Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Topological materials discovery from crystal symmetry

Abstract

Topological materials discovery has evolved at a rapid pace over the past 15 years following the identification of the first nonmagnetic topological insulators (TIs), topological crystalline insulators (TCIs) and 3D topological semimetals (TSMs). Most recently, through complete analyses of symmetry-allowed band structures — including the theory of topological quantum chemistry (TQC) — researchers have determined crystal-symmetry-enhanced Wilson-loop and complete symmetry-based indicators for nonmagnetic topological phases, leading to the discovery of higher-order TCIs and TSMs. The recent application of TQC and related methods to high-throughput materials discovery has revealed that over half of the known stoichiometric, solid-state, nonmagnetic materials are topological at the Fermi level, over 85 per cent of the known stoichiometric materials host energetically isolated topological bands, and just under two-thirds of the energetically isolated bands in known materials carry the stable topology of a TI or TCI. In this Review, we survey topological electronic materials discovery in nonmagnetic crystalline solids from the prediction of the first 2D and 3D TIs to the recently introduced methods that have facilitated large-scale searches for topological materials. We also discuss future venues for the identification and manipulation of solid-state topological phases, including charge-density-wave compounds, magnetic materials, and 2D few-layer devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wannier centres and Wilson loops.
Fig. 2: Experimentally verified topological response effects in topological materials.
Fig. 3: The twofold Dirac-cone surface states of 3D topological insulators.
Fig. 4: 3D topological crystalline insulators.
Fig. 5: Chiral topological semimetal phases in structurally chiral crystals.
Fig. 6: Higher-order topological crystalline insulators.
Fig. 7: Representative materials with novel topological properties identified in the Topological Materials Database.

Similar content being viewed by others

References

  1. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    CAS  Google Scholar 

  2. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    CAS  Google Scholar 

  3. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    CAS  Google Scholar 

  4. Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    CAS  Google Scholar 

  5. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    CAS  Google Scholar 

  6. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Google Scholar 

  7. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    CAS  Google Scholar 

  8. Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 17, 808–813 (2018).

    CAS  Google Scholar 

  9. Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012).

    CAS  Google Scholar 

  10. Rajamathi, C. R. et al. Weyl semimetals as hydrogen evolution catalysts. Adv. Mater. 29, 1606202 (2017).

    Google Scholar 

  11. Yang, Q. et al. Topological engineering of Pt-group-metal-based chiral crystals toward high-efficiency hydrogen evolution catalysts. Adv. Mater. 32, 1908518 (2020).

    CAS  Google Scholar 

  12. Prinz, J., Gröning, O., Brune, H. & Widmer, R. Highly enantioselective adsorption of small prochiral molecules on a chiral intermetallic compound. Angew. Chem. 127, 3974–3978 (2015).

    Google Scholar 

  13. Bergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. The inorganic crystal structure data base. J. Chem. Inf. Computer Sci. 23, 66–69 (1983).

    CAS  Google Scholar 

  14. Allen, F. H. & Shields, G. P. Crystallographic Databases and Knowledge Bases in Materials Design 291–302 (Springer, 1999).

  15. Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    CAS  Google Scholar 

  16. Vergniory, M. G. et al. All topological bands of all stoichiometric materials. Preprint at arXiv https://arxiv.org/abs/2105.09954 (2021).

  17. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Google Scholar 

  18. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

    CAS  Google Scholar 

  19. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    CAS  Google Scholar 

  20. Gao, H., Venderbos, J. W., Kim, Y. & Rappe, A. M. Topological semimetals from first principles. Annu. Rev. Mater. Res. 49, 153–183 (2019).

    CAS  Google Scholar 

  21. Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    Google Scholar 

  22. Nagaosa, N., Morimoto, T. & Tokura, Y. Transport, magnetic and optical properties of Weyl materials. Nat. Rev. Mater. 5, 621–636 (2020).

    CAS  Google Scholar 

  23. Ashcroft, N. & Mermin, N. Solid State Physics (Holt, Rinehart and Winston, 1976).

  24. Manna, K., Sun, Y., Muechler, L., Kübler, J. & Felser, C. Heusler, Weyl and Berry. Nat. Rev. Mater. 3, 244–256 (2018).

    CAS  Google Scholar 

  25. Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).

    CAS  Google Scholar 

  26. Flack, H. Chiral and achiral crystal structures. Helvetica Chim. Acta 86, 905–921 (2003).

    CAS  Google Scholar 

  27. Bradley, C. & Cracknell, A. The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Clarendon Press, 1972).

  28. Conway, J., Burgiel, H. & Goodman-Strauss, C. The Symmetries of Things. (AK Peters Series, Taylor & Francis, 2008).

  29. Wigner, E. P. in Nachrichten der Akademie der Wissenschaften in Gottingen. II. Mathematisch-Physikalische Klasse 546–559 (Springer, 1932).

  30. Wigner, E. & Griffin, J. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, 1959).

  31. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    CAS  Google Scholar 

  32. Elcoro, L. et al. Double crystallographic groups and their representations on the Bilbao Crystallographic Server. J. Appl. Crystallogr 50, 1457–1477 (2017).

    CAS  Google Scholar 

  33. Aroyo, M. I. et al. Bilbao crystallographic server: I. Databases and crystallographic computing programs. Z. Kristallogr. 221, 15–27 (2006).

    CAS  Google Scholar 

  34. Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M. & Wondratschek, H. Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr. A 62, 115–128 (2006).

    Google Scholar 

  35. Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997).

    CAS  Google Scholar 

  36. Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899–915 (1994).

    CAS  Google Scholar 

  37. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    CAS  Google Scholar 

  38. Thouless, D. J. Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

    CAS  Google Scholar 

  39. Thouless, D. J. Wannier functions for magnetic sub-bands. J. Phys. C 17, L325–L327 (1984).

    CAS  Google Scholar 

  40. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Google Scholar 

  41. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Google Scholar 

  42. Chalker, J. T. & Coddington, P. D. Percolation, quantum tunnelling and the integer Hall effect. J. Phys. C 21, 2665–2679 (1988).

    Google Scholar 

  43. Lee, D.-H. Network models of quantum percolation and their field-theory representations. Phys. Rev. B 50, 10788–10791 (1994).

    CAS  Google Scholar 

  44. Ho, C.-M. & Chalker, J. T. Models for the integer quantum Hall effect: The network model, the Dirac equation, and a tight-binding Hamiltonian. Phys. Rev. B 54, 8708–8713 (1996).

    CAS  Google Scholar 

  45. Pruisken, A. M. Quasi particles in the theory of the integral quantum hall effect: (II). Renormalization of the Hall conductance or instanton angle theta. Nucl. Phys. B 290, 61–86 (1987).

    Google Scholar 

  46. Teo, J. C. Y. & Kane, C. L. Critical behavior of a point contact in a quantum spin Hall insulator. Phys. Rev. B 79, 235321 (2009).

    Google Scholar 

  47. Fu, L. & Kane, C. L. Topology, delocalization via average symmetry and the symplectic Anderson transition. Phys. Rev. Lett. 109, 246605 (2012).

    Google Scholar 

  48. Mong, R. S. K., Bardarson, J. H. & Moore, J. E. Quantum transport and two-parameter scaling at the surface of a weak topological insulator. Phys. Rev. Lett. 108, 076804 (2012).

    Google Scholar 

  49. Kimchi, I., Chou, Y.-Z., Nandkishore, R. M. & Radzihovsky, L. Anomalous localization at the boundary of an interacting topological insulator. Phys. Rev. B 101, 035131 (2020).

    CAS  Google Scholar 

  50. Song, Z.-D. et al. Delocalization transition of a disordered axion insulator. Phys. Rev. Lett. 127, 016602 (2021).

    CAS  Google Scholar 

  51. Li, H., Jiang, H., Chen, C.-Z. & Xie, X. C. Critical behavior and universal signature of an axion insulator state. Phys. Rev. Lett. 126, 156601 (2021).

    CAS  Google Scholar 

  52. Cano, J., Elcoro, L., Aroyo, M. I., Bernevig, B. A. & Bradlyn, B. Topology invisible to eigenvalues in obstructed atomic insulators. Preprint at arXiv https://arxiv.org/abs/2107.00647 (2021).

  53. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).

    CAS  Google Scholar 

  54. Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W. P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988).

    CAS  Google Scholar 

  55. Kohn, W. Analytic properties of Bloch waves and Wannier functions. Phys. Rev. 115, 809–821 (1959).

    Google Scholar 

  56. Schindler, F., Bradlyn, B., Fischer, M. H. & Neupert, T. Pairing obstructions in topological superconductors. Phys. Rev. Lett. 124, 247001 (2020).

    CAS  Google Scholar 

  57. Soluyanov, A. A. & Vanderbilt, D. Wannier representation of Z2 topological insulators. Phys. Rev. B 83, 035108 (2011).

    Google Scholar 

  58. Bradlyn, B., Wang, Z., Cano, J. & Bernevig, B. A. Disconnected elementary band representations, fragile topology, and Wilson loops as topological indices: an example on the triangular lattice. Phys. Rev. B 99, 045140 (2019).

    CAS  Google Scholar 

  59. Wieder, B. J. & Bernevig, B. A. The axion insulator as a pump of fragile topology. Preprint at arXiv https://arxiv.org/abs/1810.02373 (2018).

  60. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    CAS  Google Scholar 

  61. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Soliton excitations in polyacetylene. Phys. Rev. B 22, 2099–2111 (1980).

    CAS  Google Scholar 

  62. Rice, M. J. & Mele, E. J. Elementary excitations of a linearly conjugated diatomic polymer. Phys. Rev. Lett. 49, 1455–1459 (1982).

    CAS  Google Scholar 

  63. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Google Scholar 

  64. Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747–2750 (1989).

    CAS  Google Scholar 

  65. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).

    CAS  Google Scholar 

  66. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017).

    Google Scholar 

  67. Schindler, F. et al. Higher-order topological insulators. Sci. Adv. https://doi.org/10.1126/sciadv.aat0346 (2018).

  68. Wieder, B. J. et al. Strong and fragile topological Dirac semimetals with higher-order fermi arcs. Nat. Commun. 11, 627 (2020).

    CAS  Google Scholar 

  69. Wang, Z., Wieder, B. J., Li, J., Yan, B. & Bernevig, B. A. Higher-order topology, monopole nodal lines, and the origin of large Fermi arcs in transition metal dichalcogenides XTe2 (X = Mo, W). Phys. Rev. Lett. 123, 186401 (2019).

    CAS  Google Scholar 

  70. Benalcazar, W. A., Li, T. & Hughes, T. L. Quantization of fractional corner charge in Cn-symmetric higher-order topological crystalline insulators. Phys. Rev. B 99, 245151 (2019).

    CAS  Google Scholar 

  71. Fidkowski, L., Jackson, T. S. & Klich, I. Model characterization of gapless edge modes of topological insulators using intermediate Brillouin-zone functions. Phys. Rev. Lett. 107, 036601 (2011).

    Google Scholar 

  72. Yu, R., Qi, X. L., Bernevig, A., Fang, Z. & Dai, X. Equivalent expression of Z2 topological invariant for band insulators using the non-abelian Berry connection. Phys. Rev. B 84, 075119 (2011).

    Google Scholar 

  73. Soluyanov, A. A. & Vanderbilt, D. Computing topological invariants without inversion symmetry. Phys. Rev. B 83, 235401 (2011).

    Google Scholar 

  74. Alexandradinata, A., Dai, X. & Bernevig, B. A. Wilson-loop characterization of inversion-symmetric topological insulators. Phys. Rev. B 89, 155114 (2014).

    Google Scholar 

  75. Fu, L. & Kane, C. L. Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006).

    Google Scholar 

  76. Alexandradinata, A., Wang, Z. & Bernevig, B. A. Topological insulators from group cohomology. Phys. Rev. X 6, 021008 (2016).

    Google Scholar 

  77. Wang, Z., Alexandradinata, A., Cava, R. J. & Bernevig, B. A. Hourglass fermions. Nature 532, 189–194 (2016).

    CAS  Google Scholar 

  78. Wieder, B. J. et al. Wallpaper fermions and the nonsymmorphic Dirac insulator. Science 361, 246–251 (2018).

    CAS  Google Scholar 

  79. He, L., Addison, Z., Mele, E. J. & Zhen, B. Quadrupole topological photonic crystals. Nat. Commun. 11, 3119 (2020).

    CAS  Google Scholar 

  80. Shtyk, A. & Chamon, C. Topological electronic properties of silicon. Phys. Rev. B 102, 195125 (2020).

    CAS  Google Scholar 

  81. Hirayama, M., Matsuishi, S., Hosono, H. & Murakami, S. Electrides as a new platform of topological materials. Phys. Rev. X 8, 031067 (2018).

    CAS  Google Scholar 

  82. Nie, S., Bernevig, B. A. & Wang, Z. Sixfold excitations in electrides. Phys. Rev. Res. 3, L012028 (2021).

    CAS  Google Scholar 

  83. Zhang, X. et al. Topological nodal line electrides: realization of an ideal nodal line state nearly immune from spin–orbit coupling. J. Phys. Chem. C. 123, 25871–25876 (2019).

    CAS  Google Scholar 

  84. Nie, S. et al. Application of topological quantum chemistry in electrides. Phys. Rev. B 103, 205133 (2021).

    CAS  Google Scholar 

  85. Cano, J. et al. Topology of disconnected elementary band representations. Phys. Rev. Lett. 120, 266401 (2018).

    CAS  Google Scholar 

  86. Vergniory, M. G. et al. Graph theory data for topological quantum chemistry. Phys. Rev. E 96, 023310 (2017).

    CAS  Google Scholar 

  87. Cano, J. et al. Building blocks of topological quantum chemistry: elementary band representations. Phys. Rev. B 97, 035139 (2018).

    CAS  Google Scholar 

  88. Po, H. C., Watanabe, H. & Vishwanath, A. Fragile topology and Wannier obstructions. Phys. Rev. Lett. 121, 126402 (2018).

    CAS  Google Scholar 

  89. Bouhon, A., Black-Schaffer, A. M. & Slager, R.-J. Wilson loop approach to fragile topology of split elementary band representations and topological crystalline insulators with time-reversal symmetry. Phys. Rev. B 100, 195135 (2019).

    CAS  Google Scholar 

  90. Song, Z.-D., Elcoro, L., Xu, Y.-F., Regnault, N. & Bernevig, B. A. Fragile phases as affine monoids: classification and material examples. Phys. Rev. X 10, 031001 (2020).

    CAS  Google Scholar 

  91. Hwang, Y., Ahn, J. & Yang, B.-J. Fragile topology protected by inversion symmetry: diagnosis, bulk-boundary correspondence, and Wilson loop. Phys. Rev. B 100, 205126 (2019).

    CAS  Google Scholar 

  92. Liu, S., Vishwanath, A. & Khalaf, E. Shift insulators: rotation-protected two-dimensional topological crystalline insulators. Phys. Rev. X 9, 031003 (2019).

    CAS  Google Scholar 

  93. Ahn, J., Park, S. & Yang, B.-J. Failure of Nielsen-Ninomiya theorem and fragile topology in two-dimensional systems with space-time inversion symmetry: Application to twisted bilayer graphene at magic angle. Phys. Rev. X 9, 021013 (2019).

    CAS  Google Scholar 

  94. Peri, V. et al. Experimental characterization of fragile topology in an acoustic metamaterial. Science 367, 797–800 (2020).

    CAS  Google Scholar 

  95. Song, Z.-D., Elcoro, L. & Bernevig, B. A. Twisted bulk-boundary correspondence of fragile topology. Science 367, 794–797 (2020).

    CAS  Google Scholar 

  96. Song, Z. et al. All magic angles in twisted bilayer graphene are topological. Phys. Rev. Lett. 123, 036401 (2019).

    CAS  Google Scholar 

  97. Zou, L., Po, H. C., Vishwanath, A. & Senthil, T. Band structure of twisted bilayer graphene: emergent symmetries, commensurate approximants, and Wannier obstructions. Phys. Rev. B 98, 085435 (2018).

    CAS  Google Scholar 

  98. Po, H. C., Zou, L., Senthil, T. & Vishwanath, A. Faithful tight-binding models and fragile topology of magic-angle bilayer graphene. Phys. Rev. B 99, 195455 (2019).

    CAS  Google Scholar 

  99. Taherinejad, M., Garrity, K. F. & Vanderbilt, D. Wannier center sheets in topological insulators. Phys. Rev. B 89, 115102 (2014).

    Google Scholar 

  100. Gresch, D. et al. Z2Pack: numerical implementation of hybrid Wannier centers for identifying topological materials. Phys. Rev. B 95, 075146 (2017).

    Google Scholar 

  101. Varnava, N., Souza, I. & Vanderbilt, D. Axion coupling in the hybrid Wannier representation. Phys. Rev. B 101, 155130 (2020).

    CAS  Google Scholar 

  102. Zak, J. Magnetic translation group. Phys. Rev. 134, A1602–A1606 (1964).

    Google Scholar 

  103. Niu, Q. Towards a quantum pump of electric charges. Phys. Rev. Lett. 64, 1812–1815 (1990).

    CAS  Google Scholar 

  104. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Google Scholar 

  105. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).

    Google Scholar 

  106. Coh, S. & Vanderbilt, D. Electric polarization in a Chern insulator. Phys. Rev. Lett. 102, 107603 (2009).

    Google Scholar 

  107. Mong, R. S. K., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010).

    Google Scholar 

  108. Shiozaki, K., Sato, M. & Gomi, K. Topology of nonsymmorphic crystalline insulators and superconductors. Phys. Rev. B 93, 195413 (2016).

    Google Scholar 

  109. Franca, S., van den Brink, J. & Fulga, I. C. An anomalous higher-order topological insulator. Phys. Rev. B 98, 201114 (2018).

    CAS  Google Scholar 

  110. Pythtb: Python tight binding open-source package. http://physics.rutgers.edu/pythtb/ (2016).

  111. Qian, Y. et al. Weyl semimetals with S4 symmetry. Phys. Rev. B 101, 155143 (2020).

    CAS  Google Scholar 

  112. Gao, J. et al. High-throughput screening for Weyl semimetals with S4 symmetry. Sci. Bull. https://www.sciencedirect.com/science/article/pii/S2095927320307738 (2020).

  113. Qi, X.-L., Wu, Y.-S. & Zhang, S.-C. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B 74, 085308 (2006).

    Google Scholar 

  114. Fang, C., Gilbert, M. J. & Bernevig, B. A. Bulk topological invariants in noninteracting point group symmetric insulators. Phys. Rev. B 86, 115112 (2012).

    Google Scholar 

  115. Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R.-J. Topological classification of crystalline insulators through band structure combinatorics. Phys. Rev. X 7, 041069 (2017).

    Google Scholar 

  116. Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018).

    CAS  Google Scholar 

  117. Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun. 8, 50 (2017).

    Google Scholar 

  118. Song, Z., Fang, Z. & Fang, C. (d−2)-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett. 119, 246402 (2017).

    Google Scholar 

  119. Song, Z., Zhang, T., Fang, Z. & Fang, C. Quantitative mappings between symmetry and topology in solids. Nat. Commun. 9, 3530 (2018).

    Google Scholar 

  120. Khalaf, E., Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry indicators and anomalous surface states of topological crystalline insulators. Phys. Rev. X 8, 031070 (2018).

    CAS  Google Scholar 

  121. Song, Z., Zhang, T. & Fang, C. Diagnosis for nonmagnetic topological semimetals in the absence of spin-orbital coupling. Phys. Rev. X 8, 031069 (2018).

    CAS  Google Scholar 

  122. Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019).

    CAS  Google Scholar 

  123. Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486–489 (2019).

    CAS  Google Scholar 

  124. Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Efficient topological materials discovery using symmetry indicators. Nat. Phys. 15, 470–476 (2019).

    CAS  Google Scholar 

  125. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    CAS  Google Scholar 

  126. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Google Scholar 

  127. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Google Scholar 

  128. Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin–orbit coupling. Phys. Rev. Lett. 97, 236805 (2006).

    Google Scholar 

  129. Li, H. & Sun, K. Pfaffian formalism for higher-order topological insulators. Phys. Rev. Lett. 124, 036401 (2020).

    CAS  Google Scholar 

  130. Marrazzo, A., Gibertini, M., Campi, D., Mounet, N. & Marzari, N. Prediction of a large-gap and switchable Kane-Mele quantum spin Hall insulator. Phys. Rev. Lett. 120, 117701 (2018).

    Google Scholar 

  131. Wada, M., Murakami, S., Freimuth, F. & Bihlmayer, G. Localized edge states in two-dimensional topological insulators: ultrathin Bi films. Phys. Rev. B 83, 121310 (2011).

    Google Scholar 

  132. Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).

    CAS  Google Scholar 

  133. Reis, F. et al. Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material. Science 357, 287–290 (2017).

    CAS  Google Scholar 

  134. Varsano, D., Palummo, M., Molinari, E. & Rontani, M. A monolayer transition-metal dichalcogenide as a topological excitonic insulator. Nat. Nanotechnol. 15, 367–372 (2020).

    CAS  Google Scholar 

  135. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    CAS  Google Scholar 

  136. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    CAS  Google Scholar 

  137. Tang, S. et al. Quantum spin Hall state in monolayer 1T’-WTe2. Nat. Phys. 13, 683–687 (2017).

    CAS  Google Scholar 

  138. Guo, Z. et al. Quantum spin Hall effect in Ta2M3Te5 (M = Pd, Ni). Phys. Rev. B 103, 115145 (2021).

    CAS  Google Scholar 

  139. Wang, X. et al. Observation of quantum spin Hall states in Ta2Pd3Te5. Preprint at arXiv https://arxiv.org/abs/2012.07293 (2020).

  140. Marrazzo, A., Marzari, N. & Gibertini, M. Emergent dual topology in the three-dimensional Kane-Mele Pt2HgSe3. Phys. Rev. Res. 2, 012063 (2020).

    CAS  Google Scholar 

  141. Facio, J. I. et al. Dual topology in Jacutingaite Pt2HgSe3. Phys. Rev. Mater. 3, 074202 (2019).

    CAS  Google Scholar 

  142. Cucchi, I. et al. Bulk and surface electronic structure of the dual-topology semimetal Pt2HgSe3. Phys. Rev. Lett. 124, 106402 (2020).

    CAS  Google Scholar 

  143. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Google Scholar 

  144. Roy, R. Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B 79, 195322 (2009).

    Google Scholar 

  145. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    CAS  Google Scholar 

  146. Hsieh, D. et al. Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009).

    CAS  Google Scholar 

  147. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009).

    CAS  Google Scholar 

  148. Hsieh, D. et al. Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys. Rev. Lett. 103, 146401 (2009).

    CAS  Google Scholar 

  149. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    CAS  Google Scholar 

  150. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    CAS  Google Scholar 

  151. Eschbach, M. et al. Realization of a vertical topological p–n junction in epitaxial Sb2Te3/Bi2Te3 heterostructures. Nat. Commun. 6, 8816 (2015).

    CAS  Google Scholar 

  152. Zhao, L. et al. Emergent surface superconductivity in the topological insulator Sb2Te3. Nat. Commun. 6, 8279 (2015).

    Google Scholar 

  153. Yang, H. et al. Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy. Nat. Rev. Mater. 3, 341–353 (2018).

    CAS  Google Scholar 

  154. Lv, B., Qian, T. & Ding, H. Angle-resolved photoemission spectroscopy and its application to topological materials. Nat. Rev. Phys. 1, 609–626 (2019).

    Google Scholar 

  155. Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009).

    CAS  Google Scholar 

  156. Ringel, Z., Kraus, Y. E. & Stern, A. Strong side of weak topological insulators. Phys. Rev. B 86, 045102 (2012).

    Google Scholar 

  157. Liu, C.-X., Qi, X.-L. & Zhang, S.-C. Half quantum spin Hall effect on the surface of weak topological insulators. Phys. E 44, 906–911 (2012).

    Google Scholar 

  158. Liu, C.-C., Zhou, J.-J., Yao, Y. & Zhang, F. Weak topological insulators and composite Weyl semimetals: β−Bi4X4 (X = Br, I). Phys. Rev. Lett. 116, 066801 (2016).

    Google Scholar 

  159. Noguchi, R. et al. A weak topological insulator state in quasi-one-dimensional bismuth iodide. Nature 566, 518–522 (2019).

    CAS  Google Scholar 

  160. Weng, H., Dai, X. & Fang, Z. Transition-metal pentatelluride ZrTe5 and HfTe5: a paradigm for large-gap quantum spin Hall insulators. Phys. Rev. X 4, 011002 (2014).

    CAS  Google Scholar 

  161. Zhang, P. et al. Observation and control of the weak topological insulator state in ZrTe5. Nat. Commun. 12, 406 (2021).

    Google Scholar 

  162. Rasche, B. et al. Crystal growth and real structure effects of the first weak 3D stacked topological insulator Bi14Rh3I9. Chem. Mater. 25, 2359–2364 (2013).

    CAS  Google Scholar 

  163. Rasche, B. et al. Stacked topological insulator built from bismuth-based graphene sheet analogues. Nat. Mater. 12, 422–425 (2013).

    CAS  Google Scholar 

  164. Pauly, C. et al. Subnanometre-wide electron channels protected by topology. Nat. Phys. 11, 338–343 (2015).

    CAS  Google Scholar 

  165. Lee, K. et al. Discovery of a weak topological insulating state and Van Hove singularity in triclinic RhBi2. Nat. Commun. 12, 1855 (2021).

    Google Scholar 

  166. Ruck, M. Kristallstruktur und Zwillingsbildung der intermetallischen phase β-Bi2Rh. Acta Crystallogr. B 52, 605–609 (1996).

    Google Scholar 

  167. Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012).

    Google Scholar 

  168. Tanaka, Y. et al. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 8, 800–803 (2012).

    CAS  Google Scholar 

  169. Fang, C. & Fu, L. New classes of topological crystalline insulators having surface rotation anomaly. Sci. Adv. 5, eaat2374 (2019).

    Google Scholar 

  170. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Google Scholar 

  171. Teo, J. C. Y., Fu, L. & Kane, C. L. Surface states and topological invariants in three-dimensional topological insulators: application to Bi1−xSbx. Phys. Rev. B 78, 045426 (2008).

    Google Scholar 

  172. Dong, X.-Y. & Liu, C.-X. Classification of topological crystalline insulators based on representation theory. Phys. Rev. B 93, 045429 (2016).

    Google Scholar 

  173. Slager, R.-J., Mesaros, A., Juričć, V. & Zaanen, J. The space group classification of topological band-insulators. Nat. Phys. 9, 98–102 (2013).

    CAS  Google Scholar 

  174. Shiozaki, K., Sato, M. & Gomi, K. Topological crystalline materials: general formulation, module structure, and wallpaper groups. Phys. Rev. B 95, 235425 (2017).

    Google Scholar 

  175. Fang, C. & Fu, L. New classes of three-dimensional topological crystalline insulators: nonsymmorphic and magnetic. Phys. Rev. B 91, 161105 (2015).

    Google Scholar 

  176. Ma, J. et al. Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb. Sci. Adv. https://doi.org/10.1126/sciadv.1602415 (2017).

    Article  Google Scholar 

  177. Liang, S. et al. A gap-protected zero-Hall effect state in the quantum limit of the non-symmorphic metal KHgSb. Nat. Mater. 18, 443–447 (2019).

    CAS  Google Scholar 

  178. Robredo, I. N., Vergniory, M. G. & Bradlyn, B. Higher-order and crystalline topology in a phenomenological tight-binding model of lead telluride. Phys. Rev. Mater. 3, 041202 (2019).

    CAS  Google Scholar 

  179. Fang, Y. & Cano, J. Higher-order topological insulators in antiperovskites. Phys. Rev. B 101, 245110 (2020).

    CAS  Google Scholar 

  180. Zhou, X. et al. Glide-mirror protected first- and second-order topological crystalline insulator. Preprint at arXiv https://arxiv.org/abs/2005.06071 (2020).

  181. Liu, Y. & Allen, R. E. Electronic structure of the semimetals Bi and Sb. Phys. Rev. B 52, 1566–1577 (1995).

    CAS  Google Scholar 

  182. Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

    CAS  Google Scholar 

  183. Semenoff, G. W. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 2449–2452 (1984).

    Google Scholar 

  184. DiVincenzo, D. P. & Mele, E. J. Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B 29, 1685–1694 (1984).

    CAS  Google Scholar 

  185. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    CAS  Google Scholar 

  186. Fujita, M., Wakabayashi, K., Nakada, K. & Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65, 1920–1923 (1996).

    CAS  Google Scholar 

  187. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    CAS  Google Scholar 

  188. Zhang, F. Spontaneous chiral symmetry breaking in bilayer graphene. Synth. Met. 210, 9–18 (2015).

    CAS  Google Scholar 

  189. Zhang, F., Kane, C. L. & Mele, E. J. Surface states of topological insulators. Phys. Rev. B 86, 081303 (2012).

    Google Scholar 

  190. Alvarez-Gaumé, L. & Witten, E. Gravitational anomalies. Nucl. Phys. B 234, 269–330 (1984).

    Google Scholar 

  191. Redlich, A. N. Gauge noninvariance and parity nonconservation of three-dimensional fermions. Phys. Rev. Lett. 52, 18–21 (1984).

    CAS  Google Scholar 

  192. Jackiw, R. Fractional charge and zero modes for planar systems in a magnetic field. Phys. Rev. D. 29, 2375–2377 (1984).

    CAS  Google Scholar 

  193. Mañes, J. L. Existence of bulk chiral fermions and crystal symmetry. Phys. Rev. B 85, 155118 (2012).

    Google Scholar 

  194. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    CAS  Google Scholar 

  195. Wieder, B. J. & Kane, C. L. Spin-orbit semimetals in the layer groups. Phys. Rev. B 94, 155108 (2016).

    Google Scholar 

  196. Watanabe, H., Po, H. C., Vishwanath, A. & Zaletel, M. Filling constraints for spin-orbit coupled insulators in symmorphic and nonsymmorphic crystals. Proc. Natl Acad. Sci. USA 112, 14551–14556 (2015).

    CAS  Google Scholar 

  197. Watanabe, H., Po, H. C., Zaletel, M. P. & Vishwanath, A. Filling-enforced gaplessness in band structures of the 230 space groups. Phys. Rev. Lett. 117, 096404 (2016).

    Google Scholar 

  198. Steinberg, J. A. et al. Bulk Dirac points in distorted spinels. Phys. Rev. Lett. 112, 036403 (2014).

    Google Scholar 

  199. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88, 125427 (2013).

    Google Scholar 

  200. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Google Scholar 

  201. Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

    CAS  Google Scholar 

  202. Ali, M. N. et al. The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene. Inorg. Chem. 53, 4062–4067 (2014).

    CAS  Google Scholar 

  203. Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 13, 677–681 (2014).

    CAS  Google Scholar 

  204. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    CAS  Google Scholar 

  205. Chang, T.-R. et al. Type-II symmetry-protected topological Dirac semimetals. Phys. Rev. Lett. 119, 026404 (2017).

    Google Scholar 

  206. Guo, P.-J., Yang, H.-C., Liu, K. & Lu, Z.-Y. Type-II Dirac semimetals in the YPd2Sn class. Phys. Rev. B 95, 155112 (2017).

    Google Scholar 

  207. Yan, M. et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nat. Commun. 8, 257 (2017).

    Google Scholar 

  208. Xu, S.-Y. et al. Observation of Fermi arc surface states in a topological metal. Science https://doi.org/10.1126/science.1256742 (2014).

    Article  Google Scholar 

  209. Yi, H. et al. Evidence of topological surface state in three-dimensional Dirac semimetal Cd3As2. Sci. Rep. 4, 6106 (2014).

    CAS  Google Scholar 

  210. Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat. Commun. 5, 5161 (2014).

    CAS  Google Scholar 

  211. Chiu, C.-K. & Schnyder, A. P. Classification of crystalline topological semimetals with an application to Na3Bi. J. Phys. Conf. Ser. 603, 012002 (2015).

    Google Scholar 

  212. Yang, B.-J. & Nagaosa, N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5, 4898 (2014).

    CAS  Google Scholar 

  213. Wu, Y. et al. Dirac node arcs in PtSn4. Nat. Phys. 12, 667–671 (2016).

    CAS  Google Scholar 

  214. Moll, P. J. W. et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2. Nature 535, 266–270 (2016).

    CAS  Google Scholar 

  215. Gyenis, A. et al. Imaging electronic states on topological semimetals using scanning tunneling microscopy. N. J. Phys. 18, 105003 (2016).

    Google Scholar 

  216. Jeon, S. et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nat. Mater. 13, 851–856 (2014).

    CAS  Google Scholar 

  217. Kargarian, M., Randeria, M. & Lu, Y.-M. Are the surface Fermi arcs in Dirac semimetals topologically protected? Proc. Natl Acad. Sci. USA 113, 8648–8652 (2016).

    CAS  Google Scholar 

  218. Kargarian, M., Lu, Y.-M. & Randeria, M. Deformation and stability of surface states in Dirac semimetals. Phys. Rev. B 97, 165129 (2018).

    CAS  Google Scholar 

  219. Le, C. et al. Dirac semimetal in β-CuI without surface Fermi arcs. Proc. Natl Acad. Sci. USA 115, 8311–8315 (2018).

    CAS  Google Scholar 

  220. Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. N. J. Phys. 9, 356–356 (2007).

    Google Scholar 

  221. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Google Scholar 

  222. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    CAS  Google Scholar 

  223. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  224. Huang, S.-M. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    CAS  Google Scholar 

  225. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    CAS  Google Scholar 

  226. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  227. Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    CAS  Google Scholar 

  228. Inoue, H. et al. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science 351, 1184–1187 (2016).

    CAS  Google Scholar 

  229. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    CAS  Google Scholar 

  230. Wang, Z. et al. MoTe2: a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).

    Google Scholar 

  231. Huang, S.-M. et al. New type of Weyl semimetal with quadratic double Weyl fermions. Proc. Natl Acad. Sci. USA 113, 1180–1185 (2016).

    CAS  Google Scholar 

  232. Tsirkin, S. S., Souza, I. & Vanderbilt, D. Composite Weyl nodes stabilized by screw symmetry with and without time-reversal invariance. Phys. Rev. B 96, 045102 (2017).

    Google Scholar 

  233. Fang, C., Gilbert, M. J., Dai, X. & Bernevig, B. A. Multi-Weyl topological semimetals stabilized by point group symmetry. Phys. Rev. Lett. 108, 266802 (2012).

    Google Scholar 

  234. Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

    Google Scholar 

  235. Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

    CAS  Google Scholar 

  236. Bernevig, B. A. Weyl Semimetals https://www.youtube.com/watch?v=j0zgWHLL1z4 (Topological Matter School DIPC, 2016).

  237. Gatti, G. et al. Radial spin texture of the Weyl fermions in chiral tellurium. Phys. Rev. Lett. 125, 216402 (2020).

    CAS  Google Scholar 

  238. Zhang, C.-L. et al. Ultraquantum magnetoresistance in the Kramers-Weyl semimetal candidate β−Ag2Se. Phys. Rev. B 96, 165148 (2017).

    Google Scholar 

  239. Qiu, G. et al. Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene. Nat. Nanotechnol. 15, 585–591 (2020).

    CAS  Google Scholar 

  240. Liu, Q.-B., Qian, Y., Fu, H.-H. & Wang, Z. Symmetry-enforced Weyl phonons. npj Comput. Mater. 6, 95 (2020).

    CAS  Google Scholar 

  241. Gooth, J. et al. Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017).

    CAS  Google Scholar 

  242. Franz, M. & Rozali, M. Mimicking black hole event horizons in atomic and solid-state systems. Nat. Rev. Mater. 3, 491–501 (2018).

    Google Scholar 

  243. Nielsen, H. & Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Google Scholar 

  244. Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    Google Scholar 

  245. Xiong, J. et al. Evidence for the chiral anomaly in the dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    CAS  Google Scholar 

  246. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  247. Liang, S. et al. Experimental tests of the chiral anomaly magnetoresistance in the Dirac-Weyl semimetals Na3Bi and GdPtBi. Phys. Rev. X 8, 031002 (2018).

    CAS  Google Scholar 

  248. Hirschberger, M. et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161–1165 (2016).

    CAS  Google Scholar 

  249. Zhang, C.-L. et al. Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2016).

    CAS  Google Scholar 

  250. Cano, J. et al. Chiral anomaly factory: Creating Weyl fermions with a magnetic field. Phys. Rev. B 95, 161306 (2017).

    Google Scholar 

  251. Kim, Y., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806 (2015).

    Google Scholar 

  252. Yu, R., Weng, H., Fang, Z., Dai, X. & Hu, X. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys. Rev. Lett. 115, 036807 (2015).

    Google Scholar 

  253. Fang, C., Chen, Y., Kee, H.-Y. & Fu, L. Topological nodal line semimetals with and without spin-orbital coupling. Phys. Rev. B 92, 081201 (2015).

    Google Scholar 

  254. Wieder, B. J., Kim, Y., Rappe, A. M. & Kane, C. L. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 116, 186402 (2016).

    Google Scholar 

  255. Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    Google Scholar 

  256. Carter, J.-M., Shankar, V. V., Zeb, M. A. & Kee, H.-Y. Semimetal and topological insulator in perovskite iridates. Phys. Rev. B 85, 115105 (2012).

    Google Scholar 

  257. Bzdušek, T., Wu, Q., Rüegg, A., Sigrist, M. & Soluyanov, A. A. Nodal-chain metals. Nature 538, 75–78 (2016).

    Google Scholar 

  258. Wu, Q., Soluyanov, A. A. & Bzdušek, T. Non-abelian band topology in noninteracting metals. Science 365, 1273–1277 (2019).

    CAS  Google Scholar 

  259. Xie, L. S. et al. A new form of Ca3P2 with a ring of Dirac nodes. Appl. Mater. 3, 083602 (2015).

    Google Scholar 

  260. Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7, 11696 (2016).

    CAS  Google Scholar 

  261. Topp, A. et al. Surface floating 2D bands in layered nonsymmorphic semimetals: ZrSiS and related compounds. Phys. Rev. X 7, 041073 (2017).

    Google Scholar 

  262. Takane, D. et al. Observation of Dirac-like energy band and ring-torus Fermi surface associated with the nodal line in topological insulator CaAgAs. npj Quant. Mater. 3, 1 (2018).

    CAS  Google Scholar 

  263. Bian, G. et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 7, 10556 (2016).

    CAS  Google Scholar 

  264. Lou, R. et al. Experimental observation of bulk nodal lines and electronic surface states in ZrB2. npj Quant. Mater. 3, 43 (2018).

    Google Scholar 

  265. Shao, Y. et al. Optical signatures of Dirac nodal lines in NbAs2. Proc. Natl Acad. Sci. USA 116, 1168–1173 (2019).

    CAS  Google Scholar 

  266. Zhu, Z. et al. Quasiparticle interference and nonsymmorphic effect on a floating band surface state of ZrSiSe. Nat. Commun. 9, 4153 (2018).

    Google Scholar 

  267. Sharma, G. et al. Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals. J. Mater. Chem. A 4, 2936–2942 (2016).

    CAS  Google Scholar 

  268. Di Sante, D. et al. Realizing double Dirac particles in the presence of electronic interactions. Phys. Rev. B 96, 121106 (2017).

    Google Scholar 

  269. Weng, H., Fang, C., Fang, Z. & Dai, X. Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride. Phys. Rev. B 93, 241202 (2016).

    Google Scholar 

  270. Zhu, Z., Winkler, G. W., Wu, Q., Li, J. & Soluyanov, A. A. Triple point topological metals. Phys. Rev. X 6, 031003 (2016).

    Google Scholar 

  271. Chang, G. et al. Nexus fermions in topological symmorphic crystalline metals. Sci. Rep. 7, 1688–1688 (2017).

    Google Scholar 

  272. Lv, B. Q. et al. Observation of three-component fermions in the topological semimetal molybdenum phosphide. Nature 546, 627–631 (2017).

    CAS  Google Scholar 

  273. Ma, J.-Z. et al. Three-component fermions with surface Fermi arcs in tungsten carbide. Nat. Phys. 14, 349–354 (2018).

    CAS  Google Scholar 

  274. Gao, H. et al. Dirac-weyl semimetal: coexistence of Dirac and Weyl fermions in polar hexagonal abc crystals. Phys. Rev. Lett. 121, 106404 (2018).

    CAS  Google Scholar 

  275. Sun, Z. P. et al. Direct observation of sixfold exotic fermions in the pyrite-structured topological semimetal PdSb2. Phys. Rev. B 101, 155114 (2020).

    CAS  Google Scholar 

  276. Wieder, B. J. Threes company. Nat. Phys. 14, 329–330 (2018).

    CAS  Google Scholar 

  277. Chang, G. et al. Unconventional chiral fermions and large topological Fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

    Google Scholar 

  278. Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

    Google Scholar 

  279. Takane, D. et al. Observation of chiral fermions with a large topological charge and associated Fermi-arc surface states in CoSi. Phys. Rev. Lett. 122, 076402 (2019).

    CAS  Google Scholar 

  280. Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

    CAS  Google Scholar 

  281. Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).

    CAS  Google Scholar 

  282. Schröter, N. B. M. et al. Chiral topological semimetal with multifold band crossings and long Fermi arcs. Nat. Phys. 15, 759–765 (2019).

    Google Scholar 

  283. Yuan, Q.-Q. et al. Quasiparticle interference evidence of the topological Fermi arc states in chiral fermionic semimetal CoSi. Sci. Adv. 5, eaaw9485 (2019).

    CAS  Google Scholar 

  284. Schröter, N. B. M. et al. Observation and control of maximal Chern numbers in a chiral topological semimetal. Science 369, 179–183 (2020).

    Google Scholar 

  285. Yao, M. et al. Observation of giant spin-split Fermi-arc with maximal Chern number in the chiral topological semimetal PtGa. Nat. Commun. 11, 2033 (2020).

    CAS  Google Scholar 

  286. Li, H. et al. Chiral fermion reversal in chiral crystals. Nat. Commun. 10, 5505 (2019).

    CAS  Google Scholar 

  287. Lv, B. Q. et al. Observation of multiple types of topological fermions in PdBiSe. Phys. Rev. B 99, 241104 (2019).

    CAS  Google Scholar 

  288. Gao, J. Z. S. et al. Topological superconductivity in multifold fermion metals. Preprint at arXiv https://arxiv.org/abs/2012.11287 (2020).

  289. Emmanouilidou, E. et al. Fermiology and type-I superconductivity in the chiral superconductor NbGe2 with Kramers-Weyl fermions. Phys. Rev. B 102, 235144 (2020).

    CAS  Google Scholar 

  290. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Google Scholar 

  291. Flicker, F. et al. Chiral optical response of multifold fermions. Phys. Rev. B 98, 155145 (2018).

    CAS  Google Scholar 

  292. Chang, G. et al. Unconventional photocurrents from surface Fermi arcs in topological chiral semimetals. Phys. Rev. Lett. 124, 166404 (2020).

    CAS  Google Scholar 

  293. Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020).

    CAS  Google Scholar 

  294. Ni, Z. et al. Giant topological longitudinal circular photo-galvanic effect in the chiral multifold semimetal CoSi. Nat. Commun. 12, 154 (2021).

    CAS  Google Scholar 

  295. Rebar, D. J. et al. Fermi surface, possible unconventional fermions, and unusually robust resistive critical fields in the chiral-structured superconductor AuBe. Phys. Rev. B 99, 094517 (2019).

    CAS  Google Scholar 

  296. Zak, J. Band representations and symmetry types of bands in solids. Phys. Rev. B 23, 2824–2835 (1981).

    Google Scholar 

  297. Zak, J. Band representations of space groups. Phys. Rev. B 26, 3010–3023 (1982).

    CAS  Google Scholar 

  298. Smith, H. J. S. & Sylvester, J. J. XV. On systems of linear indeterminate equations and congruences. Phil. Trans. R. Soc. Lond. 151, 293–326 (1861).

    Google Scholar 

  299. Elcoro, L. et al. Magnetic topological quantum chemistry. Nat. Commun. 12, 5965 (2021).

    CAS  Google Scholar 

  300. Xu, Y. et al. High-throughput calculations of magnetic topological materials. Nature 586, 702–707 (2020).

    CAS  Google Scholar 

  301. Po, H. C. Symmetry indicators of band topology. J. Phys. Condens. Matter 32, 263001 (2020).

    CAS  Google Scholar 

  302. Cano, J. & Bradlyn, B. Band representations and topological quantum chemistry. Annu. Rev. Condens. Matter Phys. 12, 225–246 (2021).

    CAS  Google Scholar 

  303. Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).

    Google Scholar 

  304. Ran, Y., Zhang, Y. & Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nat. Phys. 5, 298–303 (2009).

    CAS  Google Scholar 

  305. Zhang, F., Kane, C. L. & Mele, E. J. Surface state magnetization and chiral edge states on topological insulators. Phys. Rev. Lett. 110, 046404 (2013).

    Google Scholar 

  306. Seradjeh, B., Weeks, C. & Franz, M. Fractionalization in a square-lattice model with time-reversal symmetry. Phys. Rev. B 77, 033104 (2008).

    Google Scholar 

  307. Benalcazar, W. A., Teo, J. C. Y. & Hughes, T. L. Classification of two-dimensional topological crystalline superconductors and Majorana bound states at disclinations. Phys. Rev. B 89, 224503 (2014).

    Google Scholar 

  308. Khalaf, E. Higher-order topological insulators and superconductors protected by inversion symmetry. Phys. Rev. B 97, 205136 (2018).

    Google Scholar 

  309. Langbehn, J., Peng, Y., Trifunovic, L., von Oppen, F. & Brouwer, P. W. Reflection-symmetric second-order topological insulators and superconductors. Phys. Rev. Lett. 119, 246401 (2017).

    Google Scholar 

  310. Trifunovic, L. & Brouwer, P. W. Higher-order bulk-boundary correspondence for topological crystalline phases. Phys. Rev. X 9, 011012 (2019).

    CAS  Google Scholar 

  311. Murani, A. et al. Ballistic edge states in bismuth nanowires revealed by SQUID interferometry. Nat. Commun. 8, 15941 (2017).

    CAS  Google Scholar 

  312. Nayak, A. K. et al. Resolving the topological classification of bismuth with topological defects. Sci. Adv. 5, eaax6996 (2019).

    CAS  Google Scholar 

  313. Queiroz, R., Fulga, I. C., Avraham, N., Beidenkopf, H. & Cano, J. Partial lattice defects in higher-order topological insulators. Phys. Rev. Lett. 123, 266802 (2019).

    CAS  Google Scholar 

  314. Wang, W. et al. Evidence for an edge supercurrent in the Weyl superconductor MoTe2. Science 368, 534–537 (2020).

    CAS  Google Scholar 

  315. Choi, Y.-B. et al. Evidence of higher-order topology in multilayer WTe2 from Josephson coupling through anisotropic hinge states. Nat. Mater. https://doi.org/10.1038/s41563-020-0721-9 (2020).

    Article  Google Scholar 

  316. Kononov, A. et al. One-dimensional edge transport in few-layer WTe2. Nano Lett. 20, 4228–4233 (2020).

    CAS  Google Scholar 

  317. Huang, C. et al. Edge superconductivity in multilayer WTe2 Josephson junction. Natl Sci. Rev. 7, 1468–1475 (2020).

    CAS  Google Scholar 

  318. Huang, F.-T. et al. Polar and phase domain walls with conducting interfacial states in a Weyl semimetal MoTe2. Nat. Commun. 10, 4211 (2019).

    Google Scholar 

  319. Noguchi, R. et al. Evidence for a higher-order topological insulator in a three-dimensional material built from van der Waals stacking of bismuth-halide chains. Nat. Mater. 20, 473–479 (2021).

    CAS  Google Scholar 

  320. Mao, P. et al. Observation of the topologically originated edge states in large-gap quasi-one-dimensional a-Bi4Br4. Preprint at arXiv https://arxiv.org/abs/2007.00223 (2020).

  321. Mao, P. et al. Ultralong carrier lifetime of topological edge states in a-Bi4Br4. Preprint at arXiv https://arxiv.org/abs/2007.00264 (2020).

  322. Hsu, C.-H. et al. Purely rotational symmetry-protected topological crystalline insulator α-Bi4Br4. 2D Mater. 6, 031004 (2019).

    CAS  Google Scholar 

  323. Yoon, C., Liu, C.-C., Min, H. & Zhang, F. Quasi-one-dimensional higher-order topological insulators. Preprint at arXiv https://arxiv.org/abs/2005.14710 (2020).

  324. Hughes, T. L., Prodan, E. & Bernevig, B. A. Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011).

    Google Scholar 

  325. Turner, A. M., Zhang, Y., Mong, R. S. K. & Vishwanath, A. Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B 85, 165120 (2012).

    Google Scholar 

  326. Chen, X., Fidkowski, L. & Vishwanath, A. Symmetry enforced non-abelian topological order at the surface of a topological insulator. Phys. Rev. B 89, 165132 (2014).

    Google Scholar 

  327. Turner, A. M., Zhang, Y. & Vishwanath, A. Entanglement and inversion symmetry in topological insulators. Phys. Rev. B 82, 241102 (2010).

    Google Scholar 

  328. Coh, S. & Vanderbilt, D. Canonical magnetic insulators with isotropic magnetoelectric coupling. Phys. Rev. B 88, 121106 (2013).

    Google Scholar 

  329. Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    Google Scholar 

  330. Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799–1802 (1987).

    CAS  Google Scholar 

  331. Witten, E. Dyons of charge eθ/2π. Phys. Lett. B 86, 283–287 (1979).

    Google Scholar 

  332. Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 354, 1124–1127 (2016).

    CAS  Google Scholar 

  333. Watanabe, H., Po, H. C. & Vishwanath, A. Structure and topology of band structures in the 1651 magnetic space groups. Sci. Adv. 4, eaat8685 (2018).

    CAS  Google Scholar 

  334. Ahn, J. & Yang, B.-J. Symmetry representation approach to topological invariants in C2zT-symmetric systems. Phys. Rev. B 99, 235125 (2019).

    CAS  Google Scholar 

  335. Yue, C. et al. Symmetry-enforced chiral hinge states and surface quantum anomalous Hall effect in the magnetic axion insulator Bi2-xSmxSe3. Nat. Phys. 15, 577–581 (2019).

    CAS  Google Scholar 

  336. Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

    CAS  Google Scholar 

  337. Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).

    CAS  Google Scholar 

  338. Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017).

    CAS  Google Scholar 

  339. Xiao, D. et al. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018).

    CAS  Google Scholar 

  340. Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    CAS  Google Scholar 

  341. Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2019).

    CAS  Google Scholar 

  342. Lin, M. & Hughes, T. L. Topological quadrupolar semimetals. Phys. Rev. B 98, 241103 (2018).

    CAS  Google Scholar 

  343. Li, C.-Z. et al. Reducing electronic transport dimension to topological hinge states by increasing geometry size of Dirac semimetal Josephson junctions. Phys. Rev. Lett. 124, 156601 (2020).

    CAS  Google Scholar 

  344. Ahn, J., Kim, D., Kim, Y. & Yang, B.-J. Band topology and linking structure of nodal line semimetals with Z2 monopole charges. Phys. Rev. Lett. 121, 106403 (2018).

    CAS  Google Scholar 

  345. Ghorashi, S. A. A., Li, T. & Hughes, T. L. Higher-order Weyl semimetals. Phys. Rev. Lett. 125, 266804 (2020).

    CAS  Google Scholar 

  346. Jain, A. et al. Commentary: The materials project: a materials genome approach to accelerating materials innovation. Appl. Mater. 1, 011002 (2013).

    Google Scholar 

  347. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Google Scholar 

  348. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Google Scholar 

  349. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  350. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    CAS  Google Scholar 

  351. Gao, J., Wu, Q., Persson, C. & Wang, Z. Irvsp: To obtain irreducible representations of electronic states in the VASP. Comput. Phys. Commun. 261, 107760 (2021).

    CAS  Google Scholar 

  352. Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

    CAS  Google Scholar 

  353. Olsen, T. et al. Discovering two-dimensional topological insulators from high-throughput computations. Phys. Rev. Mater. 3, 024005 (2019).

    CAS  Google Scholar 

  354. Marrazzo, A., Gibertini, M., Campi, D., Mounet, N. & Marzari, N. Relative abundance of Z2 topological order in exfoliable two-dimensional insulators. Nano Lett. 19, 8431–8440 (2019).

    CAS  Google Scholar 

  355. Wang, D. et al. Two-dimensional topological materials discovery by symmetry-indicator method. Phys. Rev. B 100, 195108 (2019).

    CAS  Google Scholar 

  356. Sohncke, L. Entwickelung einer Theorie der Krystallstruktur (B. G. Teubner, 1879).

  357. Fedorov, E. S. The symmetry of regular systems of figures. Zap. Mineral. Obsc. 28, 28 (1891).

    Google Scholar 

  358. Shubnikov, A. et al. Colored Symmetry (Macmillan, 1964).

  359. Gallego, S. V. et al. MAGNDATA: towards a database of magnetic structures. I. The commensurate case. J. Appl. Crystallogr. 49, 1750–1776 (2016).

    CAS  Google Scholar 

  360. Gallego, S. V. et al. MAGNDATA: towards a database of magnetic structures. II. The incommensurate case. J. Appl. Crystallogr. 49, 1941–1956 (2016).

    CAS  Google Scholar 

  361. Gallego, S. V., Tasci, E. S., de la Flor, G., Perez-Mato, J. M. & Aroyo, M. I. Magnetic symmetry in the Bilbao Crystallographic Server: a computer program to provide systematic absences of magnetic neutron diffraction. J. Appl. Crystallogr. 45, 1236–1247 (2012).

    CAS  Google Scholar 

  362. Perez-Mato, J. et al. Symmetry-based computational tools for magnetic crystallography. Annu. Rev. Mater. Res. 45, 217–248 (2015).

    CAS  Google Scholar 

  363. Cano, J., Bradlyn, B. & Vergniory, M. G. Multifold nodal points in magnetic materials. Appl. Mater. 7, 101125 (2019).

    Google Scholar 

  364. Xu, S.-Y. et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat. Phys. 8, 616–622 (2012).

    CAS  Google Scholar 

  365. Belopolski, I. et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278–1281 (2019).

    CAS  Google Scholar 

  366. Liu, D. F. et al. Magnetic Weyl semimetal phase in a Kagomé crystal. Science 365, 1282–1285 (2019).

    CAS  Google Scholar 

  367. Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).

    CAS  Google Scholar 

  368. Xu, S.-Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 14, 900–906 (2018).

    CAS  Google Scholar 

  369. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Google Scholar 

  370. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  Google Scholar 

  371. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    CAS  Google Scholar 

  372. Park, M. J., Kim, Y., Cho, G. Y. & Lee, S. Higher-order topological insulator in twisted bilayer graphene. Phys. Rev. Lett. 123, 216803 (2019).

    CAS  Google Scholar 

  373. Xie, F., Song, Z., Lian, B. & Bernevig, B. A. Topology-bounded superfluid weight in twisted bilayer graphene. Phys. Rev. Lett. 124, 167002 (2020).

    CAS  Google Scholar 

  374. Lian, B., Xie, F. & Bernevig, B. A. Landau level of fragile topology. Phys. Rev. B 102, 041402 (2020).

    CAS  Google Scholar 

  375. Herzog-Arbeitman, J., Song, Z.-D., Regnault, N. & Bernevig, B. A. Hofstadter topology: noncrystalline topological materials at high flux. Phys. Rev. Lett. 125, 236804 (2020).

    CAS  Google Scholar 

  376. Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020).

    CAS  Google Scholar 

  377. Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    CAS  Google Scholar 

  378. Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    CAS  Google Scholar 

  379. Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    CAS  Google Scholar 

  380. Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    CAS  Google Scholar 

  381. Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    CAS  Google Scholar 

  382. Lu, X. et al. Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle. Proc. Natl Acad. Sci. USA 118, e2100006118 (2021).

    CAS  Google Scholar 

  383. Burg, G. W. et al. Evidence of emergent symmetry and valley Chern number in twisted double-bilayer graphene. Preprint at arXiv https://arxiv.org/2006.14000 (2020).

  384. Anderson, P. W. Is there glue in cuprate superconductors? Science 316, 1705–1707 (2007).

    CAS  Google Scholar 

  385. Shi, W. et al. A charge-density-wave topological semimetal. Nat. Phys. 17, 381–387 (2021).

    CAS  Google Scholar 

  386. Wang, Z. & Zhang, S.-C. Chiral anomaly, charge density waves, and axion strings from Weyl semimetals. Phys. Rev. B 87, 161107 (2013).

    Google Scholar 

  387. Laubach, M., Platt, C., Thomale, R., Neupert, T. & Rachel, S. Density wave instabilities and surface state evolution in interacting Weyl semimetals. Phys. Rev. B 94, 241102 (2016).

    Google Scholar 

  388. You, Y., Cho, G. Y. & Hughes, T. L. Response properties of axion insulators and Weyl semimetals driven by screw dislocations and dynamical axion strings. Phys. Rev. B 94, 085102 (2016).

    Google Scholar 

  389. Wieder, B. J., Lin, K.-S. & Bradlyn, B. Axionic band topology in inversion-symmetric Weyl-charge-density waves. Phys. Rev. Res. 2, 042010 (2020).

    CAS  Google Scholar 

  390. Yu, J., Wieder, B. J. & Liu, C.-X. Dynamical piezomagnetic effect in time-reversal invariant Weyl semimetals with axionic charge-density waves. Preprint at arXiv https://arxiv.org/abs/2008.10620 (2020).

  391. Lin, K.-S. & Bradlyn, B. Simulating higher-order topological insulators in density wave insulators. Phys. Rev. B 103, 245107 (2021).

    CAS  Google Scholar 

  392. Li, X.-P. et al. Type-III Weyl semimetals: (TaSe4)2I. Phys. Rev. B 103, L081402 (2021).

    CAS  Google Scholar 

  393. Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315–319 (2019).

    CAS  Google Scholar 

  394. Lee, J. M. et al. Stable flatbands, topology, and superconductivity of magic honeycomb networks. Phys. Rev. Lett. 124, 137002 (2020).

    CAS  Google Scholar 

  395. Ritschel, T. et al. Orbital textures and charge density waves in transition metal dichalcogenides. Nat. Phys. 11, 328–331 (2015).

    CAS  Google Scholar 

  396. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    CAS  Google Scholar 

  397. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Google Scholar 

  398. Guin, S. N. et al. Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa. NPG Asia Mater. 11, 16 (2019).

    CAS  Google Scholar 

  399. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    CAS  Google Scholar 

  400. Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018).

    CAS  Google Scholar 

  401. Yang, H. et al. Giant anomalous Nernst effect in the magnetic Weyl semimetal Co3Sn2S2. Phys. Rev. Mater. 4, 024202 (2020).

    CAS  Google Scholar 

  402. Li, H. et al. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat. Commun. 7, 10301 (2016).

    CAS  Google Scholar 

  403. Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    CAS  Google Scholar 

  404. Ji, Z. et al. Spatially dispersive circular photogalvanic effect in a Weyl semimetal. Nat. Mater. 18, 955–962 (2019).

    CAS  Google Scholar 

  405. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    CAS  Google Scholar 

  406. Dalla Torre, E. G., He, Y. & Demler, E. Holographic maps of quasiparticle interference. Nat. Phys. 12, 1052–1056 (2016).

    CAS  Google Scholar 

  407. Hsu, C.-H. et al. Topology on a new facet of bismuth. Proc. Natl Acad. Sci. USA 116, 13255–13259 (2019).

    CAS  Google Scholar 

  408. Huang, S.-J., Song, H., Huang, Y.-P. & Hermele, M. Building crystalline topological phases from lower-dimensional states. Phys. Rev. B 96, 205106 (2017).

    Google Scholar 

  409. Song, H., Huang, S.-J., Fu, L. & Hermele, M. Topological phases protected by point group symmetry. Phys. Rev. X 7, 011020 (2017).

    Google Scholar 

  410. Lu, Y. F. et al. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nat. Commun. 8, 14408 (2017).

    CAS  Google Scholar 

  411. Mazza, G. et al. Nature of symmetry breaking at the excitonic insulator transition: Ta2NiSe5. Phys. Rev. Lett. 124, 197601 (2020).

    CAS  Google Scholar 

  412. Fleming, R. M., Sunshine, S. A., Chen, C. H., Schneemeyer, L. F. & Waszczak, J. V. Defect-inhibited incommensurate distortion in Ta2NiSe7. Phys. Rev. B 42, 4954–4959 (1990).

    CAS  Google Scholar 

Download references

Acknowledgements

This Review is dedicated to A. A. Soluyanov, who passed away during its preparation. B.J.W., N.R. and B.A.B. were supported by the Department of Energy (grant no. DE-SC0016239), the NSF EAGER (grant no. DMR 1643312), the NSF-MRSEC (grant no. DMR-142051), a Simons Investigator grant (grant no. 404513), the ONR (grant no. N00014-20-1-2303), the Packard Foundation, the Schmidt Fund for Innovative Research, the BSF Israel US Foundation (grant no. 2018226), the Gordon and Betty Moore Foundation (through grant no. GBMF8685 towards the Princeton theory programme), and a Guggenheim Fellowship from the John Simon Guggenheim Memorial Foundation. B.B. acknowledges the support of the Alfred P. Sloan Foundation and the National Science Foundation (grant no. DMR-1945058). J.C. acknowledges support from the National Science Foundation (grant no. DMR 1942447) and the Flatiron Institute, a division of the Simons Foundation. Z.W. was supported by the National Natural Science Foundation of China (grant no. 11974395), the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (grant no. XDB33000000), and the Center for Materials Genome. M.G.V. acknowledges support from the DFG (grant no. INCIEN2019-000356), from Gipuzkoako Foru Aldundia and the Spanish Ministerio de Ciencia e Innovacion (grant no. PID2019-109905GB-C21). L.E. was supported by the Government of the Basque Country (project IT1301-19) and the Spanish Ministry of Science and Innovation (grant no. PID2019-106644GB-I00). C.F. was supported by the ERC (advanced grant nos. 291472 ‘Idea Heusler’ and 742068 ‘TOPMAT’). T.N. acknowledges support from the European Union’s Horizon 2020 Research and Innovation Program (grant no. ERC-StG-Neupert-757867-PARATOP). A.A.S. and T.N. additionally acknowledge support from the Swiss National Science Foundation (grant no. PP00P2_176877). L.E., N.R. and B.A.B. acknowledge additional support through the ERC Advanced Grant Superflat, and B.A.B. received additional support from the European Union’s Horizon 2020 Research and Innovation Program (grant no. 101020833) and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

This Review was written and edited by B.J.W. All authors contributed to researching data for this article and to the preparation of the manuscript.

Corresponding authors

Correspondence to Benjamin J. Wieder or B. Andrei Bernevig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BANDREP: https://www.cryst.ehu.es/cgi-bin/cryst/programs/bandrep.pl

Bilbao CrystallographicServer (BCS): https://www.cryst.ehu.es/

Catalogue of Topological Materials: http://materiae.iphy.ac.cn/

Check Topological Mat.: https://www.cryst.ehu.es/cryst/checktopologicalmat

ICSD 1559: https://www.topologicalquantumchemistry.com/#/detail/1559

ICSD 1560: https://www.topologicalquantumchemistry.com/#/detail/1560

ICSD 10017: https://www.topologicalquantumchemistry.com/#/detail/10017

ICSD 14348: https://www.topologicalquantumchemistry.com/#/detail/14348

ICSD 14349: https://www.topologicalquantumchemistry.com/#/detail/14349

ICSD 15569: https://www.topologicalquantumchemistry.com/#/detail/15569

ICSD 15571: https://www.topologicalquantumchemistry.com/#/detail/15571

ICSD 16585: https://www.topologicalquantumchemistry.com/#/detail/16585

ICSD 23062: https://www.topologicalquantumchemistry.com/#/detail/23062

ICSD 24145: https://www.topologicalquantumchemistry.com/#/detail/24145

ICSD 26881: https://www.topologicalquantumchemistry.com/#/detail/26881

ICSD 35190: https://www.topologicalquantumchemistry.com/#/detail/35190

ICSD 39597: https://www.topologicalquantumchemistry.com/#/detail/39597

ICSD 42545: https://www.topologicalquantumchemistry.com/#/detail/42545

ICSD 52115: https://www.topologicalquantumchemistry.com/#/detail/52115

ICSD 54609: https://www.topologicalquantumchemistry.com/#/detail/54609

ICSD 56201: https://www.topologicalquantumchemistry.com/#/detail/56201

ICSD 56390: https://www.topologicalquantumchemistry.com/#/detail/56390

ICSD 58396: https://www.topologicalquantumchemistry.com/#/detail/58396

ICSD 58786: https://www.topologicalquantumchemistry.com/#/detail/58786

ICSD 61352: https://www.topologicalquantumchemistry.com/#/detail/61352

ICSD 62305: https://www.topologicalquantumchemistry.com/#/detail/62305

ICSD 64703: https://www.topologicalquantumchemistry.com/#/detail/64703

ICSD 74704: https://www.topologicalquantumchemistry.com/#/detail/74704

ICSD 76455: https://www.topologicalquantumchemistry.com/#/detail/76455

ICSD 76139: https://www.topologicalquantumchemistry.com/#/detail/76139

ICSD 77109: https://www.topologicalquantumchemistry.com/#/detail/77109

ICSD 79233: https://www.topologicalquantumchemistry.com/#/detail/79233

ICSD 81218: https://www.topologicalquantumchemistry.com/#/detail/81218

ICSD 81493: https://www.topologicalquantumchemistry.com/#/detail/81493

ICSD 82092: https://www.topologicalquantumchemistry.com/#/detail/82092

ICSD 85507: https://www.topologicalquantumchemistry.com/#/detail/85507

ICSD 105699: https://www.topologicalquantumchemistry.com/#/detail/105699

ICSD 150530: https://www.topologicalquantumchemistry.com/#/detail/150530

ICSD 151748: https://www.topologicalquantumchemistry.com/#/detail/151748

ICSD 166865: https://www.topologicalquantumchemistry.com/#/detail/166865

ICSD 167811: https://www.topologicalquantumchemistry.com/#/detail/167811

ICSD 185808: https://www.topologicalquantumchemistry.com/#/detail/185808

ICSD 187534: https://www.topologicalquantumchemistry.com/#/detail/187534

ICSD 193346: https://www.topologicalquantumchemistry.com/#/detail/193346

ICSD 260148: https://www.topologicalquantumchemistry.com/#/detail/260148

ICSD 260982: https://www.topologicalquantumchemistry.com/#/detail/260982

ICSD 261111: https://www.topologicalquantumchemistry.com/#/detail/261111

ICSD 425966: https://www.topologicalquantumchemistry.com/#/detail/425966

ICSD 426972: https://www.topologicalquantumchemistry.com/#/detail/426972

ICSD 601065: https://www.topologicalquantumchemistry.com/#/detail/601065

ICSD 601659: https://www.topologicalquantumchemistry.com/#/detail/601659

ICSD 602710: https://www.topologicalquantumchemistry.com/#/detail/602710

ICSD 609930: https://www.topologicalquantumchemistry.com/#/detail/609930

ICSD 611451: https://www.topologicalquantumchemistry.com/#/detail/611451

ICSD 615755: https://www.topologicalquantumchemistry.com/#/detail/615755

ICSD 616956: https://www.topologicalquantumchemistry.com/#/detail/616956

ICSD 617192: https://www.topologicalquantumchemistry.com/#/detail/617192

ICSD 626175: https://www.topologicalquantumchemistry.com/#/detail/626175

ICSD 635132: https://www.topologicalquantumchemistry.com/#/detail/635132

ICSD 644091: https://www.topologicalquantumchemistry.com/#/detail/644091

ICSD 649753: https://www.topologicalquantumchemistry.com/#/detail/649753

ICSD 648185: https://www.topologicalquantumchemistry.com/#/detail/648185

ICSD 648570: https://www.topologicalquantumchemistry.com/#/detail/648570

ICSD 648585: https://www.topologicalquantumchemistry.com/#/detail/648585

ICSD 648588: https://www.topologicalquantumchemistry.com/#/detail/648588

ICSD 650381: https://www.topologicalquantumchemistry.com/#/detail/650381

ICSD 672362: https://www.topologicalquantumchemistry.com/#/detail/672362

ICSD 672345: https://www.topologicalquantumchemistry.com/#/detail/672345

ICSD 672522: https://www.topologicalquantumchemistry.com/#/detail/672522

Inorganic Crystal Structure Database (ICSD): https://icsd.products.fiz-karlsruhe.de/

Materials Project: https://materialsproject.org/

REPRESENTATIONS DSG: http://www.cryst.ehu.es/cgi-bin/cryst/programs/representations.pl?tipogrupo=dbg

Topological Materials Arsenal: https://ccmp.nju.edu.cn/

Topological Materials Database: https://www.topologicalquantumchemistry.com/

VASP2Trace: https://github.com/zjwang11/irvsp

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wieder, B.J., Bradlyn, B., Cano, J. et al. Topological materials discovery from crystal symmetry. Nat Rev Mater 7, 196–216 (2022). https://doi.org/10.1038/s41578-021-00380-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00380-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing