Room-temperature phosphorescence from organic aggregates

Abstract

Triplet excitons in organic molecules underscore a variety of processes and technologies as a result of their long lifetime and spin multiplicity. Organic phosphorescence, which originates from triplet excitons, has potential for the development of a new generation of organic optoelectronic materials and biomedical agents. However, organic phosphorescence is typically only observed at cryogenic temperatures and under inert conditions in solution, which severely restricts its practical applications. In the past few years, room-temperature-phosphorescent systems have been obtained based on organic aggregates. Rapid advances in molecular-structure design and aggregation-behaviour modulation have enabled substantial progress, but the mechanistic picture is still not fully understood because of the high sensitivity and complexity of triplet-exciton behaviour. This Review analyses key photophysical processes related to triplet excitons, including intersystem crossing, radiative and non-radiative decay, and quenching processes, to illustrate the intrinsic structure–property relationships and draw clear and integrated design principles. The resulting strategies for the development of efficient and persistent room-temperature-phosphorescent systems are discussed, and newly emerged applications based on these materials are highlighted.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Towards organic phosphorescence.
Fig. 2: Strategies for room-temperature phosphorescence efficiency enhancement.
Fig. 3: Chemical structures of representative organic molecules phosphorescent at room temperature.
Fig. 4: Strategies for room-temperature phosphorescence lifetime prolongation.
Fig. 5: Examples of efficient and persistent room-temperature phosphorescence.
Fig. 6: Examples of applications of organic room-temperature phosphorescence.

References

  1. 1.

    Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    CAS  Google Scholar 

  2. 2.

    Xu, H. et al. Recent progress in metal–organic complexes for optoelectronic applications. Chem. Soc. Rev. 43, 3259–3302 (2014).

    CAS  Google Scholar 

  3. 3.

    Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316–317 (2001).

    CAS  Google Scholar 

  4. 4.

    Mei, J. et al. Aggregation-induced emission: the whole is more brilliant than the parts. Adv. Mater. 26, 5429–5479 (2014).

    CAS  Google Scholar 

  5. 5.

    Kabe, R. & Adachi, C. Organic long persistent luminescence. Nature 550, 384–387 (2017).

    CAS  Google Scholar 

  6. 6.

    Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    CAS  Google Scholar 

  7. 7.

    Liu, Y., Li, C., Ren, Z., Yan, S. & Bryce, M. R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 3, 18020 (2018).

    CAS  Google Scholar 

  8. 8.

    Zheng, X. et al. Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. Nat. Commun. 6, 5834 (2015).

    CAS  Google Scholar 

  9. 9.

    Lewis, G. N. & Kasha, M. Phosphorescence and the triplet state. J. Am. Chem. Soc. 66, 2100–2116 (1944). This pioneering publication identified the phosphorescence of an organic molecule as a radiative transition from the lowest triplet state.

    CAS  Google Scholar 

  10. 10.

    Lower, S. & El-Sayed, M. The triplet state and molecular electronic processes in organic molecules. Chem. Rev. 66, 199–241 (1966). This work systematically analyses the radiative and non-radiative properties of the triplet state, especially the El-Sayed rule for intersystem crossing process.

    CAS  Google Scholar 

  11. 11.

    Wise, D. L. Electrical and Optical Polymer Systems: Fundamentals: Methods, and Applications (CRC, 1998).

  12. 12.

    Turro, N. J., Ramamurthy, V. & Scaiano, J. C. Modern Molecular Photochemistry of Organic Molecules (Viva Books, University Science Books, 2017).

  13. 13.

    Marian, C. M. Spin–orbit coupling and intersystem crossing in molecules. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 187–203 (2012).

    CAS  Google Scholar 

  14. 14.

    Baryshnikov, G., Minaev, B. & Ågren, H. Theory and calculation of the phosphorescence phenomenon. Chem. Rev. 117, 6500–6537 (2017).

    CAS  Google Scholar 

  15. 15.

    Lewis, G. N., Lipkin, D. & Magel, T. T. Reversible photochemical processes in rigid media. A study of the phosphorescent state. J. Am. Chem. Soc. 63, 3005–3018 (1941).

    CAS  Google Scholar 

  16. 16.

    Kuijt, J., Ariese, F., Udo, A. T. & Gooijer, C. Room temperature phosphorescence in the liquid state as a tool in analytical chemistry. Anal. Chim. Acta 488, 135–171 (2003).

    CAS  Google Scholar 

  17. 17.

    Yuan, W. Z. et al. Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J. Phys. Chem. C 114, 6090–6099 (2010). This work reported crystallization-induced phosphorescence in pure organic compounds at room temperature.

    CAS  Google Scholar 

  18. 18.

    Bilen, C. S., Harrison, N. & Morantz, D. J. Unusual room temperature afterglow in some crystalline organic compounds. Nature 271, 235–237 (1978).

    CAS  Google Scholar 

  19. 19.

    Schulman, E. M. & Walling, C. Phosphorescence of adsorbed ionic organic molecules at room temperature. Science 178, 53–54 (1972).

    CAS  Google Scholar 

  20. 20.

    Mei, J., Leung, N. L., Kwok, R. T., Lam, J. W. & Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).

    CAS  Google Scholar 

  21. 21.

    An, Z. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 14, 685–690 (2015). This work reports a series of pure organic materials with persistent RTP.

    CAS  Google Scholar 

  22. 22.

    Baroncini, M., Bergamini, G. & Ceroni, P. Rigidification or interaction-induced phosphorescence of organic molecules. Chem. Commun. 53, 2081–2093 (2017).

    CAS  Google Scholar 

  23. 23.

    Yuasa, H. & Kuno, S. Intersystem crossing mechanisms in the room temperature phosphorescence of crystalline organic compounds. Bull. Chem. Soc. Jpn. 91, 223–229 (2018).

    CAS  Google Scholar 

  24. 24.

    Xu, S., Chen, R., Zheng, C. & Huang, W. Excited state modulation for organic afterglow: materials and applications. Adv. Mater. 28, 9920–9940 (2016).

    CAS  Google Scholar 

  25. 25.

    Ward, J. S. et al. The interplay of thermally activated delayed fluorescence (TADF) and room temperature organic phosphorescence in sterically-constrained donor–acceptor charge-transfer molecules. Chem. Commun. 52, 2612–2615 (2016).

    CAS  Google Scholar 

  26. 26.

    Shuai, Z. & Peng, Q. Excited states structure and processes: understanding organic light-emitting diodes at the molecular level. Phys. Rep. 537, 123–156 (2014).

    CAS  Google Scholar 

  27. 27.

    Ma, H. et al. Room-temperature phosphorescence in metal-free organic materials. Ann. Phys. 531, 1800482 (2019).

    Google Scholar 

  28. 28.

    Henry, B. R. & Siebrand, W. Spin–orbit coupling in aromatic hydrocarbons. Analysis of nonradiative transitions between singlet and triplet states in benzene and naphthalene. J. Chem. Phys. 54, 1072–1085 (1971).

    CAS  Google Scholar 

  29. 29.

    Gong, Y. et al. Crystallization-induced dual emission from metal- and heavy atom-free aromatic acids and esters. Chem. Sci. 6, 4438–4444 (2015).

    CAS  Google Scholar 

  30. 30.

    Li, C. Y. et al. Reversible luminescence switching of an organic solid: controllable on–off persistent room temperature phosphorescence and stimulated multiple fluorescence conversion. Adv. Opt. Mater. 3, 1184–1190 (2015).

    CAS  Google Scholar 

  31. 31.

    Zhao, W. et al. Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chem 1, 592–602 (2016). This study provides a systematic discussion of the intrinsic relationship between molecular structure and RTP performance, and presents efficient and persistent room-temperature-phosphorescent materials.

    CAS  Google Scholar 

  32. 32.

    Xue, P., Wang, P., Chen, P., Ding, J. & Lu, R. Enhanced room-temperature phosphorescence of triphenylphosphine derivatives without metal and heavy atoms in their crystal phase. RSC Adv. 6, 51683–51686 (2016).

    CAS  Google Scholar 

  33. 33.

    Hamzehpoor, E. & Perepichka, D. F. Crystal engineering of room temperature phosphorescence in organic solids. Angew. Chem. Int. Ed. 59, 9977–9981 (2020).

    CAS  Google Scholar 

  34. 34.

    Shimizu, M. et al. Siloxy group-induced highly efficient room temperature phosphorescence with long lifetime. J. Phys. Chem. C 120, 11631–11639 (2016).

    CAS  Google Scholar 

  35. 35.

    Xu, B. et al. White-light emission from a single heavy atom-free molecule with room temperature phosphorescence, mechanochromism and thermochromism. Chem. Sci. 8, 1909–1914 (2017).

    CAS  Google Scholar 

  36. 36.

    Zhou, C. et al. Ternary emission of fluorescence and dual phosphorescence at room temperature: a single-molecule white light emitter based on pure organic aza-aromatic material. Adv. Funct. Mater. 28, 1802407 (2018).

    Google Scholar 

  37. 37.

    Yuan, J. et al. Invoking ultralong room temperature phosphorescence of purely organic compounds through H-aggregation engineering. Mater. Horiz. 6, 1259–1264 (2019).

    CAS  Google Scholar 

  38. 38.

    Fermi, A., Bergamini, G., Roy, M., Gingras, M. & Ceroni, P. Turn-on phosphorescence by metal coordination to a multivalent terpyridine ligand: a new paradigm for luminescent sensors. J. Am. Chem. Soc. 136, 6395–6400 (2014).

    CAS  Google Scholar 

  39. 39.

    Riebe, S. et al. Aromatic thioethers as novel luminophores with aggregation-induced fluorescence and phosphorescence. Chem. Eur. J. 23, 13660–13668 (2017).

    CAS  Google Scholar 

  40. 40.

    Yu, Z. et al. Organic phosphorescence nanowire lasers. J. Am. Chem. Soc. 139, 6376–6381 (2017).

    CAS  Google Scholar 

  41. 41.

    Tao, Y. et al. Resonance-activated spin-flipping for efficient organic ultralong room-temperature phosphorescence. Adv. Mater. 30, 1803856 (2018).

    Google Scholar 

  42. 42.

    Takeda, Y. et al. Conformationally-flexible and moderately electron-donating units-installed D–A–D triad enabling multicolor-changing mechanochromic luminescence, TADF and room-temperature phosphorescence. Chem. Commun. 54, 6847–6850 (2018).

    CAS  Google Scholar 

  43. 43.

    Ceroni, P. Design of phosphorescent organic molecules: old concepts under a new light. Chem 1, 524–526 (2016).

    CAS  Google Scholar 

  44. 44.

    Ma, H., Peng, Q., An, Z., Huang, W. & Shuai, Z. Efficient and long-lived room-temperature organic phosphorescence: theoretical descriptors for molecular designs. J. Am. Chem. Soc. 141, 1010–1015 (2018).

    Google Scholar 

  45. 45.

    Hadley, S. G. & Keller, R. A. Direct determination of the singlet. far. triplet intersystem crossing quantum yield in naphthalene, phenanthrene, and triphenylene. J. Phys. Chem. 73, 4356–4359 (1969).

    CAS  Google Scholar 

  46. 46.

    Lamola, A. A. & Hammond, G. S. Mechanisms of photochemical reactions in solution. XXXIII. Intersystem crossing efficiencies. J. Chem. Phys. 43, 2129–2135 (1965).

    CAS  Google Scholar 

  47. 47.

    Shoji, Y. et al. Unveiling a new aspect of simple arylboronic esters: long-lived room-temperature phosphorescence from heavy-atom-free molecules. J. Am. Chem. Soc. 139, 2728–2733 (2017).

    CAS  Google Scholar 

  48. 48.

    Torres Delgado, W. et al. Moving beyond boron-based substituents to achieve phosphorescence in tellurophenes. ACS Appl. Mater. Interfaces 10, 12124–12134 (2017).

    Google Scholar 

  49. 49.

    Li, M. et al. Achieving high-efficiency purely organic room-temperature phosphorescence materials by boronic ester substitution of phenoxathiine. Chem. Commun. 55, 7215–7218 (2019).

    CAS  Google Scholar 

  50. 50.

    Zhou, Y. et al. Long-lived room-temperature phosphorescence for visual and quantitative detection of oxygen. Angew. Chem. Int. Ed. 58, 12102–12106 (2019).

    CAS  Google Scholar 

  51. 51.

    Li, M. et al. Prolonging ultralong organic phosphorescence lifetime to 2.5s through confining rotation in molecular rotor. Adv. Opt. Mater. 7, 1800820 (2019).

    Google Scholar 

  52. 52.

    Salla, C. A. M. et al. Persistent solid-state phosphorescence and delayed fluorescence at room temperature by a twisted hydrocarbon. Angew. Chem. Int. Ed. 58, 6982–6986 (2019).

    CAS  Google Scholar 

  53. 53.

    Schmidt, K. et al. Intersystem crossing processes in nonplanar aromatic heterocyclic molecules. J. Phys. Chem. A 111, 10490–10499 (2007).

    CAS  Google Scholar 

  54. 54.

    Penfold, T. J., Gindensperger, E., Daniel, C. & Marian, C. M. Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 118, 6975–7025 (2018).

    CAS  Google Scholar 

  55. 55.

    Wen, Y. et al. One-dimensional π–π stacking induces highly efficient pure organic room-temperature phosphorescence and ternary-emission single-molecule white light. J. Mater. Chem. C 7, 12502–12508 (2019).

    CAS  Google Scholar 

  56. 56.

    Shi, H. et al. Enhancing organic phosphorescence by manipulating heavy-atom interaction. Cryst. Growth Des. 16, 808–813 (2016).

    CAS  Google Scholar 

  57. 57.

    Xiao, L. et al. Highly efficient room-temperature phosphorescence from halogen-bonding-assisted doped organic crystals. J. Phys. Chem. A 121, 8652–8658 (2017).

    CAS  Google Scholar 

  58. 58.

    Xu, L. et al. Chalcogen atom modulated persistent room-temperature phosphorescence through intramolecular electronic coupling. Chem. Commun. 54, 9226–9229 (2018).

    CAS  Google Scholar 

  59. 59.

    He, G. et al. Coaxing solid-state phosphorescence from tellurophenes. Angew. Chem. Int. Ed. 126, 4675–4679 (2014).

    Google Scholar 

  60. 60.

    Mao, Z. et al. Linearly tunable emission colors obtained from a fluorescent–phosphorescent dual-emission compound by mechanical stimuli. Angew. Chem. Int. Ed. 54, 6270–6273 (2015).

    CAS  Google Scholar 

  61. 61.

    Shi, H. et al. Highly efficient ultralong organic phosphorescence through intramolecular-space heavy-atom effect. J. Phys. Chem. Lett. 10, 595–600 (2019).

    Google Scholar 

  62. 62.

    Wang, J. et al. A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nat. Commun. 9, 2963 (2018).

    Google Scholar 

  63. 63.

    Xiao, L. & Fu, H. Enhanced room-temperature phosphorescence through intermolecular halogen/hydrogen bonding. Chem. Eur. J. 25, 714–723 (2019).

    CAS  Google Scholar 

  64. 64.

    Gao, H. Y. et al. Phosphorescent co-crystal assembled by 1,4-diiodotetrafluorobenzene with carbazole based on C–I···π halogen bonding. J. Mater. Chem. 22, 5336–5343 (2012).

    CAS  Google Scholar 

  65. 65.

    Cai, S. et al. Enhancing ultralong organic phosphorescence by effective π-type halogen bonding. Adv. Funct. Mater. 28, 1705045 (2018).

    Google Scholar 

  66. 66.

    Shen, Q. J. et al. Phosphorescent cocrystals constructed by 1,4-diiodotetrafluorobenzene and polyaromatic hydrocarbons based on C–I···π halogen bonding and other assisting weak interactions. CrystEngComm 14, 5027–5034 (2012).

    CAS  Google Scholar 

  67. 67.

    Bolton, O., Lee, K., Kim, H. J., Lin, K. Y. & Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 3, 205–210 (2011). This work details the design of a highly efficient room-temperature-phosphorescent system based on crystal engineering by the incorporation of halogen bonding.

    CAS  Google Scholar 

  68. 68.

    Maity, S. K., Bera, S., Paikar, A., Pramanik, A. & Haldar, D. Halogen bond induced phosphorescence of capped γ-amino acid in the solid state. Chem. Commun. 49, 9051–9053 (2013).

    CAS  Google Scholar 

  69. 69.

    Buck, J. T. et al. Spin-allowed transitions control the formation of triplet excited states in orthogonal donor-acceptor dyads. Chem 5, 138–155 (2019).

    CAS  Google Scholar 

  70. 70.

    Kuno, S., Akeno, H., Ohtani, H. & Yuasa, H. Visible room-temperature phosphorescence of pure organic crystals via a radical-ion-pair mechanism. Phys. Chem. Chem. Phys. 17, 15989–15995 (2015).

    CAS  Google Scholar 

  71. 71.

    Kuno, S., Kanamori, T., Yijing, Z., Ohtani, H. & Yuasa, H. Long persistent phosphorescence of crystalline phenylboronic acid derivatives: photophysics and a mechanistic study. ChemPhotoChem 1, 102–106 (2017).

    CAS  Google Scholar 

  72. 72.

    Matsuoka, H. et al. Time-resolved electron paramagnetic resonance and theoretical investigations of metal-free room-temperature triplet emitters. J. Am. Chem. Soc. 139, 12968–12975 (2017).

    CAS  Google Scholar 

  73. 73.

    Bhatia, H., Bhattacharjee, I. & Ray, D. Biluminescence via fluorescence and persistent phosphorescence in amorphous organic donor (D4)–acceptor (A) conjugates and application in data security protection. J. Phys. Chem. Lett. 9, 3808–3813 (2018).

    CAS  Google Scholar 

  74. 74.

    Xiong, Y. et al. Designing efficient and ultralong pure organic room-temperature phosphorescent materials by structural isomerism. Angew. Chem. Int. Ed. 57, 7997–8001 (2018).

    CAS  Google Scholar 

  75. 75.

    Zhang, X. et al. General design strategy for aromatic ketone-based single-component dual-emissive materials. ACS Appl. Mater. Interfaces 6, 2279–2284 (2014).

    Google Scholar 

  76. 76.

    Chen, X. et al. Versatile room-temperature-phosphorescent materials prepared from N-substituted naphthalimides: emission enhancement and chemical conjugation. Angew. Chem. Int. Ed. 55, 9872–9876 (2016).

    CAS  Google Scholar 

  77. 77.

    Huang, W., Chen, B. & Zhang, G. Persistent room-temperature radicals from anionic naphthalimides: spin pairing and supramolecular chemistry. Chem. Eur. J. 25, 12497–12501 (2019).

    CAS  Google Scholar 

  78. 78.

    Yang, Z. et al. Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence. Angew. Chem. Int. Ed. 55, 2181–2185 (2016).

    CAS  Google Scholar 

  79. 79.

    Bhattacharjee, I., Acharya, N., Karmakar, S. & Ray, D. Room-temperature orange-red phosphorescence by way of intermolecular charge transfer in single-component phenoxazine–quinoline conjugates and chemical sensing. J. Phys. Chem. C 122, 21589–21597 (2018).

    CAS  Google Scholar 

  80. 80.

    Li, F. et al. Achieving dual persistent room-temperature phosphorescence from polycyclic luminophores via inter-/intramolecular charge transfer. Adv. Opt. Mater. 7, 1900511 (2019).

    CAS  Google Scholar 

  81. 81.

    Mao, Z. et al. Two-photon-excited ultralong organic room temperature phosphorescence by operating dual-channel triplet harvesting. Chem. Sci. 10, 7352–7357 (2019).

    CAS  Google Scholar 

  82. 82.

    Lei, Y. X. et al. Revealing insight into long-lived room-temperature phosphorescence of host-guest systems. J. Phys. Chem. Lett. 10, 6019–6025 (2019).

    CAS  Google Scholar 

  83. 83.

    Etherington, M. K., Gibson, J., Higginbotham, H. F., Penfold, T. J. & Monkman, A. P. Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence. Nat. Commun. 7, 13680 (2016).

    CAS  Google Scholar 

  84. 84.

    Yu, L. et al. Pure organic emitter with simultaneous thermally activated delayed fluorescence and room-temperature phosphorescence: thermal-controlled triplet recycling channels. Adv. Opt. Mater. 5, 1700588 (2017).

    Google Scholar 

  85. 85.

    Chen, C. et al. Intramolecular charge transfer controls switching between room temperature phosphorescence and thermally activated delayed fluorescence. Angew. Chem. Int. Ed. 130, 16645–16649 (2018).

    Google Scholar 

  86. 86.

    Ward, J. S. et al. Bond rotations and heteroatom effects in donor–acceptor–donor molecules: implications for thermally activated delayed fluorescence and room temperature phosphorescence. J. Org. Chem. 83, 14431–14442 (2018).

    CAS  Google Scholar 

  87. 87.

    Han, H. & Kim, E. G. Dielectric effects on charge-transfer and local excited states in organic persistent room-temperature phosphorescence. Chem. Mater. 31, 6925–6935 (2019).

    CAS  Google Scholar 

  88. 88.

    Kukhta, N. A., Huang, R., Batsanov, A. S., Bryce, M. R. & Dias, F. B. Achieving conformational control in RTP and TADF emitters by functionalization of the central core. J. Phys. Chem. C 123, 26536–26546 (2019).

    CAS  Google Scholar 

  89. 89.

    Ward, J. S. et al. Impact of methoxy substituents on thermally activated delayed fluorescence and room-temperature phosphorescence in all-organic donor–acceptor systems. J. Org. Chem. 84, 3801–3816 (2019).

    CAS  Google Scholar 

  90. 90.

    Bhattacharjee, I., Acharya, N. & Ray, D. Thermally activated delayed fluorescence and room-temperature phosphorescence in naphthyl appended carbazole–quinoline conjugates, and their mechanical regulation. Chem. Commun. 55, 1899–1902 (2019).

    Google Scholar 

  91. 91.

    Chen, J. et al. Achieving dual-emissive and time-dependent evolutive organic afterglow by bridging molecules with weak intermolecular hydrogen bonding. Adv. Opt. Mater. 7, 1801593 (2019).

    Google Scholar 

  92. 92.

    Data, P., Okazaki, M., Minakata, S. & Takeda, Y. Thermally activated delayed fluorescence vs. room temperature phosphorescence by conformation control of organic single molecules. J. Mater. Chem. C 7, 6616–6621 (2019).

    CAS  Google Scholar 

  93. 93.

    Data, P. & Takeda, Y. Recent advancements in and the future of organic emitters: TADF- and RTP-active multifunctional organic materials. Chem. Asian J. 14, 1613–1636 (2019).

    CAS  Google Scholar 

  94. 94.

    Yang, L. et al. Aggregation-induced intersystem crossing: a novel strategy for efficient molecular phosphorescence. Nanoscale 8, 17422–17426 (2016).

    CAS  Google Scholar 

  95. 95.

    Sun, X. et al. Polymerization-enhanced intersystem crossing: new strategy to achieve long-lived excitons. Macromol. Rapid Commun. 36, 298–303 (2015).

    CAS  Google Scholar 

  96. 96.

    Kasha, M., Rawls, H. R. & El-Bayoumi, M. A. The exciton model in molecular spectroscopy. Pure Appl. Chem. 11, 371–392 (1965).

    CAS  Google Scholar 

  97. 97.

    Lucenti, E. et al. Cyclic triimidazole derivatives: intriguing examples of multiple emissions and ultralong phosphorescence at room temperature. Angew. Chem. Int. Ed. 56, 16302–16307 (2017).

    CAS  Google Scholar 

  98. 98.

    Yang, J. et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat. Commun. 9, 840 (2018).

    Google Scholar 

  99. 99.

    Wu, H. et al. Crystal multi-conformational control through deformable carbon-sulfur bond for singlet-triplet emissive tuning. Angew. Chem. Int. Ed. 22, 4372–4377 (2019).

    Google Scholar 

  100. 100.

    Zhao, W. et al. Highly sensitive switching of solid-state luminescence by controlling intersystem crossing. Nat. Commun. 9, 3044 (2018).

    Google Scholar 

  101. 101.

    Gao, R. & Yan, D. Layered host–guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface. Chem. Sci. 8, 590–599 (2017).

    CAS  Google Scholar 

  102. 102.

    Hirata, S., Totani, K., Yamashita, T., Adachi, C. & Vacha, M. Large reverse saturable absorption under weak continuous incoherent light. Nat. Mater. 13, 938–946 (2014).

    CAS  Google Scholar 

  103. 103.

    Notsuka, N., Kabe, R., Goushi, K. & Adachi, C. Confinement of long-lived triplet excitons in organic semiconducting host–guest systems. Adv. Funct. Mater. 27, 1703902 (2017).

    Google Scholar 

  104. 104.

    Zhao, W. et al. Boosting the efficiency of organic persistent room-temperature phosphorescence by intramolecular triplet-triplet energy transfer. Nat. Commun. 10, 1595 (2019).

    Google Scholar 

  105. 105.

    Huang, R. et al. The influence of molecular conformation on the photophysics of organic room temperature phosphorescent luminophores. J. Mater. Chem. C 6, 9238–9247 (2018).

    CAS  Google Scholar 

  106. 106.

    Breen, D. E. & Keller, R. A. Intramolecular energy transfer between triplet states of weakly interacting chromophores. I. Compounds in which the chromophores are separated by a series of methylene groups. J. Am. Chem. Soc. 90, 1935–1940 (1968).

    CAS  Google Scholar 

  107. 107.

    Ma, H. et al. Electrostatic interaction-induced room-temperature phosphorescence in pure organic molecules from QM/MM calculations. J. Phys. Chem. Lett. 7, 2893–2898 (2016).

    CAS  Google Scholar 

  108. 108.

    Hirata, S. Intrinsic analysis of radiative and room-temperature nonradiative processes based on triplet state intramolecular vibrations of heavy atom-free conjugated molecules toward efficient persistent room-temperature phosphorescence. J. Phys. Chem. Lett. 9, 4251–4259 (2018).

    CAS  Google Scholar 

  109. 109.

    Hayduk, M., Riebe, S. & Voskuhl, J. Phosphorescence through hindered motion of pure organic emitters. Chem. Eur. J. 24, 12221–12230 (2018).

    CAS  Google Scholar 

  110. 110.

    Schulman, E. M. & Parker, R. T. Room temperature phosphorescence of organic compounds. The effects of moisture, oxygen, and the nature of the support-phosphor interaction. J. Phys. Chem. 81, 1932–1939 (1977).

    CAS  Google Scholar 

  111. 111.

    Ma, X., Wang, J. & Tian, H. Assembling-induced emission: an efficient approach for amorphous metal-free organic emitting materials with room-temperature phosphorescence. Acc. Chem. Res. 52, 738–748 (2019). This work reviews assembling strategies for the realization of organic materials exhibiting RTP.

    CAS  Google Scholar 

  112. 112.

    Yong, G.-P., Zhang, Y.-M., She, W.-L. & Li, Y.-Z. Stacking-induced white-light and blue-light phosphorescence from purely organic radical materials. J. Mater. Chem. 21, 18520–18522 (2011).

    CAS  Google Scholar 

  113. 113.

    Gong, Y. et al. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens. Adv. Mater. 27, 6195–6201 (2015).

    CAS  Google Scholar 

  114. 114.

    Chen, G. L., Guo, S. D., Feng, H. & Qian, Z. S. Anion-regulated transient and persistent phosphorescence and size-dependent ultralong afterglow of organic ionic crystals. J. Mater. Chem. C 7, 14535–14542 (2019).

    CAS  Google Scholar 

  115. 115.

    Shen, Q. J., Wei, H. Q., Zou, W. S., Sun, H. L. & Jin, W. J. Cocrystals assembled by pyrene and 1,2- or 1,4-diiodotetrafluorobenzenes and their phosphorescent behaviors modulated by local molecular environment. CrystEngComm 14, 1010–1015 (2012).

    CAS  Google Scholar 

  116. 116.

    Bian, L. et al. Simultaneously enhancing efficiency and lifetime of ultralong organic phosphorescence materials by molecular self-assembly. J. Am. Chem. Soc. 140, 10734–10739 (2018).

    CAS  Google Scholar 

  117. 117.

    Wu, H. et al. Molecular stacking dependent phosphorescence–fluorescence dual emission in a single luminophore for self-recoverable mechanoconversion of multicolor luminescence. Chem. Commun. 53, 2661–2664 (2017).

    CAS  Google Scholar 

  118. 118.

    Wu, H. et al. Tuning for visible fluorescence and near-infrared phosphorescence on a unimolecular mechanically sensitive platform via adjustable CH− π interaction. ACS Appl. Mater. Interfaces 9, 3865–3872 (2017).

    CAS  Google Scholar 

  119. 119.

    Wu, H. et al. Helical self-assembly-induced singlet–triplet emissive switching in a mechanically sensitive system. J. Am. Chem. Soc. 139, 785–791 (2017).

    CAS  Google Scholar 

  120. 120.

    Zhou, B. & Yan, D. Hydrogen-bonded two-component ionic crystals showing enhanced long-lived room-temperature phosphorescence via TADF-assisted Förster resonance energy transfer. Adv. Funct. Mater. 29, 1807599 (2019).

    Google Scholar 

  121. 121.

    Lee, D. et al. Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices. J. Am. Chem. Soc. 135, 6325–6329 (2013).

    CAS  Google Scholar 

  122. 122.

    Sternlicht, H., Nieman, G. & Robinson, G. Triplet — triplet annihilation and delayed fluorescence in molecular aggregates. J. Chem. Phys. 38, 1326–1335 (1963).

    CAS  Google Scholar 

  123. 123.

    Hirata, S. Recent advances in materials with room-temperature phosphorescence: photophysics for triplet exciton stabilization. Adv. Opt. Mater. 5, 1700116 (2017).

    Google Scholar 

  124. 124.

    Liu, D. K. & Faulkner, L. R. Delayed fluorescence efficiencies of anthracene and phenanthrene. J. Am. Chem. Soc. 100, 2635–2639 (1978).

    CAS  Google Scholar 

  125. 125.

    Chen, H., Yao, X., Ma, X. & Tian, H. Amorphous, efficient, room-temperature phosphorescent metal-free polymers and their applications as encryption ink. Adv. Opt. Mater. 4, 1397–1401 (2016).

    CAS  Google Scholar 

  126. 126.

    Ogoshi, T. et al. Ultralong room-temperature phosphorescence from amorphous polymer poly(styrene sulfonic acid) in air in the dry solid state. Adv. Funct. Mater. 28, 1707369 (2018).

    Google Scholar 

  127. 127.

    Cai, S. et al. Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking. Nat. Commun. 10, 4247 (2019).

    Google Scholar 

  128. 128.

    Zhang, Y.-F. et al. Isophthalate-based room temperature phosphorescence: from small molecule to side-chain jacketed liquid crystalline polymer. Macromolecules 52, 2495–2503 (2019).

    CAS  Google Scholar 

  129. 129.

    Chen, X. et al. Aggregation-induced dual emission and unusual luminescence beyond excimer emission of poly(ethylene terephthalate). Macromolecules 51, 9035–9042 (2018).

    CAS  Google Scholar 

  130. 130.

    Kanosue, K. et al. A colorless semi-aromatic polyimide derived from a sterically hindered bromine-substituted dianhydride exhibiting dual fluorescence and phosphorescence emission. Mater. Chem. Front. 3, 39–49 (2019).

    CAS  Google Scholar 

  131. 131.

    Zhang, G. et al. Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J. Am. Chem. Soc. 129, 8942–8943 (2007).

    CAS  Google Scholar 

  132. 132.

    Kwon, M. S. et al. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials. Nat. Commun. 6, 8947 (2015).

    Google Scholar 

  133. 133.

    Yu, Y. et al. Room-temperature-phosphorescence-based dissolved oxygen detection by core-shell polymer nanoparticles containing metal-free organic phosphors. Angew. Chem. Int. Ed. 56, 16207–16211 (2017).

    CAS  Google Scholar 

  134. 134.

    Ma, X., Xu, C., Wang, J. & Tian, H. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Angew. Chem. Int. Ed. 57, 10854–10858 (2018).

    CAS  Google Scholar 

  135. 135.

    Fang, M.-M., Yang, J. & Li, Z. Recent advances in purely organic room temperature phosphorescence polymer. Chin. J. Polym. Sci. 37, 383–393 (2019).

    CAS  Google Scholar 

  136. 136.

    Gan, N., Shi, H., An, Z. & Huang, W. Recent advances in polymer-based metal-free room-temperature phosphorescent materials. Adv. Funct. Mater. 28, 1802657 (2018).

    Google Scholar 

  137. 137.

    Turro, N. J. & Aikawa, M. Phosphorescence and delayed fluorescence of 1-chloronaphthalene in micellar solutions. J. Am. Chem. Soc. 102, 4866–4870 (1980).

    CAS  Google Scholar 

  138. 138.

    Nazarov, V., Gerko, V. & Alfimov, M. Nature of the room-temperature phosphorescence of cyclodextrin-aromatic compound complexes in water. Russ. Chem. Bull. 45, 969–970 (1996).

    Google Scholar 

  139. 139.

    Ma, X., Cao, J., Wang, Q. & Tian, H. Photocontrolled reversible room temperature phosphorescence (RTP) encoding β-cyclodextrin pseudorotaxane. Chem. Commun. 47, 3559–3561 (2011).

    CAS  Google Scholar 

  140. 140.

    Li, D. et al. Amorphous metal-free room-temperature phosphorescent small molecules with multicolor photoluminescence via a host–guest and dual-emission strategy. J. Am. Chem. Soc. 140, 1916–1923 (2018).

    CAS  Google Scholar 

  141. 141.

    Zhang, Z.-Y., Chen, Y. & Liu, Y. Efficient room-temperature phosphorescence of a solid-state supramolecule enhanced by cucurbit[6]uril. Angew. Chem. Int. Ed. 131, 6089–6093 (2019).

    Google Scholar 

  142. 142.

    Ishida, Y., Shimada, T., Ramasamy, E., Ramamurthy, V. & Takagi, S. Room temperature phosphorescence from a guest molecule confined in the restrictive space of an organic–inorganic supramolecular assembly. Photochem. Photobiol. Sci. 15, 959–963 (2016).

    CAS  Google Scholar 

  143. 143.

    Hirata, S. et al. Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions. Adv. Funct. Mater. 23, 3386–3397 (2013). This study introduced a smart host–guest approach for the rational design of efficient and persistent room-temperature-phosphorescent materials.

    CAS  Google Scholar 

  144. 144.

    Hirata, S. et al. Reversible thermal recording media using time-dependent persistent room temperature phosphorescence. Adv. Opt. Mater. 1, 438–442 (2013).

    Google Scholar 

  145. 145.

    Hirata, S. & Vacha, M. Circularly polarized persistent room-temperature phosphorescence from metal-free chiral aromatics in air. J. Phys. Chem. Lett. 7, 1539–1545 (2016).

    CAS  Google Scholar 

  146. 146.

    Hirata, S., Totani, K., Watanabe, T., Kaji, H. & Vacha, M. Relationship between room temperature phosphorescence and deuteration position in a purely aromatic compound. Chem. Phys. Lett. 591, 119–125 (2014).

    CAS  Google Scholar 

  147. 147.

    Wei, J. et al. Induction of strong long-lived room-temperature phosphorescence of N-phenyl-2-naphthylamine molecules by confinement in a crystalline dibromobiphenyl matrix. Angew. Chem. Int. Ed. 55, 15589–15593 (2016).

    CAS  Google Scholar 

  148. 148.

    Mieno, H., Kabe, R., Notsuka, N., Allendorf, M. D. & Adachi, C. Long-lived room-temperature phosphorescence of coronene in zeolitic imidazolate framework ZIF-8. Adv. Opt. Mater. 4, 1015–1021 (2016).

    CAS  Google Scholar 

  149. 149.

    Yang, X. & Yan, D. Strongly enhanced long-lived persistent room temperature phosphorescence based on the formation of metal–organic hybrids. Adv. Opt. Mater. 4, 897–905 (2016).

    CAS  Google Scholar 

  150. 150.

    Ford, C. D. & Hurtubise, R. J. Room-temperature phosphorescence of the phthalic acid isomers, p-aminobenzoic acid, and terephthalamide adsorbed on silica gel. Anal. Chem. 50, 610–612 (1978).

    CAS  Google Scholar 

  151. 151.

    Joseph, J. & Anappara, A. A. Cool white, persistent room-temperature phosphorescence in carbon dots embedded in a silica gel matrix. Phys. Chem. Chem. Phys. 19, 15137–15144 (2017).

    CAS  Google Scholar 

  152. 152.

    Gao, R., Mei, X., Yan, D., Liang, R. & Wei, M. Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nat. Commun. 9, 2798 (2018).

    Google Scholar 

  153. 153.

    Wang, B. et al. Red room-temperature phosphorescence of CDs@ zeolite composites triggered by heteroatoms in zeolite frameworks. ACS Cent. Sci. 5, 349–356 (2019).

    CAS  Google Scholar 

  154. 154.

    Louis, M. et al. Blue-light-absorbing thin films showing ultralong room-temperature phosphorescence. Adv. Mater. 31, 1807887 (2019).

    Google Scholar 

  155. 155.

    Al-Attar, H. A. & Monkman, A. P. Room-temperature phosphorescence from films of isolated water-soluble conjugated polymers in hydrogen-bonded matrices. Adv. Funct. Mater. 22, 3824–3832 (2012).

    CAS  Google Scholar 

  156. 156.

    Kwon, M. S., Lee, D., Seo, S., Jung, J. & Kim, J. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem. Int. Ed. 53, 11177–11181 (2014).

    CAS  Google Scholar 

  157. 157.

    Su, Y. et al. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Sci. Adv. 4, eaas9732 (2018).

    Google Scholar 

  158. 158.

    Tian, Z. et al. Multilevel data encryption using thermal-treatment controlled room temperature phosphorescence of carbon dot/polyvinylalcohol composites. Adv. Sci. 5, 1800795 (2018).

    Google Scholar 

  159. 159.

    Wu, H. et al. Achieving amorphous ultralong room temperature phosphorescence by coassembling planar small organic molecules with polyvinyl alcohol. Adv. Funct. Mater. 29, 1807243 (2019).

    Google Scholar 

  160. 160.

    Deng, Y. et al. Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun. 49, 5751–5753 (2013). This work constitutes the first report of C-dots with persistent RTP.

    CAS  Google Scholar 

  161. 161.

    Tao, S. et al. Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials. Angew. Chem. Int. Ed. 57, 2393–2398 (2018).

    CAS  Google Scholar 

  162. 162.

    Jiang, K. et al. Triple-mode emission of carbon dots: applications for advanced anti-counterfeiting. Angew. Chem. Int. Ed. 55, 7231–7235 (2016).

    CAS  Google Scholar 

  163. 163.

    Chen, Y. et al. Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot aggregates. J. Mater. Chem. C 5, 6243–6250 (2017).

    CAS  Google Scholar 

  164. 164.

    Jiang, K., Wang, Y., Gao, X., Cai, C. & Lin, H. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem. Int. Ed. 57, 6216–6220 (2018).

    CAS  Google Scholar 

  165. 165.

    Li, Q. et al. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nat. Commun. 9, 734 (2018).

    Google Scholar 

  166. 166.

    Li, Q. et al. Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices. Chem. Mater. 28, 8221–8227 (2016).

    CAS  Google Scholar 

  167. 167.

    Long, P. et al. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots. Adv. Funct. Mater. 28, 1800791 (2018).

    Google Scholar 

  168. 168.

    Zhu, J. et al. Spectrally tunable solid state fluorescence and room-temperature phosphorescence of carbon dots synthesized via seeded growth method. Adv. Opt. Mater. 7, 1801599 (2019).

    Google Scholar 

  169. 169.

    Lin, C., Zhuang, Y., Li, W., Zhou, T.-L. & Xie, R.-J. Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale 11, 6584–6590 (2019).

    CAS  Google Scholar 

  170. 170.

    Zhou, Q. et al. Clustering-triggered emission of nonconjugated polyacrylonitrile. Small 12, 6586–6592 (2016).

    CAS  Google Scholar 

  171. 171.

    Chen, X. et al. Synthesis, clustering-triggered emission, explosive detection and cell imaging of nonaromatic polyurethanes. Mol. Syst. Des. Eng. 3, 364–375 (2018).

    CAS  Google Scholar 

  172. 172.

    Dou, X. et al. Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromolecules 19, 2014–2022 (2018).

    CAS  Google Scholar 

  173. 173.

    Fang, M. et al. Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond. Mater. Chem. Front. 2, 2124–2129 (2018).

    CAS  Google Scholar 

  174. 174.

    Zhou, Q. et al. Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Mater. Chem. Front. 3, 257–264 (2019).

    CAS  Google Scholar 

  175. 175.

    Gong, Y. et al. Room temperature phosphorescence from natural products: Crystallization matters. Sci. China Chem. 56, 1178–1182 (2013).

    CAS  Google Scholar 

  176. 176.

    Chen, X. et al. Prevalent intrinsic emission from nonaromatic amino acids and poly (amino acids). Sci. China Chem. 61, 351–359 (2018).

    CAS  Google Scholar 

  177. 177.

    Du, L.-L. et al. Clustering-triggered emission of cellulose and its derivatives. Chin. J. Polym. Sci. 37, 409–415 (2019).

    CAS  Google Scholar 

  178. 178.

    Zhang, H. et al. Clusterization-triggered emission: uncommon luminescence from common materials. Mater. Today 32, 275–292 (2020).

    CAS  Google Scholar 

  179. 179.

    Hirata, S. Roles of localized electronic structures caused by π degeneracy due to highly symmetric heavy atom-free conjugated molecular crystals leading to efficient persistent room-temperature phosphorescence. Adv. Sci. 6, 1900410 (2019).

    Google Scholar 

  180. 180.

    Hirata, S. Ultralong-lived room temperature triplet excitons: molecular persistent room temperature phosphorescence and nonlinear optical characteristics with continuous irradiation. J. Mater. Chem. C 6, 11785–11794 (2018).

    CAS  Google Scholar 

  181. 181.

    Hirata, S. & Vacha, M. Large reverse saturable absorption at the sunlight power level using the ultralong lifetime of triplet excitons. J. Phys. Chem. Lett. 8, 3683–3689 (2017).

    CAS  Google Scholar 

  182. 182.

    Wilson, J. S. et al. The energy gap law for triplet states in Pt-containing conjugated polymers and monomers. J. Am. Chem. Soc. 123, 9412–9417 (2001).

    CAS  Google Scholar 

  183. 183.

    Tian, S. et al. Utilizing d–pπ bonds for ultralong organic phosphorescence. Angew. Chem. Int. Ed. 58, 6645–6649 (2019).

    CAS  Google Scholar 

  184. 184.

    Han, J. et al. Small-molecule-doped organic crystals with long-persistent luminescence. Adv. Funct. Mater. 29, 1902503 (2019).

    Google Scholar 

  185. 185.

    He, Z. et al. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat. Commun. 8, 416 (2017).

    Google Scholar 

  186. 186.

    Zhang, X. et al. Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons. Nat. Commun. 10, 5161 (2019).

    Google Scholar 

  187. 187.

    Li, Y., Gecevicius, M. & Qiu, J. Long persistent phosphors—from fundamentals to applications. Chem. Soc. Rev. 45, 2090–2136 (2016).

    CAS  Google Scholar 

  188. 188.

    Kabe, R., Notsuka, N., Yoshida, K. & Adachi, C. Afterglow organic light-emitting diode. Adv. Mater. 28, 655–660 (2016).

    CAS  Google Scholar 

  189. 189.

    Yuan, T. et al. Fluorescence–phosphorescence dual emissive carbon nitride quantum dots show 25% white emission efficiency enabling single-component WLEDs. Chem. Sci. 10, 9801–9806 (2019).

    CAS  Google Scholar 

  190. 190.

    Daly, M. L., Kerr, C., DeRosa, C. A. & Fraser, C. L. Meta-alkoxy-substituted difluoroboron dibenzoylmethane complexes as environment-sensitive materials. ACS Appl. Mater. Interfaces 9, 32008–32017 (2017).

    CAS  Google Scholar 

  191. 191.

    Tomkeviciene, A. et al. Bipolar thianthrene derivatives exhibiting room temperature phosphorescence for oxygen sensing. Dyes Pigm. 170, 107605 (2019).

    CAS  Google Scholar 

  192. 192.

    Villa, M. et al. Bright phosphorescence of all-organic chromophores confined within water-soluble silica nanoparticles. J. Phys. Chem. C 123, 29884–29890 (2019).

    CAS  Google Scholar 

  193. 193.

    Xu, J. et al. Reversible switching between phosphorescence and fluorescence in a unimolecular system controlled by external stimuli. Chem. Eur. J. 24, 12773–12778 (2018).

    CAS  Google Scholar 

  194. 194.

    Katsurada, Y., Hirata, S., Totani, K., Watanabe, T. & Vacha, M. Photoreversible on–off recording of persistent room-temperature phosphorescence. Adv. Opt. Mater. 3, 1726–1737 (2015).

    CAS  Google Scholar 

  195. 195.

    Xu, W. et al. Self-stabilized amorphous organic materials with room-temperature phosphorescence. Angew. Chem. Int. Ed. 58, 16018–16022 (2019).

    CAS  Google Scholar 

  196. 196.

    Wang, X.-F. et al. Pure organic room temperature phosphorescence from excited dimers in self-assembled nanoparticles under visible and near-infrared irradiation in water. J. Am. Chem. Soc. 141, 5045–5050 (2019).

    CAS  Google Scholar 

  197. 197.

    Pfister, A., Zhang, G., Zareno, J., Horwitz, A. F. & Fraser, C. L. Boron polylactide nanoparticles exhibiting fluorescence and phosphorescence in aqueous medium. ACS Nano 2, 1252–1258 (2008).

    CAS  Google Scholar 

  198. 198.

    Chen, C. & Liu, B. Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nat. Commun. 10, 2111 (2019).

    Google Scholar 

  199. 199.

    Fateminia, S. A. et al. Organic nanocrystals with bright red persistent room-temperature phosphorescence for biological applications. Angew. Chem. Int. Ed. 56, 12160–12164 (2017).

    CAS  Google Scholar 

  200. 200.

    Yang, J. et al. The odd–even effect of alkyl chain in organic room temperature phosphorescence luminogens and the corresponding in vivo imaging. Mater. Chem. Front. 3, 1391–1397 (2019).

    CAS  Google Scholar 

  201. 201.

    Nicol, A. et al. Ultrafast delivery of aggregation-induced emission nanoparticles and pure organic phosphorescent nanocrystals by saponin encapsulation. J. Am. Chem. Soc. 139, 14792–14799 (2017).

    CAS  Google Scholar 

  202. 202.

    Zhang, G., Palmer, G. M., Dewhirst, M. W. & Fraser, C. L. A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat. Mater. 8, 747–751 (2009). This work demonstrated the use of pure organic polymer room-temperature-phosphorescent materials for tumour hypoxia imaging.

    CAS  Google Scholar 

  203. 203.

    Kersey, F. R., Zhang, G., Palmer, G. M., Dewhirst, M. W. & Fraser, C. L. Stereocomplexed poly(lactic acid)–poly(ethylene glycol) nanoparticles with dual-emissive boron dyes for tumor accumulation. ACS Nano 4, 4989–4996 (2010).

    CAS  Google Scholar 

  204. 204.

    DeRosa, C. A. et al. Tailoring oxygen sensitivity with halide substitution in difluoroboron dibenzoylmethane polylactide materials. ACS Appl. Mater. Interfaces 7, 23633–23643 (2015).

    CAS  Google Scholar 

  205. 205.

    DeRosa, C. A. et al. Oxygen sensing difluoroboron dinaphthoylmethane polylactide. Macromolecules 48, 2967–2977 (2015).

    CAS  Google Scholar 

  206. 206.

    Zhen, X. et al. Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging. Adv. Mater. 29, 1606665 (2017).

    Google Scholar 

  207. 207.

    He, Z. et al. Achieving persistent, efficient, and robust room-temperature phosphorescence from pure organics for versatile applications. Adv. Mater. 31, 1807222 (2019).

    Google Scholar 

  208. 208.

    Ma, H. et al. Hydrogen bonding-induced morphology dependence of long-lived organic room-temperature phosphorescence: a computational study. J. Phys. Chem. Lett. 10, 6948–6954 (2019).

    CAS  Google Scholar 

  209. 209.

    Koch, M. et al. Metal-free triplet phosphors with high emission efficiency and high tunability. Angew. Chem. Int. Ed. 53, 6378–6382 (2014).

    CAS  Google Scholar 

  210. 210.

    Wang, T. et al. Aggregation-induced dual-phosphorescence from organic molecules for nondoped light-emitting diodes. Adv. Mater. 31, 1904273 (2019).

    CAS  Google Scholar 

  211. 211.

    Itoh, T. Fluorescence and phosphorescence from higher excited states of organic molecules. Chem. Rev. 112, 4541–4568 (2012).

    CAS  Google Scholar 

  212. 212.

    Wang, Q. et al. Reevaluating the protein emission: remarkable visible luminescence and emissive mechanism. Angew. Chem. Int. Ed. 58, 12667–12673 (2019).

    CAS  Google Scholar 

  213. 213.

    Lin, Z., Kabe, R., Nishimura, N., Jinnai, K. & Adachi, C. Organic long-persistent luminescence from a flexible and transparent doped polymer. Adv. Mater. 30, 1803713 (2018).

    Google Scholar 

  214. 214.

    Yang, J. et al. Elucidating the excited state of mechanoluminescence in organic luminogens with room-temperature phosphorescence. Angew. Chem. Int. Ed. 129, 15501–15505 (2017).

    Google Scholar 

  215. 215.

    Yang, J. et al. AIEgen with fluorescence–phosphorescence dual mechanoluminescence at room temperature. Angew. Chem. Int. Ed. 56, 880–884 (2017).

    CAS  Google Scholar 

  216. 216.

    Li, J. A. et al. Transient and persistent room-temperature mechanoluminescence from a white-light-emitting AIEgen with tricolor emission switching triggered by light. Angew. Chem. Int. Ed. 130, 6559–6563 (2018).

    Google Scholar 

  217. 217.

    Su, Y. et al. Excitation-dependent long-life luminescent polymeric systems under ambient conditions. Angew. Chem. Int. Ed. 59, 9967–9971 (2020).

    CAS  Google Scholar 

  218. 218.

    Gu, L. et al. Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nat. Photon. 13, 406–411 (2019).

    CAS  Google Scholar 

  219. 219.

    Narushima, K., Kiyota, Y., Mori, T., Hirata, S. & Vacha, M. Suppressed triplet exciton diffusion due to small orbital overlap as a key design factor for ultralong-lived room-temperature phosphorescence in molecular crystals. Adv. Mater. 31, 1807268 (2019).

    Google Scholar 

  220. 220.

    Clapp, D. B. The phosphorescence of tetraphenylmethane and certain related substances. J. Am. Chem. Soc. 61, 523–524 (1939).

    CAS  Google Scholar 

  221. 221.

    Xue, P. et al. Correction: Bright persistent luminescence from pure organic molecules through a moderate intermolecular heavy atom effect. Chem. Sci. 8, 6691 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the National Science Foundation of China (21975061, 21788102, 51703042), the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (HIT.NSRIF.2020062), the National Science Foundation of Guangdong Province (2019A1515011050), the Science and Technology Plan of Shenzhen (JCYJ20170811155015918), the Research Grants Council of Hong Kong (C6009-17G and A-HKUST605/16) and the Innovation and Technology Commission (ITC-CNERC14SC01). The authors are grateful to Professor Qian Peng and Professor Huili Ma for helpful discussions.

Author information

Affiliations

Authors

Contributions

All authors contributed to the discussion of content and to the preparation of the manuscript. W.Z. researched data for the article.

Corresponding authors

Correspondence to Zikai He or Ben Zhong Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., He, Z. & Tang, B.Z. Room-temperature phosphorescence from organic aggregates. Nat Rev Mater (2020). https://doi.org/10.1038/s41578-020-0223-z

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing