Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Materials challenges for trapped-ion quantum computers

Abstract

Trapped-ion quantum information processors store information in atomic ions maintained in position in free space by electric fields. Quantum logic is enacted through manipulation of the ions’ internal and shared motional quantum states using optical and microwave signals. Although trapped ions show great promise for quantum-enhanced computation, sensing and communication, materials research is needed to design traps that allow for improved performance by means of integration of system components, including optics and electronics for ion-qubit control, while minimizing the near-ubiquitous electric-field noise produced by trap-electrode surfaces. In this Review, we consider the materials requirements for such integrated systems, with a focus on problems that hinder current progress towards practical quantum computation. We give suggestions for how materials scientists and trapped-ion technologists can work together to develop materials-based integration and noise-mitigation strategies to enable the next generation of trapped-ion quantum computers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Quantum computing with trapped ions.
Fig. 2: Integrated materials for control of trapped-ion quantum information processing systems.
Fig. 3: Measurements of electric-field noise.
Fig. 4: Effect of ion-milling treatment.
Fig. 5: Material dependence of the surface-electric-field noise.
Fig. 6: Composition–morphology space for trap-electrode material surfaces.
Fig. 7: Interconnected fields of study for trapped-ion materials science.

References

  1. 1.

    Bermudez, A. et al. Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation. Phys. Rev. X 7, 041061 (2017).

    Google Scholar 

  2. 2.

    Bollinger, J., Heinzen, D., Itano, W., Gilbert, S. & Wineland, D. A 303-MHz frequency standard based on trapped Be+ ions. IEEE Trans. Instrum. Meas. 40, 126–128 (1991).

    CAS  Article  Google Scholar 

  3. 3.

    Harty, T. P. et al. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett. 113, 220501 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Wang, P. et al. Single ion-qubit exceeding one hour coherence time. Nat. Commun. 2, 233 (2021).

    Article  CAS  Google Scholar 

  5. 5.

    Gaebler, J. et al. High-fidelity universal gate set for Be ion qubits. Phys. Rev. Lett. 117, 060505 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    CAS  Article  Google Scholar 

  7. 7.

    Sørensen, A. S. & Mølmer, K. Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 22311 (2000).

    Article  Google Scholar 

  8. 8.

    Mintert, F. & Wunderlich, C. Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87, 257904 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    Weidt, S. et al. Trapped-ion quantum logic with global radiation fields. Phys. Rev. Lett. 117, 220501 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Ospelkaus, C. et al. Microwave quantum logic gates for trapped ions. Nature 476, 181–184 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Sutherland, R. T. et al. Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence. Phys. Rev. A 101, 042334 (2020).

    CAS  Article  Google Scholar 

  12. 12.

    Ballance, C. J., Harty, T. P., Linke, N. M., Sepiol, M. A. & Lucas, D. M. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Harty, T. P. et al. High-fidelity trapped-ion quantum logic using near-field microwaves. Phys. Rev. Lett. 117, 140501 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259–328 (1998).

    CAS  Article  Google Scholar 

  15. 15.

    Keselman, A., Glickman, Y., Akerman, N., Kotler, S. & Ozeri, R. High-fidelity state detection and tomography of a single-ion Zeeman qubit. N. J. Phys. 13, 073027 (2011).

    Article  CAS  Google Scholar 

  16. 16.

    Crain, S. et al. High-speed low-crosstalk detection of a 171Yb+ qubit using superconducting nanowire single photon detectors. Commun. Phys. 2, 97 (2019).

    Article  CAS  Google Scholar 

  17. 17.

    Christensen, B. G. et al. Anomalous charge noise in superconducting qubits. Phys. Rev. B 100, 140503 (2019).

    CAS  Article  Google Scholar 

  18. 18.

    Champenois, C. et al. Characterization of a miniature Paul–Straubel trap. Eur. Phys. J. D 15, 105–111 (2001).

    CAS  Article  Google Scholar 

  19. 19.

    Lau, H.-K. & James, D. F. V. Proposal for a scalable universal bosonic simulator using individually trapped ions. Phys. Rev. A 85, 062329 (2012).

    Article  CAS  Google Scholar 

  20. 20.

    Natarajan, V., DiFilippo, F. & Pritchard, D. E. Classical squeezing of an oscillator for subthermal noise operation. Phys. Rev. Lett. 74, 2855–2858 (1995).

    CAS  Article  Google Scholar 

  21. 21.

    Burd, S. C. et al. Quantum amplification of mechanical oscillator motion. Science 364, 1163–1165 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Myerson, A. H. et al. High-fidelity readout of trapped-ion qubits. Phys. Rev. Lett. 100, 200502 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    Bock, M. et al. High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nat. Commun. 9, 1998 (2018).

    Article  CAS  Google Scholar 

  24. 24.

    Stephenson, L. J. et al. High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Phys. Rev. Lett. 124, 110501 (2020).

    CAS  Article  Google Scholar 

  25. 25.

    Burrell, A. High Fidelity Readout of Trapped Ion Qubits. Thesis, Oxford Univ. (2010).

  26. 26.

    Hanneke, D. et al. Realization of a programmable two-qubit quantum processor. Nat. Phys. 6, 13–16 (2009).

    Article  CAS  Google Scholar 

  27. 27.

    Schindler, P. et al. A quantum information processor with trapped ions. N. J. Phys. 15, 123012 (2013).

    Article  CAS  Google Scholar 

  28. 28.

    Fallek, S. D. et al. Transport implementation of the Bernstein–Vazirani algorithm with ion qubits. N. J. Phys. 18, 083030 (2016).

    Article  CAS  Google Scholar 

  29. 29.

    Monz, T. et al. Realization of a scalable Shor algorithm. Science 351, 1068–1070 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Linke, N. M. et al. Experimental comparison of two quantum computing architectures. Proc. Natl Acad. Sci. USA 114, 3305–3310 (2017).

    CAS  Article  Google Scholar 

  32. 32.

    Hempel, C. et al. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X 8, 031022 (2018).

    CAS  Google Scholar 

  33. 33.

    Wright, K. et al. Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 5464 (2019).

    CAS  Article  Google Scholar 

  34. 34.

    Pino, J. M. et al. Demonstration of the QCCD trapped-ion quantum computer architecture. Preprint at arXiv https://arxiv.org/abs/2003.01293v3 (2020).

  35. 35.

    Bohnet, J. G. et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297–1301 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Gorman, D. J. et al. Engineering vibrationally-assisted energy transfer in a trapped-ion quantum simulator. Phys. Rev. X 8, 011038 (2018).

    CAS  Google Scholar 

  38. 38.

    Clark, C. R., Metodi, T. S., Gasster, S. D. & Brown, K. R. Resource requirements for fault-tolerant quantum simulation: the ground state of the transverse Ising model. Phys. Rev. A 79, 062314 (2009).

    Article  CAS  Google Scholar 

  39. 39.

    Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    CAS  Article  Google Scholar 

  40. 40.

    Chiaverini, J. et al. Surface-electrode architecture for ion-trap quantum information processing. Quantum Inf. Comput. 5, 419–439 (2005).

    CAS  Google Scholar 

  41. 41.

    Seidelin, S. et al. Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006).

    CAS  Article  Google Scholar 

  42. 42.

    Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3, e1601540 (2017).

    Article  CAS  Google Scholar 

  43. 43.

    Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    Article  CAS  Google Scholar 

  44. 44.

    Nickerson, N. H., Fitzsimons, J. F. & Benjamin, S. C. Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links. Phys. Rev. X 4, 041041 (2014).

    Google Scholar 

  45. 45.

    Raizen, M. G., Gilligan, J. M., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Ionic crystals in a linear Paul trap. Phys. Rev. A 45, 6493–6501 (1992).

    CAS  Article  Google Scholar 

  46. 46.

    Blatt, R. & Wineland, D. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008).

    CAS  Article  Google Scholar 

  47. 47.

    Häffner, H., Roos, C. F. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008).

    Article  Google Scholar 

  48. 48.

    Ozeri, R. The trapped-ion qubit tool box. Contemp. Phys. 52, 531–550 (2011).

    Article  Google Scholar 

  49. 49.

    Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

    Article  CAS  Google Scholar 

  50. 50.

    Romaszko, Z. et al. Engineering of microfabricated ion traps and integration of advanced on-chip features. Nat. Rev. Phys. 2, 285–299 (2020).

    CAS  Article  Google Scholar 

  51. 51.

    Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article  Google Scholar 

  53. 53.

    Mehta, K. K. et al. Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11, 1066–1070 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    Stuart, J. et al. Chip-integrated voltage sources for control of trapped ions. Phys. Rev. Appl. 11, 024010 (2019).

    CAS  Article  Google Scholar 

  55. 55.

    Todaro, S. L. et al. State readout of a trapped ion qubit using a trap-integrated superconducting photon detector. Phys. Rev. Lett. 126, 010501 (2021).

    CAS  Article  Google Scholar 

  56. 56.

    Niffenegger, R. J. et al. Integrated optical control and enhanced coherence of ion qubits via multi-wavelength photonics. Nature 586, 538–542 (2020).

    CAS  Article  Google Scholar 

  57. 57.

    Mehta, K. K. et al. Integrated optical multi-ion quantum logic. Nature 586, 533–537 (2020).

    CAS  Article  Google Scholar 

  58. 58.

    Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37–42 (2015).

    CAS  Article  Google Scholar 

  59. 59.

    Guise, N. D. et al. In-vacuum active electronics for microfabricated ion traps. Rev. Sci. Instrum. 85, 063101 (2014).

    Article  CAS  Google Scholar 

  60. 60.

    Ospelkaus, C. et al. Trapped-ion quantum logic gates based on oscillating magnetic fields. Phys. Rev. Lett. 101, 90502 (2008).

    CAS  Article  Google Scholar 

  61. 61.

    Srinivas, R. et al. Trapped-ion spin–motion coupling with microwaves and a near-motional oscillating magnetic field gradient. Phys. Rev. Lett. 122, 163201 (2019).

    CAS  Article  Google Scholar 

  62. 62.

    Steane, A. A tutorial on quantum error correction. in Proc. Int. School Phys. ‘Enrico Fermi’ (eds Casati, G. et al.) 1–32 (IOS, 2006).

  63. 63.

    Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602–605 (2004).

    CAS  Article  Google Scholar 

  64. 64.

    Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011).

    CAS  Article  Google Scholar 

  65. 65.

    Sorace-Agaskar, C. et al. Versatile silicon nitride and alumina integrated photonic platforms for the ultraviolet to short-wave infrared. IEEE J. Sel. Top. Quantum Electron. 25, 8201515 (2019).

    CAS  Article  Google Scholar 

  66. 66.

    West, G. N. et al. Low-loss integrated photonics for the blue and ultraviolet regime. APL Photonics 4, 026101 (2019).

    Article  CAS  Google Scholar 

  67. 67.

    Katzir, A., Livanos, A., Shellan, J. & Yariv, A. Chirped gratings in integrated optics. IEEE J. Quantum Electron. 13, 296–304 (1977).

    Article  Google Scholar 

  68. 68.

    Rahim, A., Spuesens, T., Baets, R. & Bogaerts, W. Open-access silicon photonics: current status and emerging initiatives. Proc. IEEE 106, 2313–2330 (2018).

    Article  Google Scholar 

  69. 69.

    Wan, Y. et al. Quantum gate teleportation between separated zones of a trapped-ion processor. Science 364, 875–878 (2019).

    CAS  Article  Google Scholar 

  70. 70.

    Negnevitsky, V. et al. Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register. Nature 563, 527–531 (2018).

    CAS  Article  Google Scholar 

  71. 71.

    Ball, H. et al. Site-resolved imaging of beryllium ion crystals in a high-optical-access Penning trap with inbore optomechanics. Rev. Sci. Instrum. 90, 053103 (2019).

    CAS  Article  Google Scholar 

  72. 72.

    Warring, U., Hakelberg, F., Kiefer, P., Wittemer, M. & Schaetz, T. Trapped ion architecture for multi-dimensional quantum simulations. Adv. Quantum Technol. 3, 1900137 (2020).

    CAS  Article  Google Scholar 

  73. 73.

    Campbell, W. C. et al. Ultrafast gates for single atomic qubits. Phys. Rev. Lett. 105, 090502 (2010).

    CAS  Article  Google Scholar 

  74. 74.

    Mizrahi, J. et al. Quantum control of qubits and atomic motion using ultrafast laser pulses. Appl. Phys. B 114, 45–61 (2014).

    CAS  Article  Google Scholar 

  75. 75.

    Nam, Y. et al. Ground-state energy estimation of the water molecule on a trapped ion quantum computer. npj Quantum Inf. 6, 33 (2020).

    Article  Google Scholar 

  76. 76.

    Feng, M. et al. On-chip integration of GaN-based laser, modulator, and photodetector grown on Si. IEEE J. Sel. Top. Quantum Electron. 24, 1–5 (2018).

    Google Scholar 

  77. 77.

    Xiong, C. et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. N. J. Phys. 14, 095014 (2012).

    Article  CAS  Google Scholar 

  78. 78.

    Zhu, S. & Lo, G.-Q. Aluminum nitride electro-optic phase shifter for backend integration on silicon. Opt. Express 24, 12501–12506 (2016).

    CAS  Article  Google Scholar 

  79. 79.

    Wang, C., Zhang, M., Stern, B., Lipson, M. & Loncar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26, 1547–1555 (2018).

    Article  Google Scholar 

  80. 80.

    Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photonics 4, 518–526 (2010).

    CAS  Article  Google Scholar 

  81. 81.

    Haffner, C. et al. Low-loss plasmon-assisted electro-optic modulator. Nature 556, 483–486 (2018).

    CAS  Article  Google Scholar 

  82. 82.

    Semenov, A. D., Gol’tsman, G. N. & Korneev, A. A. Quantum detection by current carrying superconducting film. Phys. C. Supercond. 351, 349–356 (2001).

    CAS  Article  Google Scholar 

  83. 83.

    Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photonics 7, 210–214 (2013).

    CAS  Article  Google Scholar 

  84. 84.

    Slichter, D. H. et al. UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap. Opt. Express 25, 8705 (2017).

    CAS  Article  Google Scholar 

  85. 85.

    Rochas, A. et al. Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology. Rev. Sci. Instrum. 74, 3263–3270 (2003).

    CAS  Article  Google Scholar 

  86. 86.

    Parpia, Z., Salama, C. A. T. & Hadaway, R. A. Modeling and characterization of CMOS-compatible high-voltage device structures. IEEE Trans. Electron. Devices 34, 2335–2343 (1987).

    Article  Google Scholar 

  87. 87.

    Mishra, U. K., Shen, L., Kazior, T. E. & Wu, Y. GaN-based RF power devices and amplifiers. Proc. IEEE 96, 287–305 (2008).

    CAS  Article  Google Scholar 

  88. 88.

    Allcock, D. T. C. et al. A microfabricated ion trap with integrated microwave circuitry. Appl. Phys. Lett. 102, 44103 (2013).

    Article  CAS  Google Scholar 

  89. 89.

    Maunz, P. High Optical Access Trap 2.0 (Sandia National Laboratories, 2016).

  90. 90.

    Siverns, J. D., Simkins, L. R., Weidt, S. & Hensinger, W. K. On the application of radio frequency voltages to ion traps via helical resonators. Appl. Phys. B 107, 921–934 (2012).

    CAS  Article  Google Scholar 

  91. 91.

    Eltony, A. M., Wang, S. X., Akselrod, G. M., Herskind, P. F. & Chuang, I. L. Transparent ion trap with integrated photodetector. Appl. Phys. Lett. 102, 054106 (2013).

    Article  CAS  Google Scholar 

  92. 92.

    Kessler, E. M. et al. Heisenberg-limited atom clocks based on entangled qubits. Phys. Rev. Lett. 112, 190403 (2014).

    CAS  Article  Google Scholar 

  93. 93.

    Reiter, F., Sørensen, A. S., Zoller, P. & Muschik, C. A. Dissipative quantum error correction and application to quantum sensing with trapped ions. Nat. Commun. 8, 1822 (2017).

    CAS  Article  Google Scholar 

  94. 94.

    Home, J. P. & Steane, A. M. Electrode configurations for fast separation of trapped ions. Quantum Inf. Comput. 6, 289 (2006).

    CAS  Google Scholar 

  95. 95.

    Walther, A. et al. Controlling fast transport of cold trapped ions. Phys. Rev. Lett. 109, 80501 (2012).

    CAS  Article  Google Scholar 

  96. 96.

    Bowler, R. et al. Coherent diabatic ion transport and separation in a multizone trap array. Phys. Rev. Lett. 109, 080502 (2012).

    CAS  Article  Google Scholar 

  97. 97.

    Turchette, Q. A. et al. Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000).

    Article  Google Scholar 

  98. 98.

    Johnson, J. B. Thermal agitation of electricity in conductors. Phys. Rev. 32, 97–109 (1928).

    CAS  Article  Google Scholar 

  99. 99.

    Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).

    CAS  Article  Google Scholar 

  100. 100.

    Brownnutt, M., Kumph, M., Rabl, P. & Blatt, R. Ion-trap measurements of electric-field noise near surfaces. Rev. Mod. Phys. 87, 1419–1482 (2015).

    CAS  Article  Google Scholar 

  101. 101.

    Deslauriers, L. et al. Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006).

    CAS  Article  Google Scholar 

  102. 102.

    Leibrandt, D. R. et al. Demonstration of a scalable, multiplexed ion trap for quantum information processing. Quantum Inf. Comput. 9, 0901 (2009).

    CAS  Google Scholar 

  103. 103.

    Chiaverini, J. & Sage, J. M. Insensitivity of the rate of ion motional heating to trap-electrode material over a large temperature range. Phys. Rev. A 89, 012318 (2014).

    Article  CAS  Google Scholar 

  104. 104.

    Sedlacek, J. A. et al. Evidence for multiple mechanisms underlying surface electric-field noise in ion traps. Phys. Rev. A 98, 63430 (2018).

    CAS  Article  Google Scholar 

  105. 105.

    Allcock, D. T. C. et al. Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning. N. J. Phys. 13, 123023 (2011).

    Article  CAS  Google Scholar 

  106. 106.

    McConnell, R., Bruzewicz, C., Chiaverini, J. & Sage, J. Reduction of trapped-ion anomalous heating by in situ surface plasma cleaning. Phys. Rev. A 92, 020302 (2015).

    Article  CAS  Google Scholar 

  107. 107.

    Hite, D. A. et al. 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. Phys. Rev. Lett. 109, 103001 (2012).

    CAS  Article  Google Scholar 

  108. 108.

    Daniilidis, N. et al. Surface noise analysis using a single-ion sensor. Phys. Rev. B 89, 245435 (2014).

    Article  CAS  Google Scholar 

  109. 109.

    Wang, S. X. et al. Superconducting microfabricated ion traps. Appl. Phys. Lett. 97, 244102 (2010).

    Article  CAS  Google Scholar 

  110. 110.

    Boldin, I. A., Kraft, A. & Wunderlich, C. Measuring anomalous heating in a planar ion trap with variable ion-surface separation. Phys. Rev. Lett. 120, 023201 (2018).

    CAS  Article  Google Scholar 

  111. 111.

    Sedlacek, J. A. et al. Distance scaling of electric-field noise in a surface-electrode ion trap. Phys. Rev. A 97, 020302(R) (2018).

    Article  Google Scholar 

  112. 112.

    An, D., Matthiesen, C., Urban, E. & Häffner, H. Distance scaling and polarization of electric-field noise in a surface ion trap. Phys. Rev. A 100, 063405 (2019).

    CAS  Article  Google Scholar 

  113. 113.

    Noel, C. et al. Electric-field noise from thermally activated fluctuators in a surface ion trap. Phys. Rev. A 99, 063427 (2019).

    CAS  Article  Google Scholar 

  114. 114.

    Kim, E. et al. Electric-field noise from carbon-adatom diffusion on a Au(110) surface: first-principles calculations and experiments. Phys. Rev. A 95, 033407 (2017).

    Article  Google Scholar 

  115. 115.

    Labaziewicz, J. et al. Suppression of heating rates in cryogenic surface-electrode ion traps. Phys. Rev. Lett. 100, 013001 (2008).

    Article  CAS  Google Scholar 

  116. 116.

    Hite, D. A. et al. Measurements of trapped-ion heating rates with exchangeable surfaces in close proximity. MRS Adv. 2, 2189–2197 (2017).

    Article  CAS  Google Scholar 

  117. 117.

    Sandoghdar, V., Sukenik, C. I., Hinds, E. A. & Haroche, S. Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. Phys. Rev. Lett. 68, 3432 (1992).

    CAS  Article  Google Scholar 

  118. 118.

    Dubessy, R., Coudreau, T. & Guidoni, L. Electric field noise above surfaces: a model for heating-rate scaling law in ion traps. Phys. Rev. A 80, 031402(R) (2009).

    Article  CAS  Google Scholar 

  119. 119.

    Low, G. H., Herskind, P. F. & Chuang, I. L. Finite-geometry models of electric field noise from patch potentials in ion traps. Phys. Rev. A 84, 053425 (2011).

    Article  CAS  Google Scholar 

  120. 120.

    Kumph, M., Henkel, C., Rabl, P., Brownnutt, M. & Blatt, R. Electric-field noise above a thin dielectric layer on metal electrodes. N. J. Phys. 18, 023020 (2016).

    Article  CAS  Google Scholar 

  121. 121.

    Safavi-Naini, A., Rabl, P., Weck, P. F. & Sadeghpour, H. R. Microscopic model of electric-field-noise heating in ion traps. Phys. Rev. A 84, 023412 (2011).

    Article  CAS  Google Scholar 

  122. 122.

    Safavi-Naini, A., Kim, E., Weck, P. F., Rabl, P. & Sadeghpour, H. R. Influence of monolayer contamination on electric-field-noise heating in ion traps. Phys. Rev. A 87, 023421 (2013).

    Article  CAS  Google Scholar 

  123. 123.

    Ray, K. G., Rubenstein, B. M., Gu, W. & Lordi, V. van der Waals-corrected density functional study of electric field noise heating in ion traps caused by electrode surface adsorbates. N. J. Phys. 21, 053043 (2019).

    CAS  Article  Google Scholar 

  124. 124.

    Sedlacek, J. A. et al. Method for determination of technical noise contributions to ion motional heating. J. Appl. Phys. 124, 214904 (2018).

    Article  CAS  Google Scholar 

  125. 125.

    Grundner, M. & Halbritter, J. XPS and AES studies on oxide growth and oxide coatings on niobium. J. Appl. Phys. 51, 397–405 (1980).

    CAS  Article  Google Scholar 

  126. 126.

    Britton, J. et al. A microfabricated surface-electrode ion trap in silicon. Preprint at arXiv https://arxiv.org/abs/quant-ph/0605170v1 (2008).

  127. 127.

    Britton, J. et al. Scalable arrays of rf Paul traps in degenerate Si. Appl. Phys. Lett. 95, 173102 (2009).

    Article  CAS  Google Scholar 

  128. 128.

    Li, H.-K. et al. Realization of translational symmetry in trapped cold ion rings. Phys. Rev. Lett. 118, 053001 (2017).

    Article  Google Scholar 

  129. 129.

    Antohi, P. B. et al. Cryogenic ion trapping systems with surface-electrode traps. Rev. Sci. Instrum. 80, 013103 (2009).

    CAS  Article  Google Scholar 

  130. 130.

    Jain, S., Alonso, J., Grau, M. & Home, J. P. Scalable arrays of micro-Penning traps for quantum computing and simulation. Phys. Rev. X 10, 031027 (2020).

    CAS  Google Scholar 

  131. 131.

    Goodwin, J. F., Stutter, G., Thompson, R. C. & Segal, D. M. Resolved-sideband laser cooling in a Penning trap. Phys. Rev. Lett. 116, 143002 (2016).

    CAS  Article  Google Scholar 

  132. 132.

    Borchert, M. J. et al. Measurement of ultralow heating rates of a single antiproton in a cryogenic Penning trap. Phys. Rev. Lett. 122, 043201 (2019).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Kuzyk for assistance with Fig. 1. K.R.B. and H.H. acknowledge support from the US National Science Foundation STAQ project Phy-1818914. This material is based on work supported by the US Department of Defense under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Department of Defense.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Kenneth R. Brown.

Ethics declarations

Competing interests

K.R.B. is a scientific adviser for IonQ, Inc., and has a personal financial interest in the company.

Additional information

Peer review information

Nature Reviews Materials thanks Roee Ozeri, Jonathan Home and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brown, K.R., Chiaverini, J., Sage, J.M. et al. Materials challenges for trapped-ion quantum computers. Nat Rev Mater (2021). https://doi.org/10.1038/s41578-021-00292-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing