Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transforming heat transfer with thermal metamaterials and devices

Abstract

The demand for sophisticated tools and approaches in heat management and control has triggered the fast development of fields that include conductive thermal metamaterials, nanophononics, and far-field and near-field radiative thermal management. In this Review, we offer a unified perspective on the control of heat transfer, summarizing complementary paradigms towards the manipulation of physical parameters and the realization of unprecedented phenomena in heat transfer using artificial structures. The Review is divided into three parts that focus on the three main categories of heat flow control. Thermal conduction and radiation, at both the macroscale and microscale, are emphasized in the first and second parts. The third part discusses efforts to actively introduce heat sources or tune the material parameters with multiphysical effects in conduction, radiation and convection. We conclude by analysing the challenges in this research area and surveying new possible directions, in particular topological thermal effects, heat waves and quantum thermal effects.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Macroscopic approaches for manipulating heat conduction.
Fig. 2: Microscopic approaches to heat conduction.
Fig. 3: Far-field thermal radiation manipulation.
Fig. 4: Near-field thermal radiation manipulation.
Fig. 5: Multiphysical effects for heat transfer manipulation.

References

  1. 1.

    Chen, G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford Univ. Press, 2005).

  2. 2.

    Sklan, S. R. & Li, B. Thermal metamaterials: functions and prospects. Natl Sci. Rev. 5, 138–141 (2018).

    Google Scholar 

  3. 3.

    Huang, J.-P. Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Springer, 2020).

  4. 4.

    Li, N. et al. Colloquium: Phononics. Manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012).

    Google Scholar 

  5. 5.

    Li, W. & Fan, S. Nanophotonic control of thermal radiation for energy applications. Opt. Express 26, 15995–16021 (2018).

    CAS  Google Scholar 

  6. 6.

    Baranov, D. G. et al. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019).

    CAS  Google Scholar 

  7. 7.

    Cuevas, J. C. & García-Vidal, F. J. Radiative heat transfer. ACS Photonics 5, 3896–3915 (2018).

    CAS  Google Scholar 

  8. 8.

    Fan, C. Z., Gao, Y. & Huang, J. P. Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008).

    Google Scholar 

  9. 9.

    Chen, T., Weng, C.-N. & Chen, J.-S. Cloak for curvilinearly anisotropic media in conduction. Appl. Phys. Lett. 93, 114103 (2008).

    Google Scholar 

  10. 10.

    Narayana, S. & Sato, Y. Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012). This paper reports the experimental realization of a thermal cloak and of other thermal metamaterials with a layered structure.

    Google Scholar 

  11. 11.

    Volz, S. et al. Nanophononics: state of the art and perspectives. Eur. Phys. J. B 89, 15 (2016).

    Google Scholar 

  12. 12.

    Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012).

    CAS  Google Scholar 

  13. 13.

    Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J. & Heath, J. R. Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nanotechnol. 5, 718–721 (2010). This paper describes the control of the thermal conductivity in a 2D nanomesh.

    CAS  Google Scholar 

  14. 14.

    Davis, B. L. & Hussein, M. I. Nanophononic metamaterial: thermal conductivity reduction by local resonance. Phys. Rev. Lett. 112, 055505 (2014).

    Google Scholar 

  15. 15.

    Greffet, J. J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002). This paper demonstrates far-field thermal radiation manipulation using subwavelength structures.

    CAS  Google Scholar 

  16. 16.

    Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    CAS  Google Scholar 

  17. 17.

    Polder, D. & Van Hove, M. Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B 4, 3303–3314 (1971). This paper theoretically describes near-field heat transfer.

    Google Scholar 

  18. 18.

    Volokitin, A. I. & Persson, B. N. J. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 79, 1291–1329 (2007).

    CAS  Google Scholar 

  19. 19.

    He, J. & Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 357, eaak9997 (2017).

    Google Scholar 

  20. 20.

    Yoon, H. et al. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films. Nat. Mater. 15, 1113–1119 (2016).

    CAS  Google Scholar 

  21. 21.

    Vassant, S. et al. Electrical modulation of emissivity. Appl. Phys. Lett. 102, 081125 (2013). The paper proposes to modulate thermal emissivity with electric fields.

    Google Scholar 

  22. 22.

    Li, Y. et al. Thermal meta-device in analogue of zero-index photonics. Nat. Mater. 18, 48 (2019).

    CAS  Google Scholar 

  23. 23.

    Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    CAS  Google Scholar 

  24. 24.

    Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    CAS  Google Scholar 

  25. 25.

    Guenneau, S., Amra, C. & Veynante, D. Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express 20, 8207–8218 (2012).

    Google Scholar 

  26. 26.

    Schittny, R., Kadic, M., Guenneau, S. & Wegener, M. Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013).

    Google Scholar 

  27. 27.

    Nan, C.-W., Birringer, R., Clarke, D. R. & Gleiter, H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997).

    CAS  Google Scholar 

  28. 28.

    Sklan, S. R., Bai, X., Li, B. & Zhang, X. Detecting thermal cloaks via transient effects. Sci. Rep. 6, 32915 (2016).

    CAS  Google Scholar 

  29. 29.

    Han, T. et al. Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials. Energy Environ. Sci. 6, 3537–3541 (2013).

    CAS  Google Scholar 

  30. 30.

    Shen, X., Jiang, C., Li, Y. & Huang, J. Thermal metamaterial for convergent transfer of conductive heat with high efficiency. Appl. Phys. Lett. 109, 201906 (2016).

    Google Scholar 

  31. 31.

    Hu, R. et al. Binary thermal encoding by energy shielding and harvesting units. Phys. Rev. Appl. 10, 054032 (2018).

    CAS  Google Scholar 

  32. 32.

    Li, J. et al. Doublet thermal metadevice. Phys. Rev. Appl. 11, 044021 (2019).

    CAS  Google Scholar 

  33. 33.

    Hu, R. et al. Illusion thermotics. Adv. Mater. 30, 1707237 (2018).

    Google Scholar 

  34. 34.

    Li, Y., Bai, X., Yang, T., Luo, H. & Qiu, C.-W. Structured thermal surface for radiative camouflage. Nat. Commun. 9, 273 (2018).

    Google Scholar 

  35. 35.

    Peng, Y.-G., Li, Y., Cao, P.-C., Zhu, X.-F. & Qiu, C.-W. 3D Printed meta-helmet for wide-angle thermal camouflages. Adv. Funct. Mater. 30, 2002061 (2020).

    CAS  Google Scholar 

  36. 36.

    Shang, J., Tian, B. Y., Jiang, C. R. & Huang, J. P. Digital thermal metasurface with arbitrary infrared thermogram. Appl. Phys. Lett. 113, 261902 (2018).

    Google Scholar 

  37. 37.

    Gomory, F. et al. Experimental realization of a magnetic cloak. Science 335, 1466–1468 (2012).

    Google Scholar 

  38. 38.

    Xu, H., Shi, X., Gao, F., Sun, H. & Zhang, B. Experimental demonstration of an ultrathin three-dimensional thermal cloak. Phys. Rev. Lett. 112, 054301 (2014). This paper and the one below by Han et al. present the experimental realization of thermal cloaks with only two layers of natural materials.

    Google Scholar 

  39. 39.

    Han, T. et al. Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014).

    Google Scholar 

  40. 40.

    Ma, Y., Liu, Y., Raza, M., Wang, Y. & He, S. Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys. Rev. Lett. 113, 205501 (2014).

    Google Scholar 

  41. 41.

    Yang, T. et al. Invisible sensor: simultaneous sensing and camouflaging in multiphysical fields. Adv. Mater. 27, 7752–7758 (2015).

    CAS  Google Scholar 

  42. 42.

    Han, T., Bai, X., Thong, J. T. L., Li, B. & Qiu, C.-W. Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. Adv. Mater. 26, 1731–1734 (2014).

    CAS  Google Scholar 

  43. 43.

    Xu, L., Yang, S. & Huang, J. Thermal transparency induced by periodic interparticle interaction. Phys. Rev. Appl. 11, 034056 (2019).

    CAS  Google Scholar 

  44. 44.

    Xu, L., Yang, S. & Huang, J. Passive metashells with adaptive thermal conductivities: chameleonlike behaviour and its origin. Phys. Rev. Appl. 11, 054071 (2019).

    CAS  Google Scholar 

  45. 45.

    Han, T. et al. Full-parameter omnidirectional thermal metadevices of anisotropic geometry. Adv. Mater. 30, 1804019 (2018).

    Google Scholar 

  46. 46.

    Fujii, G. & Akimoto, Y. Topology-optimized thermal carpet cloak expressed by an immersed-boundary level-set method via a covariance matrix adaptation evolution strategy. Int. J. Heat Mass Transf. 137, 1312–1322 (2019).

    Google Scholar 

  47. 47.

    Zheng, X. & Li, B. Effect of interfacial thermal resistance in a thermal cloak. Phys. Rev. Appl. 13, 024071 (2020).

    CAS  Google Scholar 

  48. 48.

    Wehmeyer, G., Yabuki, T., Monachon, C., Wu, J. & Dames, C. Thermal diodes, regulators, and switches: Physical mechanisms and potential applications. Appl. Phys. Rev. 4, 041304 (2017).

    Google Scholar 

  49. 49.

    Li, Y. et al. Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes. Phys. Rev. Lett. 115, 195503 (2015).

    Google Scholar 

  50. 50.

    Sklan, S. R. & Li, B. A unified approach to nonlinear transformation materials. Sci. Rep. 8, 4436 (2018).

    Google Scholar 

  51. 51.

    Li, Y., Shen, X., Huang, J. & Ni, Y. Temperature-dependent transformation thermotics for unsteady states: Switchable concentrator for transient heat flow. Phys. Lett. A 380, 1641–1647 (2016).

    CAS  Google Scholar 

  52. 52.

    Shen, X., Li, Y., Jiang, C., Ni, Y. & Huang, J. Thermal cloak-concentrator. Appl. Phys. Lett. 109, 031907 (2016).

    Google Scholar 

  53. 53.

    Shen, X., Li, Y., Jiang, C. & Huang, J. Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change. Phys. Rev. Lett. 117, 055501 (2016).

    Google Scholar 

  54. 54.

    Hao, M., Li, J., Park, S., Moura, S. & Dames, C. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat. Energy 3, 899–906 (2018).

    CAS  Google Scholar 

  55. 55.

    Kang, S. et al. Temperature-responsive thermal metamaterials enabled by modular design of thermally tunable unit cells. Int. J. Heat Mass Transf. 130, 469–482 (2019).

    CAS  Google Scholar 

  56. 56.

    Zhao, Y. et al. Engineering the thermal conductivity along an individual silicon nanowire by selective helium ion irradiation. Nat. Commun. 8, 15919 (2017).

    CAS  Google Scholar 

  57. 57.

    Choe, H. S. et al. Ion write microthermotics: programing thermal metamaterials at the microscale. Nano Lett. 19, 3830–3837 (2019).

    CAS  Google Scholar 

  58. 58.

    Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).

    CAS  Google Scholar 

  59. 59.

    Verdier, M., Anufriev, R., Ramiere, A., Termentzidis, K. & Lacroix, D. Thermal conductivity of phononic membranes with aligned and staggered lattices of holes at room and low temperatures. Phys. Rev. B 95, 205438 (2017).

    Google Scholar 

  60. 60.

    Anufriev, R., Ramiere, A., Maire, J. & Nomura, M. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures. Nat. Commun. 8, 15505 (2017).

    CAS  Google Scholar 

  61. 61.

    Anufriev, R., Gluchko, S., Volz, S. & Nomura, M. Quasi-ballistic heat conduction due to Lévy phonon flights in silicon nanowires. ACS Nano 12, 11928–11935 (2018).

    CAS  Google Scholar 

  62. 62.

    Costescu, R., Cahill, D. G., Fabreguette, F., Sechrist, Z. & George, S. Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science 303, 989–990 (2004).

    CAS  Google Scholar 

  63. 63.

    Simkin, M. V. & Mahan, G. D. Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84, 927 (2000).

    CAS  Google Scholar 

  64. 64.

    Cleland, A. N., Schmidt, D. R. & Yung, C. S. Thermal conductance of nanostructured phononic crystals. Phys. Rev. B 64, 172301 (2001).

    Google Scholar 

  65. 65.

    Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168 (2014).

    CAS  Google Scholar 

  66. 66.

    Tang, J. et al. Holey silicon as an efficient thermoelectric material. Nano Lett. 10, 4279–4283 (2010).

    CAS  Google Scholar 

  67. 67.

    Hopkins, P. E. et al. Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett. 11, 107–112 (2010).

    Google Scholar 

  68. 68.

    He, Y., Donadio, D., Lee, J.-H., Grossman, J. C. & Galli, G. Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales. ACS Nano 5, 1839–1844 (2011).

    CAS  Google Scholar 

  69. 69.

    Zen, N., Puurtinen, T. A., Isotalo, T. J., Chaudhuri, S. & Maasilta, I. J. Engineering thermal conductance using a two-dimensional phononic crystal. Nat. Commun. 5, 3435 (2014).

    Google Scholar 

  70. 70.

    Alaie, S. et al. Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature. Nat. Commun. 6, 7228 (2015).

    CAS  Google Scholar 

  71. 71.

    Lim, J. et al. Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon. ACS Nano 10, 124–132 (2015).

    Google Scholar 

  72. 72.

    Nakagawa, J., Kage, Y., Hori, T., Shiomi, J. & Nomura, M. Crystal structure dependent thermal conductivity in two-dimensional phononic crystal nanostructures. Appl. Phys. Lett. 107, 023104 (2015).

    Google Scholar 

  73. 73.

    Nomura, M., Nakagawa, J., Sawano, K., Maire, J. & Volz, S. Thermal conduction in Si and SiGe phononic crystals explained by phonon mean free path spectrum. Appl. Phys. Lett. 109, 173104 (2016).

    Google Scholar 

  74. 74.

    Lee, J. et al. Investigation of phonon coherence and backscattering using silicon nanomeshes. Nat. Commun. 8, 14054 (2017).

    CAS  Google Scholar 

  75. 75.

    Maire, J. et al. Heat conduction tuning by wave nature of phonons. Sci. Adv. 3, e1700027 (2017).

    Google Scholar 

  76. 76.

    Yang, L., Yang, N. & Li, B. Reduction of thermal conductivity by nanoscale 3D phononic crystal. Sci. Rep. 3, 1143 (2013).

    Google Scholar 

  77. 77.

    Yang, L., Yang, N. & Li, B. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores. Nano Lett. 14, 1734–1738 (2014).

    CAS  Google Scholar 

  78. 78.

    Yang, L., Chen, J., Yang, N. & Li, B. Significant reduction of graphene thermal conductivity by phononic crystal structure. Int. J. Heat Mass Transf. 91, 428–432 (2015).

    CAS  Google Scholar 

  79. 79.

    Dechaumphai, E. & Chen, R. Thermal transport in phononic crystals: the role of zone folding effect. J. Appl. Phys. 111, 073508 (2012).

    Google Scholar 

  80. 80.

    Jain, A., Yu, Y.-J. & McGaughey, A. J. Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm. Phys. Rev. B 87, 195301 (2013).

    Google Scholar 

  81. 81.

    Ravichandran, N. K. & Minnich, A. J. Coherent and incoherent thermal transport in nanomeshes. Phys. Rev. B 89, 205432 (2014).

    Google Scholar 

  82. 82.

    Ding, D., Yin, X. & Li, B. Sensing coherent phonons with two-photon interference. N. J. Phys. 20, 023008 (2018).

    Google Scholar 

  83. 83.

    Honarvar, H. & Hussein, M. I. Two orders of magnitude reduction in silicon membrane thermal conductivity by resonance hybridizations. Phys. Rev. B 97, 195413 (2018).

    CAS  Google Scholar 

  84. 84.

    Hussein, M. I. & Honarvar, H. in Handbook of Materials Modeling: Applications. Current and Emerging Materials (eds Andreoni, W. & Yip, S.) 953–973 (Springer, 2020).

  85. 85.

    Liu, Y. Y. et al. An efficient mechanism for enhancing the thermoelectricity of nanoribbons by blocking phonon transport in 2D materials. J. Phys. Condens. Matter 30, 275701 (2018).

    Google Scholar 

  86. 86.

    Giri, A. & Hopkins, P. E. Giant reduction and tunability of the thermal conductivity of carbon nanotubes through low-frequency resonant modes. Phys. Rev. B 98, 45421 (2018).

    CAS  Google Scholar 

  87. 87.

    Hussein, M. I., Tsai, C.-N. & Honarvar, H. Thermal conductivity reduction in a nanophononic metamaterial versus a nanophononic crystal: a review and comparative analysis. Adv. Funct. Mater. 30, 1906718 (2020).

    CAS  Google Scholar 

  88. 88.

    Anufriev, R., Yanagisawa, R. & Nomura, M. Aluminium nanopillars reduce thermal conductivity of silicon nanobeams. Nanoscale 9, 15083–15088 (2017).

    CAS  Google Scholar 

  89. 89.

    Honarvar, H. & Hussein, M. I. Spectral energy analysis of locally resonant nanophononic metamaterials by molecular simulations. Phys. Rev. B 93, 081412 (2016).

    Google Scholar 

  90. 90.

    Ma, D. et al. Nano-cross-junction effect on phonon transport in silicon nanowire cages. Phys. Rev. B 94, 165434 (2016).

    Google Scholar 

  91. 91.

    Xiong, S. et al. Blocking phonon transport by structural resonances in alloy-based nanophononic metamaterials leads to ultralow thermal conductivity. Phys. Rev. Lett. 117, 025503 (2016).

    Google Scholar 

  92. 92.

    Anufriev, R. & Nomura, M. Heat conduction engineering in pillar-based phononic crystals. Phys. Rev. B 95, 155432 (2017).

    Google Scholar 

  93. 93.

    Wei, Z., Yang, J., Bi, K. & Chen, Y. Phonon transport properties in pillared silicon film. J. Appl. Phys. 118, 155103 (2015).

    Google Scholar 

  94. 94.

    Chen, J., Zhang, G. & Li, B. Phonon coherent resonance and its effect on thermal transport in core–shell nanowires. J. Chem. Phys. 135, 104508 (2011).

    Google Scholar 

  95. 95.

    Howell, J. R., Siegel, R. & Mengüc, M. P. Thermal Radiation Heat Transfer (CRC, 2011).

  96. 96.

    Modest, M. F. Radiative Heat Transfer (Elsevier, 2013).

  97. 97.

    Kittel, C. & Kroemer, H. Thermal Physics (Freeman, 1980).

  98. 98.

    Cornelius, C. M. & Dowling, J. P. Modification of Planck blackbody radiation by photonic band-gap structures. Phys. Rev. A 59, 4736–4746 (1999).

    CAS  Google Scholar 

  99. 99.

    Lin, S. Y. et al. Enhancement and suppression of thermal emission by a three-dimensional photonic crystal. Phys. Rev. B 62, R2243–R2246 (2000).

    CAS  Google Scholar 

  100. 100.

    Noda, S. Conversion of broadband to narrowband thermal emission through energy recycling. Nat. Photonics 6, 535–539 (2012).

    Google Scholar 

  101. 101.

    Celanovic, I. Enabling high-temperature nanophotonics for energy applications. Proc. Natl Acad. Sci. USA 109, 2280–2285 (2012).

    Google Scholar 

  102. 102.

    Dahan, N., Niv, A., Biener, G., Kleiner, V. & Hasman, E. Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons. Appl. Phys. Lett. 86, 191102 (2005).

    Google Scholar 

  103. 103.

    Liu, X. et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011).

    Google Scholar 

  104. 104.

    Dyachenko, P. N. et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun. 7, 11809 (2016).

    CAS  Google Scholar 

  105. 105.

    Li, W., Shi, Y., Chen, Z. & Fan, S. Photonic thermal management of coloured objects. Nat. Commun. 9, 4240 (2018).

    Google Scholar 

  106. 106.

    Hurtado, F. et al. Super-Planckian far-field radiative heat transfer. Phys. Rev. B 97, 045408 (2018).

    Google Scholar 

  107. 107.

    Thompson et al. Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit. Nature 561, 216 (2018).

    CAS  Google Scholar 

  108. 108.

    Shin, Sunmi, Elzouka, M., Prasher, R. & Chen, R. Far-field coherent thermal emission from polaritonic resonance in individual anisotropic nanoribbons. Nat. Commun. 10, 1377 (2019).

    Google Scholar 

  109. 109.

    Yu, Z. et al. Enhancing far-field thermal emission with thermal extraction. Nat. Commun. 4, 1730 (2013).

    Google Scholar 

  110. 110.

    Ding, D., Kim, T. & Minnich, A. J. Active thermal extraction of near-field thermal radiation. Phys. Rev. B 93, 081402 (2016).

    Google Scholar 

  111. 111.

    Messina, R., Ben-Abdallah, P., Guizal, B., Antezza, M. & Biehs, S.-A. Hyperbolic waveguide for long-distance transport of near-field heat flux. Phys. Rev. B 94, 104301 (2016).

    Google Scholar 

  112. 112.

    Wurfel, P. The chemical potential of radiation. J. Phys. C 15, 3967–3985 (1982).

    Google Scholar 

  113. 113.

    Buddhiraju, S., Li, W. & Fan, S. Photonic refrigeration from time-modulated thermal emission. Phys. Rev. Lett. 124, 077402 (2020).

    CAS  Google Scholar 

  114. 114.

    Khandekar, C., Pick, A., Johnson, S. G. & Rodriguez, A. W. Radiative heat transfer in nonlinear Kerr media. Phys. Rev. B 91, 115406 (2015).

    Google Scholar 

  115. 115.

    Khandekar, C., Lin, Z. & Rodriguez, A. W. Thermal radiation from optically driven Kerr (χ(3)) photonic cavities. Appl. Phys. Lett. 106, 151109 (2015).

    Google Scholar 

  116. 116.

    Landsberg, P. T. & Tonge, G. Thermodynamic energy conversion efficiencies. J. Appl. Phys. 51, R1–R20 (1980).

    CAS  Google Scholar 

  117. 117.

    Buddhiraju, S., Santhanam, P. & Fan, S. Thermodynamic limits of energy harvesting from outgoing thermal radiation. Proc. Natl Acad. Sci. USA 115, E3609–E3615 (2018).

    CAS  Google Scholar 

  118. 118.

    Zhu, L. & Fan, S. Near-complete violation of detailed balance in thermal radiation. Phys. Rev. B 90, 220301 (2014).

    Google Scholar 

  119. 119.

    Rephaeli, E., Raman, A. & Fan, S. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457–1461 (2013).

    CAS  Google Scholar 

  120. 120.

    Raman, A., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540 (2014). This paper reports the experimental demonstration of daytime radiative cooling.

    CAS  Google Scholar 

  121. 121.

    Zhai, Y. et al. Scalable-manufactured randomized glass–polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).

    CAS  Google Scholar 

  122. 122.

    Goldstein, E. A., Raman, A. P. & Fan, S. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2, 1–7 (2017).

    Google Scholar 

  123. 123.

    Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).

    CAS  Google Scholar 

  124. 124.

    Li, T. et al. A radiative cooling structural material. Science 364, 760–763 (2019).

    CAS  Google Scholar 

  125. 125.

    Li, W., Buddhiraju, S. & Fan, S. Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space. Light Sci. Appl. 9, 68 (2020).

    Google Scholar 

  126. 126.

    Li, W. & Fan, S. Radiative cooling: harvesting the coldness of the Universe. Opt. Photon. N. 30, 32–39 (2019).

    Google Scholar 

  127. 127.

    Swanson, R. M. A proposed thermophotovoltaic solar energy conversion system. Proc. IEEE 67, 446–447 (1979). This paper proposes the solar thermophotovoltaic concept for thermal radiation energy harvesting.

    Google Scholar 

  128. 128.

    Harder, N.-P. & Würfel, P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond. Sci. Technol. 18, S151–S157 (2003).

    CAS  Google Scholar 

  129. 129.

    Lenert, A. et al. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126 (2014).

    CAS  Google Scholar 

  130. 130.

    Bierman, D. et al. Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat. Energy 1, 16068 (2016).

    CAS  Google Scholar 

  131. 131.

    Omair, Z. et al. Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Proc. Natl Acad. Sci. USA 116, 15356–15361 (2019).

    CAS  Google Scholar 

  132. 132.

    Ilic, O. et al. Tailoring high-temperature radiation and the resurrection of the incandescent source. Nat. Nanotechnol. 11, 320 (2016).

    CAS  Google Scholar 

  133. 133.

    Leroy, A. et al. Combined selective emitter and filter for high performance incandescent lighting. Appl. Phys. Lett. 111, 094103 (2017).

    Google Scholar 

  134. 134.

    Shi, Y., Li, W., Raman, A. & Fan, S. Optimization of multilayer optical films with a memetic algorithm and mixed integer programming. ACS Photonics 5, 684–691 (2018).

    CAS  Google Scholar 

  135. 135.

    Basu, S., Zhang, Z. & Fu, C. Review of near-field thermal radiation and its application to energy conversion. Int. J. Energy Res. 33, 1203–1232 (2009).

    CAS  Google Scholar 

  136. 136.

    Shen, S., Narayanaswamy, A. & Chen, G. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909–2913 (2009).

    CAS  Google Scholar 

  137. 137.

    Kim, K. et al. Radiative heat transfer in the extreme near field. Nature 528, 387–391 (2015).

    CAS  Google Scholar 

  138. 138.

    Song, B. et al. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps. Nat. Nanotechnol. 11, 509–514 (2016).

    CAS  Google Scholar 

  139. 139.

    St-Gelais, R., Zhu, L. X., Fan, S. H. & Lipson, M. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nat. Nanotechnol. 11, 515–519 (2016).

    CAS  Google Scholar 

  140. 140.

    Pendry, J. B. Radiative exchange of heat between nanostructures. J. Phys. Condens. Matter 11, 6621 (1999).

    CAS  Google Scholar 

  141. 141.

    Mulet, J., Joulain, K., Carminati, R. & Greffet, J. Enhanced radiative heat transfer at nanometric distances. Microscale Thermophys. Eng. 6, 209–222 (2002).

    Google Scholar 

  142. 142.

    Fu, C. & Zhang, Z. Nanoscale radiation heat transfer for silicon at different doping levels. Int. J. Heat Mass Transf. 49, 1703–1718 (2006).

    CAS  Google Scholar 

  143. 143.

    Basu, S. & Zhang, Z. Maximum energy transfer in near-field thermal radiation at nanometer distances. J. Appl. Phys. 105, 093535 (2009).

    Google Scholar 

  144. 144.

    Hurtado, V., Vidal, F., Fan, S. & Cuevas, J. Enhancing near-field radiative heat transfer with Si-based metasurfaces. Phys. Rev. Lett. 118, 203901 (2017).

    Google Scholar 

  145. 145.

    Rodriguez, A. et al. Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials. Phys. Rev. Lett. 107, 114302 (2011).

    Google Scholar 

  146. 146.

    Dai, J., Dyakov, S. A. & Yan, M. Enhanced near-field radiative heat transfer between corrugated metal plates: role of spoof surface plasmon polaritons. Phys. Rev. B 92, 035419 (2015).

    Google Scholar 

  147. 147.

    Iizuka, H. & Fan, S. Significant enhancement of near-field electromagnetic heat transfer in a multilayer structure through multiple surface-states coupling. Phys. Rev. Lett. 120, 063901 (2018).

    CAS  Google Scholar 

  148. 148.

    Guo, Y., Cortes, C. L., Molesky, S. & Jacob, Z. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 101, 131106 (2012).

    Google Scholar 

  149. 149.

    Miller, O. D., Steven, G. J. & Rodriguez, A. W. Shape-independent limits to near-field radiative heat transfer. Phys. Rev. Lett. 115, 204302 (2015).

    Google Scholar 

  150. 150.

    Shim, H., Fan, L., Johnson, S. G. & Miller, O. D. Fundamental limits to near-field optical response over any bandwidth. Phys. Rev. X 9, 011043 (2019).

    CAS  Google Scholar 

  151. 151.

    Molesky, S., Venkataram, P. S., Jin, W. & Rodriguez, A. W. Fundamental limits to radiative heat transfer: theory. Phys. Rev. B 101, 035408 (2020).

    CAS  Google Scholar 

  152. 152.

    Jin, W., Molesky, S., Lin, Z. & Rodriguez, A. W. Material scaling and frequency-selective enhancement of near-field radiative heat transfer for lossy metals in two dimensions via inverse design. Phys. Rev. B 99, 041403 (2019).

    CAS  Google Scholar 

  153. 153.

    Otey, Clayton, Lau, W. T. & Fan, S. Thermal rectification through vacuum. Phys. Rev. Lett. 104, 154301 (2010).

    Google Scholar 

  154. 154.

    Yang, Y., Basu, S. & Wang, L. Radiation-based near-field thermal rectification with phase transition materials. Appl. Phys. Lett. 103, 163101 (2013).

    Google Scholar 

  155. 155.

    Fiorino, A. et al. A thermal diode based on nanoscale thermal radiation. ACS Nano 12, 5774–5779 (2018).

    CAS  Google Scholar 

  156. 156.

    Qu, Y. et al. Thermal camouflage based on the phase-changing material GST. Light Sci. Appl. 7, 26 (2018).

    Google Scholar 

  157. 157.

    Ben-Abdallah, P. & Biehs, S. A. Near-field thermal transistor. Phys. Rev. Lett. 112, 044301 (2014).

    Google Scholar 

  158. 158.

    Zhu, L. & Fan, S. Persistent directional current at equilibrium in nonreciprocal many-body near field electromagnetic heat transfer. Phys. Rev. Lett. 117, 134303 (2016).

    Google Scholar 

  159. 159.

    Ben-Abdallah, P. Photon thermal Hall effect. Phys. Rev. Lett. 116, 084301 (2016).

    CAS  Google Scholar 

  160. 160.

    Basu, S., Chen, Y. B. & Zhang, Z. M. Microscale radiation in thermophotovoltaic devices — a review. Int. J. Energy Res. 31, 689–716 (2007).

    CAS  Google Scholar 

  161. 161.

    Anthony et al. Nanogap near-field thermophotovoltaics. Nat. Nanotechnol. 13, 806 (2018).

    Google Scholar 

  162. 162.

    Datas, A. & Vaillon, R. Thermionic-enhanced near-field thermophotovoltaics. Nano Energy 61, 10–17 (2019).

    CAS  Google Scholar 

  163. 163.

    Davids, P. S. et al. Electrical power generation from moderate-temperature radiative thermal sources. Science 367, 1341–1345 (2020).

    CAS  Google Scholar 

  164. 164.

    Chen, K., Santhanam, P. & Fan, S. Near-field enhanced negative luminescent refrigeration. Phys. Rev. Appl. 6, 024014 (2016).

    Google Scholar 

  165. 165.

    Zhu, L. et al. Near-field photonic cooling through control of the chemical potential of photons. Nature 566, 239 (2019).

    CAS  Google Scholar 

  166. 166.

    Chen, K., Santhanam, P., Sandhu, S., Zhu, L. & Fan, S. Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer. Phys. Rev. B 91, 134301 (2015).

    Google Scholar 

  167. 167.

    Zhou, X. et al. Routes for high-performance thermoelectric materials. Mater. Today 21, 974–988 (2018).

    CAS  Google Scholar 

  168. 168.

    Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    CAS  Google Scholar 

  169. 169.

    Ziabari, A., Zebarjadi, M., Vashaee, D. & Shakouri, A. Nanoscale solid-state cooling: a review. Rep. Prog. Phys. 79, 095901 (2016).

    Google Scholar 

  170. 170.

    Tian, Z., Lee, S. & Chen, G. Heat transfer in thermoelectric materials and devices. J. Heat Transf. 135, 061605–061605–15 (2013).

    Google Scholar 

  171. 171.

    Moccia, M., Castaldi, G., Savo, S., Sato, Y. & Galdi, V. Independent manipulation of heat and electrical current via bifunctional metamaterials. Phys. Rev. X 4, 021025 (2014). This paper reports the fabrication of multiphysical metamaterials with opposite effects on heat and electrical currents.

    CAS  Google Scholar 

  172. 172.

    Lan, C., Bi, K., Fu, X., Li, B. & Zhou, J. Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields. Opt. Express 24, 23072–23080 (2016).

    CAS  Google Scholar 

  173. 173.

    Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016).

    CAS  Google Scholar 

  174. 174.

    Lee, S. et al. Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science 355, 371–374 (2017).

    CAS  Google Scholar 

  175. 175.

    Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010).

    CAS  Google Scholar 

  176. 176.

    Dubi, Y. & Di Ventra, M. Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131–155 (2011).

    CAS  Google Scholar 

  177. 177.

    Rowe, D. M. Thermoelectrics Handbook: Macro to Nano (CRC, 2018).

  178. 178.

    Adams, M. J., Verosky, M., Zebarjadi, M. & Heremans, J. P. Active Peltier coolers based on correlated and magnon-drag. Met. Phys. Rev. Appl. 11, 054008 (2019).

    CAS  Google Scholar 

  179. 179.

    Baffou, G. & Quidant, R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171–187 (2013).

    CAS  Google Scholar 

  180. 180.

    Nguyen, D. M., Xu, H., Zhang, Y. & Zhang, B. Active thermal cloak. Appl. Phys. Lett. 107, 121901 (2015).

    Google Scholar 

  181. 181.

    Hong, S., Shin, S. & Chen, R. An adaptive and wearable thermal camouflage device. Adv. Funct. Mater. 30, 1909788 (2020).

    CAS  Google Scholar 

  182. 182.

    Adams, M. J., Verosky, M., Zebarjadi, M. & Heremans, J. P. High switching ratio variable-temperature solid-state thermal switch based on thermoelectric effects. Int. J. Heat Mass Transf. 134, 114–118 (2019).

    CAS  Google Scholar 

  183. 183.

    Jiang, J.-H., Kulkarni, M., Segal, D. & Imry, Y. Phonon thermoelectric transistors and rectifiers. Phys. Rev. B 92, 045309 (2015).

    Google Scholar 

  184. 184.

    Snyder, G. J., Toberer, E. S., Khanna, R. & Seifert, W. Improved thermoelectric cooling based on the Thomson effect. Phys. Rev. B 86, 045202 (2012).

    Google Scholar 

  185. 185.

    Li, X. et al. Anomalous Nernst and Righi–Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).

    Google Scholar 

  186. 186.

    Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    CAS  Google Scholar 

  187. 187.

    Boona, S. R., Myers, R. C. & Heremans, J. P. Spin caloritronics. Energy Environ. Sci. 7, 885–910 (2014).

    Google Scholar 

  188. 188.

    Ideue, T., Kurumaji, T., Ishiwata, S. & Tokura, Y. Giant thermal Hall effect in multiferroics. Nat. Mater. 16, 797–802 (2017).

    CAS  Google Scholar 

  189. 189.

    Moya, X., Kar-Narayan, S. & Mathur, N. D. Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014).

    CAS  Google Scholar 

  190. 190.

    Li, B. et al. Colossal barocaloric effects in plastic crystals. Nature 567, 506 (2019).

    CAS  Google Scholar 

  191. 191.

    Qian, X., Yang, T., Zhang, T., Chen, L.-Q. & Zhang, Q. M. Anomalous negative electrocaloric effect in a relaxor/normal ferroelectric polymer blend with controlled nano- and meso-dipolar couplings. Appl. Phys. Lett. 108, 142902 (2016).

    Google Scholar 

  192. 192.

    Ma, R. et al. Highly efficient electrocaloric cooling with electrostatic actuation. Science 357, 1130–1134 (2017).

    CAS  Google Scholar 

  193. 193.

    Kitanovski, A., Plaznik, U., Tomc, U. & Poredoš, A. Present and future caloric refrigeration and heat-pump technologies. Int. J. Refrig. 57, 288–298 (2015).

    Google Scholar 

  194. 194.

    Liu, K., Lee, S., Yang, S., Delaire, O. & Wu, J. Recent progresses on physics and applications of vanadium dioxide. Mater. Today 21, 875–896 (2018).

    CAS  Google Scholar 

  195. 195.

    Oh, D.-W., Ko, C., Ramanathan, S. & Cahill, D. G. Thermal conductivity and dynamic heat capacity across the metal–insulator transition in thin film VO2. Appl. Phys. Lett. 96, 151906 (2010).

    Google Scholar 

  196. 196.

    Xie, R. et al. An electrically tuned solid-state thermal memory based on metal–insulator transition of single-crystalline VO2 nanobeams. Adv. Funct. Mater. 21, 1602–1607 (2011).

    CAS  Google Scholar 

  197. 197.

    Chen, J. et al. Investigation of the thermal conductivities across metal–insulator transition in polycrystalline VO2. Chin. Sci. Bull. 57, 3393–3396 (2012).

    CAS  Google Scholar 

  198. 198.

    Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 15, 1791–1795 (2015).

    CAS  Google Scholar 

  199. 199.

    Yue, S.-Y., Yang, R. & Liao, B. Controlling thermal conductivity of two-dimensional materials via externally induced phonon–electron interaction. Phys. Rev. B 100, 115408 (2019).

    CAS  Google Scholar 

  200. 200.

    Cho, J. et al. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 5, 4035 (2014).

    CAS  Google Scholar 

  201. 201.

    Qian, X., Gu, X., Dresselhaus, M. S. & Yang, R. Anisotropic tuning of graphite thermal conductivity by lithium intercalation. J. Phys. Chem. Lett. 7, 4744–4750 (2016).

    CAS  Google Scholar 

  202. 202.

    Kang, J. S., Ke, M. & Hu, Y. Ionic intercalation in two-dimensional van der Waals materials: in situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Lett. 17, 1431–1438 (2017).

    CAS  Google Scholar 

  203. 203.

    Zhu, G. et al. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation. Nat. Commun. 7, 13211 (2016).

    CAS  Google Scholar 

  204. 204.

    Sood, A. et al. An electrochemical thermal transistor. Nat. Commun. 9, 4510 (2018).

    Google Scholar 

  205. 205.

    Lu, Q. et al. Bi-directional tuning of thermal transport in SrCoOx with electrochemically induced phase transitions. Nat. Mater. 19, 655–662 (2020).

    CAS  Google Scholar 

  206. 206.

    Jin, H. et al. Phonon-induced diamagnetic force and its effect on the lattice thermal conductivity. Nat. Mater. 14, 601–606 (2015).

    CAS  Google Scholar 

  207. 207.

    Chotorlishvili, L., Etesami, S. R., Berakdar, J., Khomeriki, R. & Ren, J. Electromagnetically controlled multiferroic thermal diode. Phys. Rev. B 92, 134424 (2015).

    Google Scholar 

  208. 208.

    Shin, J. et al. Light-triggered thermal conductivity switching in azobenzene polymers. Proc. Natl Acad. Sci. USA 116, 5973–5978 (2019).

    CAS  Google Scholar 

  209. 209.

    Li, X., Maute, K., Dunn, M. L. & Yang, R. Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 81, 245318 (2010).

    Google Scholar 

  210. 210.

    Wei, N., Xu, L., Wang, H.-Q. & Zheng, J.-C. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology 22, 105705 (2011).

    Google Scholar 

  211. 211.

    Jia, Y. & Ju, Y. S. Solid-liquid hybrid thermal interfaces for low-contact pressure thermal switching. J. Heat Transf. 136, 074503 (2014).

    Google Scholar 

  212. 212.

    Hohensee, G. T., Fellinger, M. R., Trinkle, D. R. & Cahill, D. G. Thermal transport across high-pressure semiconductor–metal transition in Si and Si0.991Ge0.009. Phys. Rev. B 91, 205104 (2015).

    Google Scholar 

  213. 213.

    Meng, X. et al. Thermal conductivity enhancement in MoS2 under extreme strain. Phys. Rev. Lett. 122, 155901 (2019).

    CAS  Google Scholar 

  214. 214.

    Yang, J. et al. Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces. Nat. Nanotechnol. 7, 91–95 (2012).

    CAS  Google Scholar 

  215. 215.

    Tomko, J. A. et al. Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. Nat. Nanotechnol. 13, 959–964 (2018).

    CAS  Google Scholar 

  216. 216.

    Inoue, T., Zoysa, M. D., Asano, T. & Noda, S. Realization of dynamic thermal emission control. Nat. Mater. 13, 928–931 (2014).

    CAS  Google Scholar 

  217. 217.

    Brar, V. W. et al. Electronic modulation of infrared radiation in graphene plasmonic resonators. Nat. Commun. 6, 7032 (2015).

    CAS  Google Scholar 

  218. 218.

    Park, J. et al. Dynamic thermal emission control with InAs-based plasmonic metasurfaces. Sci. Adv. 4, eaat3163 (2018).

    CAS  Google Scholar 

  219. 219.

    Thomas, N. H., Sherrott, M. C., Broulliet, J., Atwater, H. A. & Minnich, A. J. Electronic modulation of near-field radiative transfer in graphene field effect heterostructures. Nano Lett. 19, 3898–3904 (2019).

    CAS  Google Scholar 

  220. 220.

    Xu, C., Stiubianu, G. T. & Gorodetsky, A. A. Adaptive infrared-reflecting systems inspired by cephalopods. Science 359, 1495–1500 (2018).

    CAS  Google Scholar 

  221. 221.

    Mandal, J. et al. Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management. Adv. Funct. Mater. 28, 1802180 (2018).

    Google Scholar 

  222. 222.

    Moncada-Villa, E., Fernández-Hurtado, V., García-Vidal, F. J., García-Martín, A. & Cuevas, J. C. Magnetic field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters. Phys. Rev. B 92, 125418 (2015).

    Google Scholar 

  223. 223.

    Latella, I. & Ben-Abdallah, P. Giant thermal magnetoresistance in plasmonic structures. Phys. Rev. Lett. 118, 173902 (2017).

    Google Scholar 

  224. 224.

    Ge, L. et al. Magnetically tunable multiband near-field radiative heat transfer between two graphene sheets. Phys. Rev. B 100, 035414 (2019).

    CAS  Google Scholar 

  225. 225.

    Coppens, Z. J. & Valentine, J. G. Spatial and temporal modulation of thermal emission. Adv. Mater. 29, 1701275 (2017).

    Google Scholar 

  226. 226.

    Xiao, Y., Charipar, N. A., Salman, J., Piqué, A. & Kats, M. A. Nanosecond mid-infrared pulse generation via modulated thermal emissivity. Light Sci. Appl. 8, 1–8 (2019).

    CAS  Google Scholar 

  227. 227.

    Liu, X. & Padilla, W. J. Reconfigurable room temperature metamaterial infrared emitter. Optica 4, 430–433 (2017).

    CAS  Google Scholar 

  228. 228.

    Zhang, X. A. et al. Dynamic gating of infrared radiation in a textile. Science 363, 619–623 (2019).

    CAS  Google Scholar 

  229. 229.

    Phan, L. et al. Reconfigurable infrared camouflage coatings from a cephalopod protein. Adv. Mater. 25, 5621–5625 (2013).

    CAS  Google Scholar 

  230. 230.

    Kats, M. A. et al. Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance. Phys. Rev. X 3, 041004 (2013).

    CAS  Google Scholar 

  231. 231.

    van Zwol, P. J., Ranno, L. & Chevrier, J. Tuning near field radiative heat flux through surface excitations with a metal insulator transition. Phys. Rev. Lett. 108, 234301 (2012).

    Google Scholar 

  232. 232.

    Du, K. et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light Sci. Appl. 6, e16194 (2016).

    Google Scholar 

  233. 233.

    Xiao, L. et al. Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films. Nano Lett. 15, 8365–8370 (2015).

    CAS  Google Scholar 

  234. 234.

    Philippe, B. & Biehs, S. Phase-change radiative thermal diode. Appl. Phys. Lett. 103, 191907 (2013).

    Google Scholar 

  235. 235.

    Ito, K., Nishikawa, K., Iizuka, H. & Toshiyoshi, H. Experimental investigation of radiative thermal rectifier using vanadium dioxide. Appl. Phys. Lett. 105, 253503 (2014).

    Google Scholar 

  236. 236.

    Wu et al. Thermal homeostasis using microstructured phase-change materials. Optica 4, 1390–1396 (2017).

    CAS  Google Scholar 

  237. 237.

    Ono, Masashi, Chen, K., Li, W. & Fan, S. Self-adaptive radiative cooling based on phase change materials. Opt. Express 26, A777–A787 (2018).

    CAS  Google Scholar 

  238. 238.

    Dede, E. M., Nomura, T., Schmalenberg, P. & Lee, J. S. Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction–convection effects. Appl. Phys. Lett. 103, 063501 (2013).

    Google Scholar 

  239. 239.

    Prasher, R., Bhattacharya, P. & Phelan, P. E. Brownian-motion-based convective–conductive model for the effective thermal conductivity of nanofluids. J. Heat Transf. 128, 588–595 (2005).

    Google Scholar 

  240. 240.

    Bejan, A. Convection Heat Transfer (Wiley, 2013).

  241. 241.

    Guenneau, S. & Puvirajesinghe, T. M. Fick’s second law transformed: one path to cloaking in mass diffusion. J. R. Soc. Interface 10, 20130106 (2013).

    CAS  Google Scholar 

  242. 242.

    Dai, G., Shang, J. & Huang, J. Theory of transformation thermal convection for creeping flow in porous media: cloaking, concentrating, and camouflage. Phys. Rev. E 97, 022129 (2018).

    CAS  Google Scholar 

  243. 243.

    Urzhumov, Y. A. & Smith, D. R. Fluid flow control with transformation media. Phys. Rev. Lett. 107, 074501 (2011).

    Google Scholar 

  244. 244.

    Li, Y. et al. Anti-parity–time symmetry in diffusive systems. Science 364, 170–173 (2019). This paper provides a non-Hermitian Hamiltonian description of heat transfer.

    CAS  Google Scholar 

  245. 245.

    Cao, P., Li, Y., Peng, Y., Qiu, C.-W. & Zhu, X. High-order exceptional points in diffusive systems: robust APT symmetry against perturbation and phase oscillation at APT symmetry breaking. ES Energy Env. 7, 48–55 (2020).

    Google Scholar 

  246. 246.

    Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    Google Scholar 

  247. 247.

    Ye, Z.-Q. & Cao, B.-Y. Nanoscale thermal cloaking in graphene via chemical functionalization. Phys. Chem. Chem. Phys. 18, 32952–32961 (2016).

    CAS  Google Scholar 

  248. 248.

    Hu, R. et al. Encrypted thermal printing with regionalization transformation. Adv. Mater. 31, 1807849 (2019).

    CAS  Google Scholar 

  249. 249.

    Xu, L. & Huang, J. Metamaterials for manipulating thermal radiation: transparency, cloak, and expander. Phys. Rev. Appl. 12, 044048 (2019).

    CAS  Google Scholar 

  250. 250.

    Xu, L., Dai, G. & Huang, J. Transformation multithermotics: controlling radiation and conduction simultaneously. Phys. Rev. Appl. 13, 024063 (2020).

    CAS  Google Scholar 

  251. 251.

    Strohm, C., Rikken, G. L. J. A. & Wyder, P. Phenomenological evidence for the phonon Hall effect. Phys. Rev. Lett. 95, 155901 (2005).

    CAS  Google Scholar 

  252. 252.

    Zhang, L., Ren, J., Wang, J. S. & Li, B. Topological nature of the phonon Hall effect. Phys. Rev. Lett. 105, 225901 (2010).

    Google Scholar 

  253. 253.

    Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).

    Google Scholar 

  254. 254.

    Xu, N., Xu, Y. & Zhu, J. Topological insulators for thermoelectrics. NPJ Quantum Mater. 2, 1–9 (2017).

    Google Scholar 

  255. 255.

    Granger, G., Eisenstein, J. P. & Reno, J. L. Observation of chiral heat transport in the quantum Hall regime. Phys. Rev. Lett. 102, 086803 (2009).

    CAS  Google Scholar 

  256. 256.

    Onose, Y. et al. Observation of the magnon Hall effect. Science 329, 297–299 (2010).

    CAS  Google Scholar 

  257. 257.

    Mochizuki, M. et al. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect. Nat. Mater. 13, 241–246 (2014).

    CAS  Google Scholar 

  258. 258.

    Rivas, Á. & Martin-Delgado, M. A. Topological heat transport and symmetry-protected boson currents. Sci. Rep. 7, 6350 (2017).

    Google Scholar 

  259. 259.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).

    CAS  Google Scholar 

  260. 260.

    Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    CAS  Google Scholar 

  261. 261.

    Zhu, L., Guo, Y. & Fan, S. Theory of many-body radiative heat transfer without the constraint of reciprocity. Phys. Rev. B 97, 094302 (2018).

    CAS  Google Scholar 

  262. 262.

    Joseph, D. D. & Preziosi, L. Heat waves. Rev. Mod. Phys. 61, 41–73 (1989).

    Google Scholar 

  263. 263.

    Chester, M. Second sound in solids. Phys. Rev. 131, 2013 (1963).

    Google Scholar 

  264. 264.

    Huberman, S. et al. Observation of second sound in graphite at temperatures above 100 K. Science 364, 375–379 (2019).

    CAS  Google Scholar 

  265. 265.

    Cepellotti, A. et al. Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015).

    CAS  Google Scholar 

  266. 266.

    Lee, S., Broido, D., Esfarjani, K. & Chen, G. Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (2015).

    CAS  Google Scholar 

  267. 267.

    Principi, A., Katsnelson, M. I. & Levchenko, A. Chiral second-sound collective modes at the edge of 2D systems with a nontrivial berry curvature. Phys. Rev. Lett. 118, 036802 (2017).

    Google Scholar 

  268. 268.

    Ruokola, T., Ojanen, T. & Jauho, A. P. Thermal rectification in nonlinear quantum circuits. Phys. Rev. B 79, 144306 (2009).

    Google Scholar 

  269. 269.

    Joulain, K., Drevillon, J., Ezzahri, Y. & Ordonez-Miranda, J. Quantum thermal transistor. Phys. Rev. Lett. 116, 200601 (2016).

    Google Scholar 

  270. 270.

    Scully, M. O., Suhail Zubairy, M., Agarwal, G. S. & Walther, H. Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003).

    CAS  Google Scholar 

  271. 271.

    Roßnagel, J. et al. A single-atom heat engine. Science 352, 325–329 (2016).

    Google Scholar 

  272. 272.

    Koski, J. V., Kutvonen, A., Khaymovich, I. M., Ala-Nissila, T. & Pekola, J. P. On-chip Maxwell’s demon as an information-powered refrigerator. Phys. Rev. Lett. 115, 260602 (2015).

    CAS  Google Scholar 

  273. 273.

    Gemmer, J., Michel, M. & Mahler, G. Quantum Thermodynamics: Emergence of Thermodynamic Behavior within Composite Quantum Systems (Springer, 2009).

  274. 274.

    Brandãoa, F., Horodecki, M., Ng, N., Oppenheim, J. & Wehner, S. The second laws of quantum thermodynamics. Proc. Natl Acad. Sci. USA 112, 3275–3279 (2015).

    Google Scholar 

  275. 275.

    Micadei, K. et al. Reversing the direction of heat flow using quantum correlations. Nat. Commun. 10, 2456 (2019).

    Google Scholar 

  276. 276.

    Klatzow, J. et al. Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122, 110601 (2019).

    CAS  Google Scholar 

  277. 277.

    Ezzahri, Y. & Joulain, K. Vacuum-induced phonon transfer between two solid dielectric materials: Illustrating the case of Casimir force coupling. Phys. Rev. B 90, 115433 (2014).

    Google Scholar 

  278. 278.

    Pendry, J. B., Sasihithlu, K. & Craster, R. V. Phonon-assisted heat transfer between vacuum-separated surfaces. Phys. Rev. B 94, 075414 (2016).

    Google Scholar 

  279. 279.

    Pollack, G. L. Kapitza resistance. Rev. Mod. Phys. 41, 48–81 (1969).

    CAS  Google Scholar 

  280. 280.

    Li, B., Lan, J. & Wang, L. Interface thermal resistance between dissimilar anharmonic lattices. Phys. Rev. Lett. 95, 104302 (2005).

    Google Scholar 

  281. 281.

    Swartz, E. T. & Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).

    Google Scholar 

  282. 282.

    Monachon, C., Weber, L. & Dames, C. Thermal boundary conductance: a materials science perspective. Annu. Rev. Mater. Res. 46, 433–463 (2016).

    CAS  Google Scholar 

  283. 283.

    Giri, A. & Hopkins, P. E. A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Funct. Mater. 30, 1903857 (2020).

    CAS  Google Scholar 

  284. 284.

    Slack, G. A. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973).

    CAS  Google Scholar 

  285. 285.

    Wei, L., Kuo, P. K., Thomas, R. L., Anthony, T. R. & Banholzer, W. F. Thermal conductivity of isotopically modified single crystal diamond. Phys. Rev. Lett. 70, 3764–3767 (1993).

    CAS  Google Scholar 

  286. 286.

    Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575–578 (2018).

    CAS  Google Scholar 

  287. 287.

    Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science 361, 579–581 (2018).

    CAS  Google Scholar 

  288. 288.

    Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018).

    CAS  Google Scholar 

  289. 289.

    Chen, K. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555–559 (2020).

    CAS  Google Scholar 

  290. 290.

    Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931).

    CAS  Google Scholar 

  291. 291.

    Katsura, H., Nagaosa, N. & Lee, P. A. Theory of the thermal Hall effect in quantum magnets. Phys. Rev. Lett. 104, 066403 (2010).

    Google Scholar 

  292. 292.

    Gaussorgues, G. & Chomet, S. Infrared Thermography (Springer, 1994).

  293. 293.

    Dede, E. M., Schmalenberg, P., Wang, C.-M., Zhou, F. & Nomura, T. Collection of low-grade waste heat for enhanced energy harvesting. AIP Adv. 6, 055113 (2016).

    Google Scholar 

  294. 294.

    Joulain, K., Mulet, J., Marquier, F., Carminati, R. & Greffet, J. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59–112 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

C.-W.Q. acknowledges support from the Ministry of Education, Singapore (grant no. R-263-000-E19-114). W.L. and S.F. acknowledge support by the US Department of Energy (grant no. DE-FG02-07ER46426). W.L. acknowledges discussions with W. Jin and L. Fan.

Author information

Affiliations

Authors

Contributions

C.W., Y.L., B.L., W.L. and S.F. discussed the content of the Review. Y.L, W.L, T.H. and X.Z. wrote the Review. All authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Baowen Li, Shanhui Fan or Cheng-Wei Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, W., Han, T. et al. Transforming heat transfer with thermal metamaterials and devices. Nat Rev Mater 6, 488–507 (2021). https://doi.org/10.1038/s41578-021-00283-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing