloid as a reflecting telescope. Astrophys. J. 29, 164–176 (1909).

    Article  Google Scholar 

  130. Borra, E. F., Content, R., Drinkwater, M. J. & Szapiel, S. A diffraction-limited f/2 1.5 meter diameter liquid mirror. Astrophys. J. 346, L41–L44 (1989).

    Article  CAS  Google Scholar 

  131. Hickson, P. et al. The Large Zenith Telescope: a 6 m liquid-mirror telescope. Publ. Astron. Soc. Pac. 119, 444 (2007).

    Article  Google Scholar 

  132. Gibson, B. K. & Hickson, P. in Evolution of the Universe of Galaxies: Edwin Hubble Centennial Symposium 265 (Astronomical Society of the Pacific, 1990).

  133. Kim, D. W. et al. in Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II Vol. 9912, 99120P (SPIE, 2016).

  134. Emslie, A. G., Bonner, F. T. & Peck, L. G. Flow of a viscous liquid on a rotating disk. J. Appl. Phys. 29, 858–862 (1958).

    Article  CAS  Google Scholar 

  135. Wilson, S. K., Hunt, R. & Duffy, B. R. The rate of spreading in spin coating. J. Fluid Mech. 413, 65–88 (2000).

    Article  CAS  Google Scholar 

  136. Xia, Y. & Whitesides, G. M. Soft lithography. Angew. Chem. Int. Ed. 37, 550–575 (1998).

    Article  CAS  Google Scholar 

  137. Grigorescu, A. E. & Hagen, C. W. Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art. Nanotechnology 20, 292001 (2009).

    Article  CAS  Google Scholar 

  138. Ahn, N. et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696–8699 (2015).

    Article  CAS  Google Scholar 

  139. Kan, B. et al. A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. J. Am. Chem. Soc. 137, 3886–3893 (2015).

    Article  CAS  Google Scholar 

  140. Chiang, C.-H., Nazeeruddin, M. K., Grätzel, M. & Wu, C.-G. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ. Sci. 10, 808–817 (2017).

    Article  CAS  Google Scholar 

  141. Guan, W., Zhou, W., Lu, J. & Lu, C. Luminescent films for chemo- and biosensing. Chem. Soc. Rev. 44, 6981–7009 (2015).

    Article  CAS  Google Scholar 

  142. Lee, W., Zhang, X. & Briber, R. M. A simple method for creating nanoporous block-copolymer thin films. Polymer 51, 2376–2382 (2010).

    Article  CAS  Google Scholar 

  143. Jiang, P., Prasad, T., McFarland, M. J. & Colvin, V. L. Two-dimensional nonclose-packed colloidal crystals formed by spincoating. Appl. Phys. Lett. 89, 011908 (2006).

    Article  CAS  Google Scholar 

  144. He, H. et al. Uniform doping of graphene close to the Dirac point by polymer-assisted assembly of molecular dopants. Nat. Commun. 9, 3956 (2018).

    Article  CAS  Google Scholar 

  145. Pradhan, B., Kohlmeyer, R. R. & Chen, J. Fabrication of in-plane aligned carbon nanotube–polymer composite thin films. Carbon 48, 217–222 (2010).

    Article  CAS  Google Scholar 

  146. Bourzac, K. Carbon nanotube computers face a make-or-break moment. Chem. Eng. News 97, 22–25 (2019).

    Google Scholar 

  147. Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

    Article  CAS  Google Scholar 

  148. Chen, X., Smith, N. M., Iyer, K. S. & Raston, C. L. Controlling nanomaterial synthesis, chemical reactions and self assembly in dynamic thin films. Chem. Soc. Rev. 43, 1387–1399 (2014).

    Article  Google Scholar 

  149. Boodhoo, K. V. K. & Jachuck, R. J. Process intensification: spinning disk reactor for styrene polymerization. Appl. Therm. Eng. 20, 1127–1146 (2000).

    Article  CAS  Google Scholar 

  150. Pask, S. D., Nuyken, O. & Cai, Z. The spinning disk reactor: an example of a process intensification technology for polymers and particles. Polym. Chem. 3, 2698–2707 (2012).

    Article  CAS  Google Scholar 

  151. Jacobsen, N. C. & Hinrichsen, O. Micromixing efficiency of a spinning disk reactor. Ind. Eng. Chem. Res. 51, 11643–11652 (2012).

    Article  CAS  Google Scholar 

  152. Lodha, H., Jachuck, R., & Suppiah Singaram, S. Intensified biodiesel production using a rotating tube reactor. Energy Fuels 26, 7037–7040 (2012).

    Article  CAS  Google Scholar 

  153. Jachuck, R. J. J. & Ramshaw, C. Process intensification: heat transfer characteristics of tailored rotating surfaces. Heat Recover. Syst. CHP 14, 475–491 (1994).

    Article  CAS  Google Scholar 

  154. Stankiewicz, A. I. & Moulijn, J. A. Process intensification: transforming chemical engineering. Chem. Eng. Prog. 96, 22–34 (2000).

    CAS  Google Scholar 

  155. Ochando-Pulido, J. M., Stoller, M., Di Palma, L., Martínez-Férez, A. & Vilardi, G. in Nanophotocatalysis and Environmental Applications (eds Inamuddin, G. S., Kumar, A., Lichtfouse, E. & Asiri, A. M.) 303–333 (Springer, 2019).

  156. Visscher, F., van der Schaaf, J., Nijhuis, T. A. & Schouten, J. C. Rotating reactors — A review. Chem. Eng. Res. Des. 91, 1923–1940 (2013).

    Article  CAS  Google Scholar 

  157. Oxley, P., Brechtelsbauer, C., Ricard, F., Lewis, N. & Ramshaw, C. Evaluation of spinning disk reactor technology for the manufacture of pharmaceuticals. Ind. Eng. Chem. Res. 39, 2175–2182 (2000).

    Article  CAS  Google Scholar 

  158. Feng, X., Patterson, D. A., Balaban, M., Fauconnier, G. & Emanuelsson, E. A. C. The spinning cloth disc reactor for immobilized enzymes: a new process intensification technology for enzymatic reactions. Chem. Eng. J. 221, 407–417 (2013).

    Article  CAS  Google Scholar 

  159. Britton, J., Stubbs, K. A., Weiss, G. A. & Raston, C. L. Vortex fluidic chemical transformations. Chem. Eur. J. 23, 13270–1327 (2017).

    Article  CAS  Google Scholar 

  160. Yasmin, L., Chen, X., Stubbs, K. A. & Raston, C. L. Optimising a vortex fluidic device for controlling chemical reactivity and selectivity. Sci. Rep. 3, 2282 (2013).

    Article  Google Scholar 

  161. Luo, X., Smith, P., Raston, C. L. & Zhang, W. Vortex fluidic device-intensified aqueous two phase extraction of C-phycocyanin from Spirulina maxima. ACS Sustain. Chem. Eng. 4, 3905–3911 (2016).

    Article  CAS  Google Scholar 

  162. Luo, X., Su, P., Zhang, W. & Raston, C. L. Microfluidic devices in fabricating nano or micromaterials for biomedical applications. Adv. Mater. Technol. 4, 1900488 (2019).

    Article  CAS  Google Scholar 

  163. Britton, J., Castle, J. W., Weiss, G. A. & Raston, C. L. Harnessing thin-film continuous-flow assembly lines. Chem. Eur. J. 22, 10773–10776 (2016).

    Article  CAS  Google Scholar 

  164. Britton, J., Chalker, J. M. & Raston, C. L. Rapid vortex fluidics: continuous flow synthesis of amides and local anesthetic lidocaine. Chem. Eur. J. 21, 10660–10665 (2015).

    Article  CAS  Google Scholar 

  165. Britton, J., Dalziel, S. B. & Raston, C. L. The synthesis of di-carboxylate esters using continuous flow vortex fluidics. Green Chem. 18, 2193–2200 (2016).

    Article  CAS  Google Scholar 

  166. Yasmin, L., Stubbs, K. A. & Raston, C. L. Vortex fluidic promoted Diels–Alder reactions in an aqueous medium. Tetrahedron Lett. 55, 2246–2248 (2014).

    Article  CAS  Google Scholar 

  167. Ho, L. A., Raston, C. L. & Stubbs, K. A. Angled vortex fluidic mediated multicomponent photocatalytic and transition metal-catalyzed reactions. Chem. Eur. J. 24, 8869–8874 (2018).

    Article  CAS  Google Scholar 

  168. Gandy, M. N., Raston, C. L. & Stubbs, K. A. Photoredox catalysis under shear using thin film vortex microfluidics. Chem. Commun. 51, 11041–11044 (2015).

    Article  CAS  Google Scholar 

  169. Oksdath-Mansilla, G., Kucera, R. L., Chalker, J. M. & Raston, C. L. Azide–alkyne cycloadditions in a vortex fluidic device: enhanced “on water” effects and catalysis in flow. Chem. Commun. 57, 659–662 (2021).

    Article  CAS  Google Scholar 

  170. Yasmin, L., Eggers, P. K., Skelton, B. W., Stubbs, K. A. & Raston, C. L. Thin film microfluidic synthesis of fluorescent highly substituted pyridines. Green Chem. 16, 3450–3453 (2014).

    Article  CAS  Google Scholar 

  171. Yasmin, L., Coyle, T. & Raston, C. L. Stereospecific synthesis of resorcin[4]arenes and pyrogallol[4]arenes in dynamic thin films. Chem. Commun. 49, 10932–10934 (2013).

    Article  CAS  Google Scholar 

  172. Martin, A. D., Boulos, R. A., Hubble, L. J., Hartlieb, K. J. & Raston, C. L. Multifunctional water-soluble molecular capsules based on p-phosphonic acid calix[5]arene. Chem. Commun. 47, 7353–7355 (2011).

    Article  CAS  Google Scholar 

  173. Chen, X., Dobson, J. F. & Raston, C. L. Vortex fluidic exfoliation of graphite and boron nitride. Chem. Commun. 48, 3703–3705 (2012).

    Article  CAS  Google Scholar 

  174. Vimalanathan, K., Chen, X. & Raston, C. L. Shear induced fabrication of intertwined single walled carbon nanotube rings. Chem. Commun. 50, 11295–11298 (2001).

    Article  Google Scholar 

  175. Goh, Y. A. et al. Shear flow assisted decoration of carbon nano-onions with platinum nanoparticles. Chem. Commun. 49, 5171–5173 (2013).

    Article  CAS  Google Scholar 

  176. Luo, X. et al. Laser irradiated vortex fluidic mediated synthesis of luminescent carbon nanodots under continuous flow. React. Chem. Eng. 3, 164–170 (2018).

    Article  CAS  Google Scholar 

  177. Alharbi, T. M. D., Vimalanathan, K., Lawrance, W. D. & Raston, C. L. Controlled slicing of single walled carbon nanotubes under continuous flow. Carbon 140, 428–432 (2018).

    Article  CAS  Google Scholar 

  178. Alharbi, T. M. D., Vimalanathan, K., Alsulami, I. K. & Raston, C. L. Vertically aligned laser sliced MWCNTs. Nanoscale 11, 21394–21403 (2019).

    Article  CAS  Google Scholar 

  179. Al-Antaki, A. H. M. et al. Continuous flow copper laser ablation synthesis of copper(I and II) oxide nanoparticles in water. ACS Omega 4, 13577–13584 (2019).

    Article  CAS  Google Scholar 

  180. Mohammed Al-Antaki, A. H. et al. Continuous flow synthesis of phosphate binding h-BN@magnetite hybrid material. RSC Adv. 8, 40829–40835 (2018).

    Article  CAS  Google Scholar 

  181. Yuan, T. Z. et al. Shear-stress-mediated refolding of proteins from aggregates and inclusion bodies. ChemBioChem 16, 393–396 (2015).

    Article  CAS  Google Scholar 

  182. Britton, J., Meneghini, L. M., Raston, C. L. & Weiss, G. A. Accelerating enzymatic catalysis using vortex fluidics. Angew. Chem. Int. Ed. 55, 11387–11391 (2016).

    Article  CAS  Google Scholar 

  183. Luo, X. et al. Vortex fluidic-mediated fabrication of fast gelated silica hydrogels with embedded laccase nanoflowers for real-time biosensing under flow. ACS Appl. Mater. Interfaces 12, 51999–52007 (2020).

    Article  CAS  Google Scholar 

  184. Luo, X. et al. Vortex fluidic mediated synthesis of macroporous bovine serum albumin-based microspheres. ACS Appl. Mater. Interfaces 10, 27224–27232 (2018).

    Article  CAS  Google Scholar 

  185. Luo, X. et al. High-shear-imparted tunable fluorescence in polyethylenimines. ChemPhotoChem 2, 343–348 (2018).

    Article  CAS  Google Scholar 

  186. He, S., Joseph, N., Luo, X. & Raston, C. Continuous flow thin film microfluidic mediated nano-encapsulation of fish oil. LWT 103, 88–93 (2019).

    Article  CAS  Google Scholar 

  187. He, S., Joseph, N., Luo, X. & Raston, C. L. Vortex fluidic mediated food processing. PLoS ONE 14, e0216816 (2019).

    Article  CAS  Google Scholar 

  188. Andrade, M. A. & Martins, L. M. D. R. S. New trends in C–C cross-coupling reactions: the use of unconventional conditions. Molecules 25, 5506 (2020).

    Article  CAS  Google Scholar 

  189. Taylor, G. I. Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. R. Soc. Lond. Ser. A 223, 289–343 (1923).

    Article  Google Scholar 

  190. Gleick, J. Chaos: Making a New Science 119–155 (Penguin Books, 2008).

  191. Grossmann, S., Lohse, D. & Sun, C. High–Reynolds number Taylor-Couette turbulence. Annu. Rev. Fluid Mech. 48, 53–80 (2016).

    Article  Google Scholar 

  192. Andereck, C. D., Liu, S. S. & Swinney, H. L. Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155–183 (1986).

    Article  Google Scholar 

  193. Coles, D. Transition in circular Couette flow. J. Fluid Mech. 21, 385–425 (1965).

    Article  Google Scholar 

  194. Wetzel, T. et al. Numerical model of turbulent CZ melt flow in the presence of AC and CUSP magnetic fields and its verification in a laboratory facility. J. Cryst. Growth 230, 81–91 (2001).

    Article  CAS  Google Scholar 

  195. Jeong, H., Lee, Y., Ji, M., Lee, G. & Chung, H. The optimum solidification and crucible rotation in silicon Czochralski crystal growth. J. Mech. Sci. Technol. 24, 407–414 (2010).

    Article  Google Scholar 

  196. Schwabe, D. G. Spiral crystal growth in the Czochralski process — revisited, with new interpretations. Cryst. Res. Technol. 55, 1900073 (2020).

    Article  CAS  Google Scholar 

  197. Mokshin, A. V. & Barrat, J. L. Shear-induced crystallization of an amorphous system. Phys. Rev. E 77, 021505 (2008).

    Article  CAS  Google Scholar 

  198. Zaccone, A., Wu, H., Gentili, D. & Morbidelli, M. Theory of activated-rate processes under shear with application to shear-induced aggregation of colloids. Phys. Rev. E 80, 051404 (2009).

    Article  CAS  Google Scholar 

  199. Richard, D. & Speck, T. The role of shear in crystallization kinetics: From suppression to enhancement. Sci. Rep. 5, 14610 (2015).

    Article  CAS  Google Scholar 

  200. Mura, F. & Zaccone, A. Effects of shear flow on phase nucleation and crystallization. Phys. Rev. E 93, 042803 (2016).

    Article  CAS  Google Scholar 

  201. Holmqvist, P., Lettinga, M. P., Buitenhuis, J. & Dhont, J. K. G. Crystallization kinetics of colloidal spheres under stationary shear flow. Langmuir 21, 10976–10982 (2005).

    Article  CAS  Google Scholar 

  202. Blaak, R., Auer, S., Frenkel, D. & Löwen, H. Crystal nucleation of colloidal suspensions under shear. Phys. Rev. Lett. 93, 068303 (2004).

    Article  CAS  Google Scholar 

  203. Cerdà, J. J., Sintes, T., Holm, C., Sorensen, C. M. & Chakrabarti, A. Shear effects on crystal nucleation in colloidal suspensions. Phys. Rev. E 78, 031403 (2008).

    Article  CAS  Google Scholar 

  204. Yu, L. W., Derks, D., Van Blaaderen, A. & Imhof, A. Melting and crystallization of colloidal hard-sphere suspensions under shear. Proc. Natl Acad. Sci. USA 106, 10564–10569 (2009).

    Article  Google Scholar 

  205. Rwei, S. P., Manas-Zloczower, I. & Feke, D. L. Observation of carbon black agglomerate dispersion in simple shear flows. Polym. Eng. Sci. 30, 701–706 (1990).

    Article  CAS  Google Scholar 

  206. Vassileva, N. D., Van Den Ende, D., Mugele, F. & Mellema, J. Fragmentation and erosion of two-dimensional aggregates in shear flow. Langmuir 23, 2352–2361 (2007).

    Article  CAS  Google Scholar 

  207. Zaccone, A., Wu, H., Lattuada, M. & Morbidelli, M. Charged molecular films on Brownian particles: Structure, interactions, and relation to stability. J. Phys. Chem. B 112, 6793–6802 (2008).

    Article  CAS  Google Scholar 

  208. Soos, M. et al. Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank. J. Colloid Interface Sci. 319, 577–589 (2008).

    Article  CAS  Google Scholar 

  209. Zaccone, A. et al. Breakup of dense colloidal aggregates under hydrodynamic stresses. Phys. Rev. E 79, 061401 (2009).

    Article  CAS  Google Scholar 

  210. Conchúir, B. Ó. & Zaccone, A. Mechanism of flow-induced biomolecular and colloidal aggregate breakup. Phys. Rev. E 87, 032310 (2013).

    Article  CAS  Google Scholar 

  211. Forsyth, C. et al. Influence of controlled fluid shear on nucleation rates in glycine aqueous solutions. Cryst. Growth Des. 15, 94–102 (2015).

    Article  CAS  Google Scholar 

  212. Sun, J., Sobolev, Y. I., Zhang, W., Zhuang, Q. & Grzybowski, B. A. Enhancing crystal growth using polyelectrolyte solutions and shear flow. Nature 579, 73–79 (2020).

    Article  CAS  Google Scholar 

  213. Onuki, A. Phase transitions of fluids in shear flow. J. Phys. Condens. Matter 9, 6119–6157 (1997).

    Article  CAS  Google Scholar 

  214. Yucel, T., Cebe, P. & Kaplan, D. L. Vortex-induced injectable silk fibroin hydrogels. Biophys. J. 97, 2044–2050 (2009).

    Article  CAS  Google Scholar 

  215. Babenko, V., Piejko, M., Wójcik, S., Mak, P. & Dzwolak, W. Vortex-induced amyloid superstructures of insulin and its component A and B chains. Langmuir 29, 5271–5278 (2013).

    Article  CAS  Google Scholar 

  216. Kondepudi, D. K., Kaufman, R. J. & Singh, N. Chiral symmetry breaking in sodium chlorate crystallizaton. Science 250, 975–976 (1990).

    Article  CAS  Google Scholar 

  217. McBride, J. M. & Carter, R. L. Spontaneous resolution by stirred crystallization. Angew. Chem. Int. Ed. 30, 293–295 (1991).

    Article  Google Scholar 

  218. Viedma, C. Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys. Rev. Lett. 94, 65504 (2005).

    Article  CAS  Google Scholar 

  219. Bodák, B., Maggioni, G. M. & Mazzotti, M. Population-based mathematical model of solid-state deracemization via temperature cycles. Cryst. Growth Des. 18, 7122–7131 (2018).

    Article  CAS  Google Scholar 

  220. Ribó, J. M., Crusats, J., Sagués, F., Claret, J. & Rubires, R. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292, 2063–2066 (2001).

    Article  Google Scholar 

  221. Escudero, C., Crusats, J., Diez-Pérez, I., El-Hachemi, Z. & Ribó, J. M. Folding and hydrodynamic forces in J-aggregates of 5-phenyl-10,15,20-tris(4-sulfophenyl)porphyrin. Angew. Chem. Int. Ed. 45, 8032–8035 (2006).

    Article  CAS  Google Scholar 

  222. Tsuda, A. et al. Spectroscopic visualization of vortex flows using dye-containing nanofibers. Angew. Chem. Int. Ed. 46, 8198–8202 (2007).

    Article  CAS  Google Scholar 

  223. Wolffs, M. et al. Macroscopic origin of circular dichroism effects by alignment of self-assembled fibers in solution. Angew. Chem. Int. Ed. 46, 8203–8205 (2007).

    Article  CAS  Google Scholar 

  224. Okano, K. & Yamashita, T. Formation of chiral environments by a mechanical induced vortex flow. ChemPhysChem 13, 2263–2271 (2012).

    Article  CAS  Google Scholar 

  225. Arteaga, O. et al. Reversible and irreversible emergence of chiroptical signals in J-aggregates of achiral 4-sulfonatophenyl substituted porphyrins: intrinsic chirality vs. chiral ordering in the solution. Chem. Commun. 52, 10874–10877 (2016).

    Article  CAS  Google Scholar 

  226. Kehoe, D. K., McCarthy, J., Gough, J. J., Bradley, A. L. & Gun’ko, Y. K. Macroscopic vortex-induced optical activity in silver nanowires. J. Phys. Chem. C 123, 15307–15313 (2019).

    Article  CAS  Google Scholar 

  227. Li, Y. et al. Enantiomorphic microvortex-enabled supramolecular sensing of racemic amino acids by using achiral building blocks. Angew. Chem. Int. Ed. 59, 3486–3490 (2020).

    Article  CAS  Google Scholar 

  228. Kuroha, M. et al. Chiral supramolecular nanoarchitectures from macroscopic mechanical rotations: effects on enantioselective aggregation behavior of phthalocyanines. Angew. Chem. Int. Ed. 58, 18454–18459 (2019).

    Article  CAS  Google Scholar 

  229. Huang, J.-C. et al. Circularly polarized luminescence of achiral metal–organic colloids and guest molecules in a vortex field. Chem. Eur. J. 27, 6760–6766 (2021).

    Article  CAS  Google Scholar 

  230. Sun, J. et al. Control over the emerging chirality in supramolecular gels and solutions by chiral microvortices in milliseconds. Nat. Commun. 9, 2599 (2018).

    Article  CAS  Google Scholar 

  231. Okano, K., Taguchi, M., Fujiki, M. & Yamashita, T. Circularly polarized luminescence of rhodamine B in a supramolecular chiral medium formed by a vortex flow. Angew. Chem. Int. Ed. 50, 12474–12477 (2011).

    Article  CAS  Google Scholar 

  232. Hermans, T. M., Bishop, K. J. M., Stewart, P. S., Davis, S. H. & Grzybowski, B. A. Vortex flows impart chirality-specific lift forces. Nat. Commun. 6, 5640 (2015).

    Article  CAS  Google Scholar 

  233. Hermans, T. M., Sato, A. & Marichez, V. Method for chiral resolution and device therefor. WO Patent 2,016,020,532 (2017).

  234. Cybulski, O. et al. Concentric liquid reactors for chemical synthesis and separation. Nature 586, 57–63 (2020).

    Article  CAS  Google Scholar 

  235. Jänecke, E. Über Entmischungserscheinungen anorganischer Salze in wässrigen ammoniakalischen Lösungen. Z. Elektrochem. Angew. Phys. Chem. 33, 518–526 (1927).

    Google Scholar 

  236. Pattle, R. E. Systems of mutually immiscible liquid layers. Nature 165, 203–204 (1950).

    Article  CAS  Google Scholar 

  237. Hildebrand, J. H. Seven liquid phases in equilibrium. J. Phys. Colloid Chem. 53, 944–947 (1949).

    Article  CAS  Google Scholar 

  238. Eckelmann, J. & Lu, U. Mixing liquids-mission impossible? A colorful demonstration on immiscible systems. J. Chem. Educ. 90, 224–227 (2013).

    Article  CAS  Google Scholar 

  239. Kitson, P. J. et al. Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals. Science 359, 314–319 (2018).

    Article  CAS  Google Scholar 

  240. Hartman, R. L., McMullen, J. P. & Jensen, K. F. Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. Angew. Chem. Int. Ed. 50, 7502–7519 (2011).

    Article  CAS  Google Scholar 

  241. Pastre, J. C., Browne, D. L. & Ley, S. V. Flow chemistry syntheses of natural products. Chem. Soc. Rev. 42, 8849–8869 (2013).

    Article  CAS  Google Scholar 

  242. Itoh, H., Thien, M. P., Hatton, T. A. & Wang, D. I. C. A liquid emulsion membrane process for the separation of amino acids. Biotechnol. Bioeng. 35, 853–860 (1990).

    Article  CAS  Google Scholar 

  243. Ahmad, A. L., Kusumastuti, A., Derek, C. J. C. & Ooi, B. S. Emulsion liquid membrane for heavy metal removal: An overview on emulsion stabilization and destabilization. Chem. Eng. J. 171, 870–882 (2011).

    Article  CAS  Google Scholar 

  244. Kumar, A., Thakur, A. & Panesar, P. S. A review on emulsion liquid membrane (ELM) for the treatment of various industrial effluent streams. Rev. Environ. Sci. Biotechnol. 18, 153–182 (2019).

    Article  Google Scholar 

  245. Schöller, C., Chaudhuri, J. B. & Pyle, D. L. Emulsion liquid membrane extraction of lactic acid from aqueous solutions and fermentation broth. Biotechnol. Bioeng. 42, 50–58 (1993).

    Article  Google Scholar 

  246. Kumar, A., Thakur, A. & Panesar, P. S. Lactic acid and its separation and purification techniques: A review. Rev. Environ. Sci. Biotechnol. 18, 823–853 (2019).

    Article  Google Scholar 

  247. Herranz, R. et al. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1–17 (2012).

    Article  Google Scholar 

  248. Wuest, S. L., Richard, S., Kopp, S., Grimm, D. & Egli, M. Simulated microgravity: Critical review on the use of random positioning machines for mammalian cell culture. Biomed. Res. Int. 2015, 971474 (2015).

    Article  CAS  Google Scholar 

  249. Braddock, M. From target identification to drug development in space: using the microgravity assist. Curr. Drug Discov. Technol. 17, 45–56 (2019).

    Article  CAS  Google Scholar 

  250. Amselem, S. Remote controlled autonomous microgravity lab platforms for drug research in space. Pharm. Res. 36, 183 (2019).

    Article  CAS  Google Scholar 

  251. Wilson, J. W. et al. Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PLoS ONE 3, e3923 (2008).

    Article  CAS  Google Scholar 

  252. Kopp, S. et al. Identifications of novel mechanisms in breast cancer cells involving duct-like multicellular spheroid formation after exposure to the Random Positioning Machine. Sci. Rep. 6, 26887 (2016).

    Article  CAS  Google Scholar 

  253. Schwarz, R. P., Goodwin, T. J. & Wolf, D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods 14, 51–57 (1992).

    Article  CAS  Google Scholar 

  254. Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M. & Buchen, B. Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203, S187–S197 (1997).

    Article  CAS  Google Scholar 

  255. Borst, A. G. & Van Loon, J. J. W. A. Technology and developments for the random positioning machine, RPM. Microgravity Sci. Technol. 21, 287–292 (2009).

    Article  Google Scholar 

  256. Benavides Damm, T., Walther, I., Wüest, S. L., Sekler, J. & Egli, M. Cell cultivation under different gravitational loads using a novel random positioning incubator. Biotechnol. Bioeng. 111, 1180–1190 (2014).

    Article  CAS  Google Scholar 

  257. Moorman, S. J., Burress, C., Cordova, R. & Slater, J. Stimulus dependence of the development of the zebrafish (Danio rerio) vestibular system. J. Neurobiol. 38, 247–258 (1999).

    Article  CAS  Google Scholar 

  258. Liu, Y., Li, X., Anken, R. H., Wang, G. & Hilbig, R. Effects of wall vessel rotation on the growth of larval zebrafish inner ear otoliths. Microgravity Sci. Technol. 23, 13–18 (2010).

    Article  CAS  Google Scholar 

  259. Brungs, S., Hauslage, J., Hilbig, R., Hemmersbach, R. & Anken, R. Effects of simulated weightlessness on fish otolith growth: clinostat versus rotating-wall vessel. Adv. Space Res. 48, 792–798 (2011).

    Article  Google Scholar 

  260. Meier, S. W., Lueptow, R. M. & Ottino, J. M. A dynamical systems approach to mixing and segregation of granular materials in tumblers. Adv. Phys. 56, 757–827 (2007).

    Article  CAS  Google Scholar 

  261. Brucks, A., Arndt, T., Ottino, J. M. & Lueptow, R. M. Behavior of flowing granular materials under variable g. Phys. Rev. E 75, 032301 (2007).

    Article  CAS  Google Scholar 

  262. Mellmann, J. The transverse motion of solids in rotating cylinders — forms of motion and transition behavior. Powder Technol. 118, 251–270 (2001).

    Article  CAS  Google Scholar 

  263. Umbanhowar, P. B., Lueptow, R. M. & Ottino, J. M. Modeling segregation in granular flows. Annu. Rev. Chem. Biomol. Eng. 10, 129–153 (2019).

    Article  CAS  Google Scholar 

  264. Moog, R. S., Ediger, M. D., Boxer, S. G. & Fayer, M. D. Viscosity dependence of the rotational reorientation of rhodamine B in mono- and polyalcohols. Picosecond transient grating experiments. J. Phys. Chem. 86, 4694–4700 (1982).

    Article  CAS  Google Scholar 

  265. Srivastava, A. & Doraiswamy, S. Rotational diffusion of rose bengal. J. Chem. Phys. 103, 6197–6205 (1995).

    Article  CAS  Google Scholar 

  266. Dorsey, G. F. Fiber optic rotary joints — a review. IEEE Trans. Compon. Hybrids Manuf. Technol. 5, 37–41 (1982).

    Article  Google Scholar 

  267. Shapar, V. Principles of compensation of optical rays’ rotation and multi-channel optical rotary connectors. Appl. Opt. 57, 8023 (2018).

    Article  Google Scholar 

  268. Höfflin, J., Torres Delgado, S. M., Suárez Sandoval, F., Korvink, J. G. & Mager, D. Electrifying the disk: a modular rotating platform for wireless power and data transmission for lab on a disk application. Lab Chip 15, 2584–2587 (2015).

    Article  CAS  Google Scholar 

  269. Martinez-Duarte, R., Gorkin, R. A., Abi-Samra, K. & Madou, M. J. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab Chip 10, 1030–1043 (2010).

    Article  CAS  Google Scholar 

  270. Loo, J. F. C. et al. Sample-to-answer on molecular diagnosis of bacterial infection using integrated lab-on-a-disc. Biosens. Bioelectron. 93, 212–219 (2017).

    Article  CAS  Google Scholar 

  271. Torres Delgado, S. M. et al. Wirelessly powered and remotely controlled valve-array for highly multiplexed analytical assay automation on a centrifugal microfluidic platform. Biosens. Bioelectron. 109, 214–223 (2018).

    Article  CAS  Google Scholar 

  272. Torres Delgado, S. M., Korvink, J. G. & Mager, D. The eLoaD platform endows centrifugal microfluidics with on-disc power and communication. Biosens. Bioelectron. 117, 464–473 (2018).

    Article  CAS  Google Scholar 

  273. Torres Delgado, S. M. et al. Fully automated chemiluminescence detection using an electrified-Lab-on-a-Disc (eLoaD) platform. Lab Chip 16, 4002–4011 (2016).

    Article  CAS  Google Scholar 

  274. Zhu, D., Liu, B. & Wei, G. Two-dimensional material-based colorimetric biosensors: a review. Biosensors 11, 259 (2021).

    Article  CAS  Google Scholar 

  275. Kaur, B., Kaur, N. & Kumar, S. Colorimetric metal ion sensors — A comprehensive review of the years 2011–2016. Coord. Chem. Rev. 358, 13–69 (2018).

    Article  CAS  Google Scholar 

  276. Wu, D. et al. Fluorescent chemosensors: the past, present and future. Chem. Soc. Rev. 46, 7105–7123 (2017).

    Article  CAS  Google Scholar 

  277. Shamsipur, M., Barati, A. & Nematifar, Z. Fluorescent pH nanosensors: design strategies and applications. J. Photochem. Photobiol. C Photochem. Rev. 39, 76–141 (2019).

    Article  CAS  Google Scholar 

  278. Wolfbeis, O. S. Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode. BioEssays 37, 921–928 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science, Republic of Korea (IBS-R020-D1) and by the National Science Center, Poland (grant Maestro, no. 2018/30/A/ST5/00529).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the writing, editing and discussion of the content of the manuscript.

Corresponding author

Correspondence to Bartosz A. Grzybowski.

Ethics declarations

Competing interests

The authors hold patents related to material synthesis in rotary devices: South Korea Patent Application 10-2019-0008413 (B.A.G. and Y.I.S.), Patent WO2020/153739 (O.C., B.M.-K., Y.I.S. and B.A.G.).

Additional information

Peer review information

Nature Reviews Materials thanks Colin Raston, Nils Paust and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grzybowski, B.A., Sobolev, Y.I., Cybulski, O. et al. Materials, assemblies and reaction systems under rotation. Nat Rev Mater 7, 338–354 (2022). https://doi.org/10.1038/s41578-021-00404-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00404-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing