Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthesis and alignment of liquid crystalline elastomers

Abstract

Liquid crystalline elastomers (LCEs) are crosslinked polymer networks that combine the elastic properties of rubber with the anisotropic properties of liquid crystals. Multifunctionality and responsivity can be programmed into LCEs by patterning their local orientation, which is difficult to achieve in other monolithic material systems. Advances in the synthesis and alignment of LCEs have paved the way for their functional integration in robotics, optics, consumer products, energy and healthcare devices. In this Review, we discuss recent advances in materials chemistry and processing that have contributed to the resurgence in LCE research. We examine the mechanical response of LCEs to stimuli and survey approaches for mechanical alignment, surface-enforced alignment, field-induced alignment and rheological alignment. The Review concludes with an over-the-horizon outlook discussing current challenges and emerging research opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Liquid crystalline elastomers as functional materials.
Fig. 2: Liquid crystalline polymer elastomers and networks.
Fig. 3: Liquid crystalline elastomers as actuators.
Fig. 4: Nonlinear deformation of liquid crystalline elastomers to load.
Fig. 5: Synthetic approaches for the preparation of crosslinked liquid crystalline polymers.
Fig. 6: Alignment of liquid crystalline elastomers.
Fig. 7: Direct ink writing of liquid crystalline elastomers.

Similar content being viewed by others

References

  1. McCracken, J. M., Donovan, B. R. & White, T. J. Materials as machines. Adv. Mater. 32, 1906544 (2020).

    Article  Google Scholar 

  2. de Gennes, P. G. Possibilites offertes par la reticulation de polymeres en presence d’un cristal liquide. Phys. Lett. A 28, 725–726 (1969).

    Article  Google Scholar 

  3. de Gennes, P. G. A semi-fast artificial muscle. C. R. Acad. Sci. Ser. IIB Mech. Phys. Chem. Astron. 324, 343–348 (1997).

    Google Scholar 

  4. Finkelmann, H. & Rehage, G. Investigations on liquid crystalline polysiloxanes, 1. Synthesis and characterization of linear polymers. Makromol. Chem. Rapid Commun. 1, 31–34 (1980).

    Article  CAS  Google Scholar 

  5. Finkelmann, H., Kock, H.-J. & Rehage, G. Investigations on liquid crystalline polysiloxanes 3. Liquid crystalline elastomers — a new type of liquid crystalline material. Makromol. Chem. Rapid Commun. 2, 317–322 (1981).

    Article  CAS  Google Scholar 

  6. Portugall, M., Ringsdorf, H. & Zentel, R. Synthesis and phase behaviour of liquid crystalline polyacrylates. Makromol. Chem. 183, 2311–2321 (1982).

    Article  CAS  Google Scholar 

  7. Küpfer, J. & Finkelmann, H. Nematic liquid single crystal elastomers. Makromol. Chem. Rapid Commun. 12, 717–726 (1991). This paper introduces mechanical alignment as a means to enforcing uniaxial alignment to LCEs.

    Article  Google Scholar 

  8. Finkelmann, H., Kundler, L., Terentjev, E. M. & Warner, M. Critical stripe-domain instability of nematic elastomers. J. Phys. II 7, 1050–1069 (1997).

    Google Scholar 

  9. Warner, M. & Terentjev, E. M. Liquid Crystal Elastomers (Oxford Univ. Press, 2003).

  10. DeSimone, A. & Teresi, L. Elastic energies for nematic elastomers. Eur. Phys. J. E 29, 191–204 (2009).

    Article  CAS  Google Scholar 

  11. White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015).

    Article  CAS  Google Scholar 

  12. Ware, T. H., McConney, M. E., Wie, J. J., Tondiglia, V. P. & White, T. J. Voxelated liquid crystal elastomers. Science 347, 982–984 (2015). This paper reports the development of aza-Michael addition reaction to prepare LCEs amenable to surface-enforced alignment.

    Article  CAS  Google Scholar 

  13. Yakacki, C. M. et al. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction. RSC Adv. 5, 18997–19001 (2015). This paper introduces the widely used thiol-Michael reaction to prepare LCEs by mechanical alignment.

    Article  CAS  Google Scholar 

  14. Kotikian, A. et al. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci. Robot. 4, eaax7044 (2019).

    Article  Google Scholar 

  15. Brannum, M. T. et al. Light control with liquid crystalline elastomers. Adv. Opt. Mater. 7, 1801683 (2019).

    Article  Google Scholar 

  16. Ferrantini, C. et al. Development of light-responsive liquid crystalline elastomers to assist cardiac contraction. Circ. Res. 124, e44–e54 (2019).

    Article  CAS  Google Scholar 

  17. Turiv, T. et al. Topology control of human fibroblast cells monolayer by liquid crystal elastomer. Sci. Adv. 6, eaaz6485 (2020).

    Article  CAS  Google Scholar 

  18. Iseki, S. Liquid crystalline elastomer precursor and liquid crystalline elastomer. J. Polym. Sci. 55, 395–411 (2019).

    Google Scholar 

  19. Wermter, H. & Finkelmann, H. Liquid crystalline elastomers as artificial muscles. E-Polym. 1, 013 (2001).

    Google Scholar 

  20. Ware, T. H. H. & White, T. J. J. Programmed liquid crystal elastomers with tunable actuation strain. Polym. Chem. 6, 4835–4844 (2015).

    Article  CAS  Google Scholar 

  21. Dong, L. & Zhao, Y. Photothermally driven liquid crystal polymer actuators. Mater. Chem. Front. 2, 1932–1943 (2018).

    Article  CAS  Google Scholar 

  22. Winkler, M., Kaiser, A., Krause, S., Finkelmann, H. & Schmidt, A. M. Liquid crystal elastomers with magnetic actuation. Macromol. Symp. 291–292, 186–192 (2010).

    Article  Google Scholar 

  23. Finkelmann, H. & Shahinpoor, M. Electrically controllable liquid crystal elastomer-graphite composite artifical muscles. Smart Struct. Mater. 4695, 459–464 (2002).

    CAS  Google Scholar 

  24. Courty, S., Mine, J., Tajbakhsh, A. R. & Terentjev, E. M. Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators. Europhys. Lett. 64, 654–660 (2003).

    Article  CAS  Google Scholar 

  25. Finkelmann, H., Nishikawa, E., Pereira, G. G. & Warner, M. A new opto-mechanical effect in solids. Phys. Rev. Lett. 87, 015501 (2001). This paper demonstrates phototropic disruption of order in LCEs prepared with covalent attachment of azobenzene groups.

    Article  CAS  Google Scholar 

  26. Kosa, T. et al. Light-induced liquid crystallinity. Nature 485, 347–349 (2012).

    Article  CAS  Google Scholar 

  27. Corbett, D. & Warner, M. Changing liquid crystal elastomer ordering with light–a route to opto-mechanically responsive materials. Liq. Cryst. 36, 1263–1280 (2009).

    Article  CAS  Google Scholar 

  28. Ringsdorf, H. & Zentel, R. Liquid crystalline side chain polymers and their behaviour in the electric field. Makromol. Chem. 183, 1245–1256 (1982).

    Article  CAS  Google Scholar 

  29. Davidson, Z. S. et al. Monolithic shape-programmable dielectric liquid crystal elastomer actuators. Sci. Adv. 5, eaay0855 (2019).

    Article  CAS  Google Scholar 

  30. Guin, T. et al. Electrical control of shape in voxelated liquid crystalline polymer nanocomposites. ACS Appl. Mater. Interfaces 10, 1187–1194 (2018).

    Article  CAS  Google Scholar 

  31. Guin, T. et al. Tunable electromechanical liquid crystal elastomer actuators. Adv. Intell. Syst. 2, 2000022 (2020).

    Article  Google Scholar 

  32. Modes, C. & Warner, M. Shape-programmable materials. Phys. Today 69, 32–38 (2016).

    Article  Google Scholar 

  33. Guin, T. et al. Layered liquid crystal elastomer actuators. Nat. Commun. 9, 2531 (2018).

    Article  Google Scholar 

  34. Kim, H. et al. Responsive, 3D electronics enabled by liquid crystal elastomer substrates. ACS Appl. Mater. Interfaces 11, 19506–19513 (2019).

    Article  CAS  Google Scholar 

  35. Flory, P. J. Molecular theory of rubber elasticity. Polymer 20, 1317–1320 (1979).

    Article  CAS  Google Scholar 

  36. Biggins, J. S., Warner, M. & Bhattacharya, K. Supersoft elasticity in polydomain nematic elastomers. Phys. Rev. Lett. 103, 037802 (2009).

    Article  CAS  Google Scholar 

  37. Terentjev, E. M. Liquid-crystalline elastomers. J. Phys. Condens. Matter 11, R239 (1999).

    Article  CAS  Google Scholar 

  38. Finkelmann, H., Greve, A. & Warner, M. The elastic anisotropy of nematic elastomers. Eur. Phys. J. E 5, 281–293 (2001).

    Article  CAS  Google Scholar 

  39. Auguste, A. D. et al. Enabling and localizing omnidirectional nonlinear deformation in liquid crystalline elastomers. Adv. Mater. 30, 1802438 (2018).

    Article  Google Scholar 

  40. Urayama, K., Kohmon, E., Kojima, M. & Takigawa, T. Polydomain–monodomain transition of randomly disordered nematic elastomers with different cross-linking histories. Macromolecules 42, 4084–4089 (2009).

    Article  CAS  Google Scholar 

  41. Biggins, J. S., Warner, M. & Bhattacharya, K. Elasticity of polydomain liquid crystal elastomers. J. Mech. Phys. Solids 60, 573–590 (2012).

    Article  CAS  Google Scholar 

  42. Donovan, B. R., Fowler, H. E., Matavulj, V. M. & White, T. J. Mechanotropic elastomers. Angew. Chem. Int. Ed. 58, 13744–13748 (2019).

    Article  CAS  Google Scholar 

  43. Mistry, D. et al. Isotropic liquid crystal elastomers as exceptional photoelastic strain sensors. Macromolecules 53, 3709–3718 (2020).

    Article  CAS  Google Scholar 

  44. Ware, T. H., Biggins, J. S., Shick, A. F., Warner, M. & White, T. J. Localized soft elasticity in liquid crystal elastomers. Nat. Commun. 7, 10781 (2016).

    Article  Google Scholar 

  45. Fowler, H. E., Donovan, B. R., McCracken, J. M., López Jiménez, F. & White, T. J. Localizing genesis in polydomain liquid crystal elastomers. Soft Matter 16, 330–336 (2020).

    Article  CAS  Google Scholar 

  46. Gong, S., Yap, L. W., Zhu, B. & Cheng, W. Multiscale soft–hard interface design for flexible hybrid electronics. Adv. Mater. 32, 1902278 (2020).

    Article  CAS  Google Scholar 

  47. Bergmann, G. H. F., Finkelmann, H., Percec, V. & Zhao, M. Liquid-crystalline main-chain elastomers. Macromol. Rapid Commun. 18, 353–360 (1997).

    Article  CAS  Google Scholar 

  48. Broer, D., Finkelmann, H. & Kondo, K. In-situ photopolymerization of an oriented liquid-crystalline acrylate. Makromol. Chem. 189, 185–194 (1988). This paper reports the use of diacrylate liquid crystalline monomers to prepare LCNs amenable to surface-enforced alignment.

    Article  CAS  Google Scholar 

  49. Kim, H., Boothby, J. M., Ramachandran, S., Lee, C. D. & Ware, T. H. Tough, shape-changing materials: crystallized liquid crystal elastomers. Macromolecules 50, 4267–4275 (2017).

    Article  CAS  Google Scholar 

  50. Kloxin, C. J. & Bowman, C. N. Covalent adaptable networks: Smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 42, 7161–7173 (2013).

    Article  CAS  Google Scholar 

  51. Pei, Z. et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 13, 36–41 (2014). This paper demonstrates that LCEs prepared with dynamic covalent chemistry can be reprocessed to enforce alignment after polymerization.

    Article  CAS  Google Scholar 

  52. Hanzon, D. W. et al. Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions. Soft Matter 14, 951–960 (2018).

    Article  CAS  Google Scholar 

  53. Chen, Q. et al. Durable liquid-crystalline vitrimer actuators. Chem. Sci. 10, 3025–3030 (2019).

    Article  CAS  Google Scholar 

  54. Ube, T., Kawasaki, K. & Ikeda, T. Photomobile liquid-crystalline elastomers with rearrangeable networks. Adv. Mater. 28, 8212–8217 (2016).

    Article  CAS  Google Scholar 

  55. McBride, M. K. et al. A readily programmable, fully reversible shape-switching material. Sci. Adv. 4, eaat4634 (2018).

    Article  CAS  Google Scholar 

  56. Wang, Z., Tian, H., He, Q. & Cai, S. Reprogrammable, reprocessible, and self-healable liquid crystal elastomer with exchangeable disulfide bonds. ACS Appl. Mater. Interfaces 9, 33119–33128 (2017).

    Article  CAS  Google Scholar 

  57. Saed, M. O., Gablier, A. & Terentejv, E. M. Liquid crystalline vitrimers with full or partial boronic-ester bond exchange. Adv. Funct. Mater. 30, 1906458 (2020).

    Article  CAS  Google Scholar 

  58. Wen, Z. et al. Reconfigurable LC elastomers: using a thermally programmable monodomain to access two-way free-standing multiple shape memory polymers. Macromolecules 51, 5812–5819 (2018).

    Article  CAS  Google Scholar 

  59. Saed, M. O. & Terentjev, E. M. Siloxane crosslinks with dynamic bond exchange enable shape programming in liquid-crystalline elastomers. Sci. Rep. 10, 6609 (2020).

    Article  CAS  Google Scholar 

  60. Scheutz, G. M., Lessard, J. J., Sims, M. B. & Sumerlin, B. S. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J. Am. Chem. Soc. 141, 16181–16196 (2019).

    Article  CAS  Google Scholar 

  61. Mukherjee, S., Cash, J. J. & Sumerlin, B. S. in Dynamic Covalent Chemistry: Principles, Reactions, and Applications Ch. 8 (eds Zhang, W. & Jin., Y.) 321–358 (Wiley, 2017).

  62. Kumar, S., Kim, J. H. & Shi, Y. What aligns liquid crystals on solid substrates? The role of surface roughness anisotropy. Phys. Rev. Lett. 94, 077803 (2005).

    Article  Google Scholar 

  63. Kowalski, B. A., Tondiglia, V. P., Guin, T. & White, T. J. Voxel resolution in the directed self-assembly of liquid crystal polymer networks and elastomers. Soft Matter 13, 4335–4340 (2017).

    Article  CAS  Google Scholar 

  64. Harris, K. D. et al. Large amplitude light-induced motion in high elastic modulus polymer actuators. J. Mater. Chem. 15, 5043–5048 (2005).

    Article  CAS  Google Scholar 

  65. Mol, G. N., Harris, K. D., Bastiaansen, C. W. M. & Broer, D. J. Thermo-mechanical responses of liquid-crystal networks with a splayed molecular organization. Adv. Funct. Mater. 15, 1155–1159 (2005).

    Article  CAS  Google Scholar 

  66. Broer, D., Boven, J., Mol, G. & Challa, G. In-situ photopolymerization of oriented liquid-crystalline acrylates. III: Oriented polymer networks from a mesogenic diacrylate. Makromol. Chem. 190, 2255–2268 (1989).

    Article  CAS  Google Scholar 

  67. Safranski, D. L., Lesniewski, M. A., Caspersen, B. S., Uriarte, V. M. & Gall, K. The effect of chemistry on the polymerization, thermo-mechanical properties and degradation rate of poly(β-amino ester) networks. Polymer 51, 3130–3138 (2010).

    Article  CAS  Google Scholar 

  68. Lynn, D. M. & Langer, R. Degradable poly(β-amino esters): Synthesis, characterization, and self-assembly with plasmid DNA. J. Am. Chem. Soc. 122, 10761–10768 (2000).

    Article  CAS  Google Scholar 

  69. Ahn, S. K., Ware, T. H., Lee, K. M., Tondiglia, V. P. & White, T. J. Photoinduced topographical feature development in blueprinted azobenzene-functionalized liquid crystalline elastomers. Adv. Funct. Mater. 26, 5819–5826 (2016).

    Article  CAS  Google Scholar 

  70. Hotta, A. & Terentjev, E. M. Long-time stress relaxation in polyacrylate nematic liquid crystalline elastomers. J. Phys. Condens. Matter 13, 11453–11464 (2001).

    Article  CAS  Google Scholar 

  71. Ware, T. H., Perry, Z. P., Middleton, C. M., Iacono, S. T. & White, T. J. Programmable liquid crystal elastomers prepared by thiol–ene photopolymerization. ACS Macro Lett. 4, 942–946 (2015).

    Article  CAS  Google Scholar 

  72. Godman, N. P., Kowalski, B. A., Auguste, A. D., Koerner, H. & White, T. J. Synthesis of elastomeric liquid crystalline polymer networks via chain transfer. ACS Macro Lett. 6, 1290–1295 (2017).

    Article  CAS  Google Scholar 

  73. Hoyle, C. et al. Thiol-enes: fast curing systems with exceptional properties. Radtech Eur. 5, 2–6 (2005).

    Google Scholar 

  74. Jiang, L. et al. Radical polymerization in the presence of chain transfer monomer: An approach to branched vinyl polymers. Macromolecules 45, 4092–4100 (2012).

    Article  CAS  Google Scholar 

  75. Brannum, M. T. et al. Deformation and elastic recovery of acrylate-based liquid crystalline elastomers. Macromolecules 52, 8248–8255 (2019).

    Article  CAS  Google Scholar 

  76. Schadt, M. Liquid crystal displays, LC-materials and LPP photo-alignment. Mol. Cryst. Liq. Cryst. 647, 253–268 (2017).

    Article  CAS  Google Scholar 

  77. Chigrinov, V. G., Kozenkov, V. M. & Kwok, H. S. Photoalignment of Liquid Crystalline Materials: Physics and Applications Vol. 17 (Wiley, 2008).

  78. Weigert, F. Über einen neuen Effekt der Strahlung in lichtempfindlichen Schichten. Verh. Dtsch. Phys. Ges. 21, 479–491 (1919).

    CAS  Google Scholar 

  79. Seki, T. New strategies and implications for the photoalignment of liquid crystalline polymers. Polym. J. 46, 751–768 (2014).

    Article  CAS  Google Scholar 

  80. Ichimura, K. Photoalignment of liquid-crystal systems. Chem. Rev. 100, 1847–1873 (2000).

    Article  CAS  Google Scholar 

  81. Guo, Y. et al. High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals. Adv. Mater. 28, 2353–2358 (2016).

    Article  CAS  Google Scholar 

  82. Murray, B. S., Pelcovits, R. A. & Rosenblatt, C. Creating arbitrary arrays of two-dimensional topological defects. Phys. Rev. 47, 777–780 (2014).

    Google Scholar 

  83. Xia, Y., Cedillo-Servin, G., Kamien, R. D. & Yang, S. Guided folding of nematic liquid crystal elastomer sheets into 3D via patterned 1D microchannels. Adv. Mater. 28, 9637–9643 (2016).

    Article  CAS  Google Scholar 

  84. Aharoni, H., Xia, Y., Zhang, X., Kamien, R. D. & Yang, S. Universal inverse design of surfaces with thin nematic elastomer sheets. Proc. Natl Acad. Sci. USA 115, 7206–7211 (2018).

    Article  CAS  Google Scholar 

  85. Ditter, D. et al. MEMS analogous micro-patterning of thermotropic nematic liquid crystalline elastomer films using a fluorinated photoresist and a hard mask process. J. Mater. Chem. C 5, 12635–12644 (2017).

    Article  CAS  Google Scholar 

  86. Buguin, A., Li, M. H., Silberzan, P., Ladoux, B. & Keller, P. Micro-actuators: When artificial muscles made of nematic liquid crystal elastomers meet soft lithography. J. Am. Chem. Soc. 128, 1088–1089 (2006).

    Article  CAS  Google Scholar 

  87. Kossyrev, P. A., Qi, J., Priezjev, N. V., Pelcovits, R. A. & Crawford, G. P. Virtual surfaces, director domains, and the Fréedericksz transition in polymer-stabilized nematic liquid crystals. Appl. Phys. Lett. 81, 2986–2988 (2002).

    Article  CAS  Google Scholar 

  88. Liu, D., Bastiaansen, C. W. M., Den Toonder, J. M. J. & Broer, D. J. Photo-switchable surface topologies in chiral nematic coatings. Angew. Chem. Int. Ed. 51, 892–896 (2012).

    Article  CAS  Google Scholar 

  89. Gebhard, E. & Zentel, R. Ferroelectric liquid crystalline elastomers, 2. Variation of mesogens and network density. Macromol. Chem. Phys. 201, 911–922 (2000).

    Article  CAS  Google Scholar 

  90. Spillmann, C. M., Ratna, B. R. & Naciri, J. Anisotropic actuation in electroclinic liquid crystal elastomers. Appl. Phys. Lett. 90, 021911 (2007).

    Article  Google Scholar 

  91. Rogez, D. & Martinoty, P. Mechanical properties of monodomain nematic side-chain liquid-crystalline elastomers with homeotropic and in-plane orientation of the director. Eur. Phys. J. E 34, 69 (2011).

    Article  CAS  Google Scholar 

  92. Ge, S. J. et al. A homeotropic main-chain tolane-type liquid crystal elastomer film exhibiting high anisotropic thermal conductivity. Soft Matter 13, 5463–5468 (2017).

    Article  CAS  Google Scholar 

  93. Brömmel, F. et al. Orientation behaviour of the minor director of homeotropically oriented nematic elastomers in mechanical fields. Soft Matter 9, 2646–2651 (2013).

    Article  Google Scholar 

  94. Fréedericksz, V. & Repiewa, A. Theoretisches und Experimentelles zur Frage nach der Natur der anisotropen Flüssigkeiten. Z. Phys. 42, 532–546 (1927).

    Article  Google Scholar 

  95. Fréedericksz, V. & Zolina, V. Forces causing the orientation of an anisotropic liquid. Trans. Faraday Soc. 29, 919–930 (1933).

    Article  Google Scholar 

  96. Ibrahim, I. H. & Haase, W. Molecular properties of some nematic liquids. I. Magnetic susceptibility anisotropy and order parameter. J. Phys. Colloq. 40, C3-164–C3-168 (1979).

    Article  Google Scholar 

  97. Pohl, L., Eidenschink, R., Krause, J. & Weber, G. Nematic liquid crystals with positive dielectric and negative diamagnetic anisotropy. Phys. Lett. A 62, 169–172 (1978).

    Article  Google Scholar 

  98. Legge, C. H., Davis, F. J. & Mitchell, G. R. Memory effects in liquid crystal elastomers. J. Phys. II 1, 1253–1261 (1991).

    CAS  Google Scholar 

  99. Schuhladen, S. et al. Iris-like tunable aperture employing liquid-crystal elastomers. Adv. Mater. 26, 7247–7251 (2014).

    Article  CAS  Google Scholar 

  100. Li, M. H., Keller, P., Yang, J. & Albouy, P. A. An artificial muscle with lamellar structure based on a nematic triblock copolymer. Adv. Mater. 16, 1922–1925 (2004).

    Article  CAS  Google Scholar 

  101. Yao, Y. et al. Multiresponsive polymeric microstructures with encoded predetermined and self-regulated deformability. Proc. Natl Acad. Sci. USA 115, 12950–12955 (2018).

    Article  CAS  Google Scholar 

  102. Cui, J. et al. Bioinspired actuated adhesive patterns of liquid crystalline elastomers. Adv. Mater. 24, 4601–4604 (2012).

    Article  CAS  Google Scholar 

  103. Tabrizi, M., Ware, T. H. & Shankar, M. R. Voxelated molecular patterning in three-dimensional freeforms. ACS Appl. Mater. Interfaces 11, 28236–28245 (2019).

    Article  CAS  Google Scholar 

  104. Van Oosten, C. L., Bastiaansen, C. W. M. & Broer, D. J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat. Mater. 8, 677–682 (2009).

    Article  Google Scholar 

  105. Zeng, H. et al. Light-fueled microscopic walkers. Adv. Mater. 27, 3883–3887 (2015).

    Article  CAS  Google Scholar 

  106. Zeng, H. et al. High-resolution 3D direct laser writing for liquid-crystalline elastomer microstructures. Adv. Mater. 26, 2319–2322 (2014).

    Article  CAS  Google Scholar 

  107. McCracken, J. M. et al. Microstructured photopolymerization of liquid crystalline elastomers in oxygen-rich environments. Adv. Funct. Mater. 29, 1903761 (2019).

    Article  Google Scholar 

  108. Wissbrun, K. F. Rheology of rod-like polymers in the liquid crystalline state. J. Rheol. 25, 619–662 (1981).

    Article  CAS  Google Scholar 

  109. Rey, A. D. & Tsuji, T. Recent advances in theoretical liquid crystal rheology. Macromol. Theory Simul. 7, 623–639 (1998).

    Article  CAS  Google Scholar 

  110. Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

    Article  CAS  Google Scholar 

  111. M’Barki, A., Bocquet, L. & Stevenson, A. Linking rheology and printability for dense and strong ceramics by direct ink writing. Sci. Rep. 7, 6017 (2017).

    Article  Google Scholar 

  112. Redwood, B., Schffer, F. & Garret, B. The 3D Printing Handbook: Technologies, Design and Applications (3D Hubs, 2017).

  113. Herschel, W. H. & Bulkley, R. Konsistenzmessungen von Gummi-Benzollösungen. Kolloid Z. 39, 291–300 (1926).

    Article  Google Scholar 

  114. Lewis, J. A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006).

    Article  CAS  Google Scholar 

  115. Leslie, F. M. Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968).

    Article  Google Scholar 

  116. Gelbart, W. M. Molecular theory of nematic liquid crystals. J. Phys. Chem. 86, 4298–4307 (1982).

    Article  CAS  Google Scholar 

  117. Van Horn, B. L. & Winter, H. H. Dynamics of shear aligning of nematic liquid crystal monodomains. Rheol. Acta 39, 294–300 (2000).

    Article  Google Scholar 

  118. Stephen, M. J. & Straley, J. P. Physics of liquid crystals. Rev. Mod. Phys. 46, 617 (1974).

    Article  CAS  Google Scholar 

  119. Hausmann, M. K. et al. Dynamics of cellulose nanocrystal alignment during 3D printing. ACS Nano 12, 6926–6937 (2018).

    Article  CAS  Google Scholar 

  120. Ambulo, C. P. et al. Four-dimensional printing of liquid crystal elastomers. ACS Appl. Mater. Interfaces 9, 37332–37339 (2017). This paper reports the use of direct ink write 3D printing to prepare LCEs with complex orientations.

    Article  CAS  Google Scholar 

  121. Kotikian, A., Truby, R. L., Boley, J. W., White, T. J. & Lewis, J. A. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30, 1706164 (2018).

    Article  Google Scholar 

  122. Roach, D. J., Kuang, X., Yuan, C., Chen, K. & Qi, H. J. Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing. Smart Mater. Struct. 27, 125011 (2018).

    Article  CAS  Google Scholar 

  123. Hanson Shepherd, J. N. et al. 3D microperiodic hydrogel scaffolds for robust neuronal cultures. Adv. Funct. Mater. 21, 47–54 (2011).

    Article  CAS  Google Scholar 

  124. Saed, M. O. et al. Molecularly-engineered, 4D-printed liquid crystal elastomer actuators. Adv. Funct. Mater. 29, 1806412 (2019).

    Article  Google Scholar 

  125. Davidson, E. C., Kotikian, A., Li, S., Aizenberg, J. & Lewis, J. A. 3D printable and reconfigurable liquid crystal elastomers with light-induced shape memory via dynamic bond exchange. Adv. Mater. 32, 1905682 (2020).

    Article  CAS  Google Scholar 

  126. Shafiq, Y. et al. A reusable battery-free RFID temperature sensor. IEEE Trans. Antennas Propag. 67, 6612–6626 (2019).

    Article  Google Scholar 

  127. Shafiq, Y., Henricks, J., Ambulo, C. P., Ware, T. H. & Georgakopoulos, S. V. A passive RFID temperature sensing antenna with liquid crystal elastomer switching. IEEE Access 8, 24443–24456 (2020).

    Article  Google Scholar 

  128. Xia, Y., Zhang, X. & Yang, S. Instant locking of molecular ordering in liquid crystal elastomers by oxygen-mediated thiol–acrylate click reactions. Angew. Chem. 130, 5767–5770 (2018).

    Article  Google Scholar 

  129. López-Valdeolivas, M., Liu, D., Broer, D. J. & Sánchez-Somolinos, C. 4D printed actuators with soft-robotic functions. Macromol. Rapid Commun. 39, 1700710 (2018).

    Article  Google Scholar 

  130. Zeng, H. et al. Alignment engineering in liquid crystalline elastomers: Free-form microstructures with multiple functionalities. Appl. Phys. Lett. 106, 111902 (2015).

    Article  Google Scholar 

  131. Lu, H. F., Wang, M., Chen, X. M., Lin, B. P. & Yang, H. Interpenetrating liquid-crystal polyurethane/polyacrylate elastomer with ultrastrong mechanical property. J. Am. Chem. Soc. 141, 14364–14369 (2019).

    Article  CAS  Google Scholar 

  132. Liu, J. et al. Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Adv. Intell. Syst. 2, 1900163 (2020).

    Article  Google Scholar 

  133. Kim, H. et al. Intelligently actuating liquid crystal elastomer-carbon nanotube composites. Adv. Funct. Mater. 29, 1905063 (2019).

    Article  CAS  Google Scholar 

  134. Lahikainen, M., Zeng, H. & Priimagi, A. Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects. Nat. Commun. 9, 4148 (2018).

    Article  Google Scholar 

  135. Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P. & Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 3, 307–310 (2004).

    Article  CAS  Google Scholar 

  136. Rastogi, P., Njuguna, J. & Kandasubramanian, B. Exploration of elastomeric and polymeric liquid crystals with photothermal actuation: A review. Eur. Polym. J. 121, 109287 (2019).

    Article  CAS  Google Scholar 

  137. White, T. J. in Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light into Work (ed. White, T. J.) 393–403 (Wiley, 2017).

  138. Donovan, B. R., Matavulj, V. M., Ahn, S. K., Guin, T. & White, T. J. All-optical control of shape. Adv. Mater. 31, 1805750 (2019).

    Article  Google Scholar 

  139. Serra, F. & Terentjev, E. M. Nonlinear dynamics of absorption and photobleaching of dyes. J. Chem. Phys. 128, 224510 (2008).

    Article  Google Scholar 

  140. Roach, D. J. et al. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl. Mater. Interfaces 11, 19514–19521 (2019).

    Article  CAS  Google Scholar 

  141. Wang, Z., Li, K., He, Q. & Cai, S. A light-powered ultralight tensegrity robot with high deformability and load capacity. Adv. Mater. 31, 1806849 (2019).

    Article  Google Scholar 

  142. Ray, T. R. et al. Bio-integrated wearable systems: A comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article  CAS  Google Scholar 

  143. Khan, Y. et al. A new frontier of printed electronics: flexible hybrid electronics. Adv. Mater. 32, 1905279 (2020).

    Article  CAS  Google Scholar 

  144. Volpe, R. H., Mistry, D., Patel, V. V., Patel, R. R. & Yakacki, C. M. Dynamically crystalizing liquid-crystal elastomers for an expandable endplate-conforming interbody fusion cage. Adv. Healthc. Mater. 9, 1901136 (2020).

    Article  CAS  Google Scholar 

  145. Traugutt, N. A. et al. Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv. Mater. 32, 2000797 (2020).

    Article  CAS  Google Scholar 

  146. Prévôt, M. E. et al. New developments in 3D liquid crystal elastomers scaffolds for tissue engineering: from physical template to responsive substrate. Proc. SPIE 10361, 103610T (2017).

    Google Scholar 

  147. Martella, D. & Parmeggiani, C. Advances in cell scaffolds for tissue engineering: the value of liquid crystalline elastomers. Chem Eur. J. 24, 12206–12220 (2018).

    Article  CAS  Google Scholar 

  148. Chen, J. et al. Spatiotemporal variations of contact stress between liquid-crystal films and fibroblasts guide cell fate and skin regeneration. Colloids Surf. B 188, 110745 (2020).

    Article  CAS  Google Scholar 

  149. Sharma, A. et al. Biocompatible, biodegradable and porous liquid crystal elastomer scaffolds for spatial cell cultures. Macromol. Biosci. 15, 200–214 (2015).

    Article  CAS  Google Scholar 

  150. Bera, T. et al. Liquid crystal elastomer microspheres as three-dimensional cell scaffolds supporting the attachment and proliferation of myoblasts. ACS Appl. Mater. Interfaces 7, 14528–14535 (2015).

    Article  CAS  Google Scholar 

  151. Gao, Y. et al. Biocompatible 3D liquid crystal elastomer cell scaffolds and foams with primary and secondary porous architecture. ACS Macro Lett. 5, 4–9 (2016).

    Article  CAS  Google Scholar 

  152. Prévôt, M. E. et al. Liquid crystal elastomer foams with elastic properties specifically engineered as biodegradable brain tissue scaffolds. Soft Matter 14, 354–360 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Army Research Office (ARO), Defense Advanced Research Projects Agency (DARPA), the Materials and Manufacturing Directorate of the Air Force Research Laboratory (AFRL) and the University of Colorado. H.E.F. acknowledges Graduate Research Fellowship support from the National Science Foundation. K.R.S. acknowledges support from the Department of Defense (DoD) through the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation of this Review.

Corresponding author

Correspondence to Timothy J. White.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Impressio.tech: https://www.impressio.tech/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbert, K.M., Fowler, H.E., McCracken, J.M. et al. Synthesis and alignment of liquid crystalline elastomers. Nat Rev Mater 7, 23–38 (2022). https://doi.org/10.1038/s41578-021-00359-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00359-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing