Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metallurgy, mechanistic models and machine learning in metal printing

Abstract

Additive manufacturing enables the printing of metallic parts, such as customized implants for patients, durable single-crystal parts for use in harsh environments, and the printing of parts with site-specific chemical compositions and properties from 3D designs. However, the selection of alloys, printing processes and process variables results in an exceptional diversity of microstructures, properties and defects that affect the serviceability of the printed parts. Control of these attributes using the rich knowledge base of metallurgy remains a challenge because of the complexity of the printing process. Transforming 3D designs created in the virtual world into high-quality products in the physical world needs a new methodology not commonly used in traditional manufacturing. Rapidly developing powerful digital tools such as mechanistic models and machine learning, when combined with the knowledge base of metallurgy, have the potential to shape the future of metal printing. Starting from product design to process planning and process monitoring and control, these tools can help improve microstructure and properties, mitigate defects, automate part inspection and accelerate part qualification. Here, we examine advances in metal printing focusing on metallurgy, as well as the use of mechanistic models and machine learning and the role they play in the expansion of the additive manufacturing of metals.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematics of three metal printing processes.
Fig. 2: Contributions of metallurgy, mechanistic models and machine learning in the various steps of metal printing.
Fig. 3: Properties of printed metallic components.
Fig. 4: Results from various types of mechanistic models for metal printing.
Fig. 5: Applications of machine learning in metal printing.

References

  1. 1.

    DebRoy, T. et al. Additive manufacturing of metallic components — process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    DebRoy, T. et al. Scientific, technological and economic issues in metal printing and their solutions. Nat. Mater. 18, 1026–1032 (2019).

    CAS  Article  Google Scholar 

  3. 3.

    Milewski, J. O. Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry Vol. 258 (Springer, 2017).

  4. 4.

    Sames, W. J., List, F. A., Pannala, S., Dehoff, R. R. & Babu, S. S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61, 315–360 (2016).

    Article  CAS  Google Scholar 

  5. 5.

    Bose, S., Ke, D., Sahasrabudhe, H. & Bandyopadhyay, A. Additive manufacturing of biomaterials. Prog. Mater. Sci. 93, 45–111 (2018).

    Article  Google Scholar 

  6. 6.

    Shinde, M. S. & Ashtankar, K. M. Additive manufacturing — assisted conformal cooling channels in mold manufacturing processes. Adv. Mech. Eng. 9, 1687814017699764 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Qi, D. et al. Mechanical behaviors of SLM additive manufactured octet-truss and truncated-octahedron lattice structures with uniform and taper beams. Int. J. Mech. Sci. 163, 105091 (2019).

    Article  Google Scholar 

  8. 8.

    Tammas-Williams, S. & Todd, I. Design for additive manufacturing with site-specific properties in metals and alloys. Scr. Mater. 135, 105–110 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Mukherjee, T. & DebRoy, T. A digital twin for rapid qualification of 3D printed metallic components. Appl. Mater. Today 14, 59–65 (2019).

    Article  Google Scholar 

  10. 10.

    Elmer, J. et al. Wire-based additive manufacturing of stainless steel components. Weld. J. 99, S8–S24 (2020).

    Article  Google Scholar 

  11. 11.

    Gao, W. et al. The status, challenges, and future of additive manufacturing in engineering. Comput. Aid. Des. 69, 65–89 (2015).

    Article  Google Scholar 

  12. 12.

    Francois, M. M. et al. Modeling of additive manufacturing processes for metals: challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 21, 198–206 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Qi, X., Chen, G., Li, Y., Cheng, X. & Li, C. Applying neural-network-based machine learning to additive manufacturing: current applications, challenges, and future perspectives. Engineering 5, 721–729 (2019).

    Article  Google Scholar 

  14. 14.

    Bürger, D., Parsa, A., Ramsperger, M., Körner, C. & Eggeler, G. Creep properties of single crystal Ni-base superalloys (SX): a comparison between conventionally cast and additive manufactured CMSX-4 materials. Mater. Sci. Eng. A 762, 138098 (2019).

    Article  CAS  Google Scholar 

  15. 15.

    Acharya, R., Bansal, R., Gambone, J. J. & Das, S. A coupled thermal, fluid flow, and solidification model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (Part I). Metall. Mater. Trans. B 45, 2247–2261 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Acharya, R., Bansal, R., Gambone, J. J. & Das, S. A microstructure evolution model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (Part II). Metall. Mater. Trans. B 45, 2279–2290 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Basak, A., Acharya, R. & Das, S. Additive manufacturing of single-crystal superalloy CMSX-4 through scanning laser epitaxy: computational modeling, experimental process development, and process parameter optimization. Metall. Mater. Trans. A 47, 3845–3859 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Liang, Y.-J., Cheng, X., Li, J. & Wang, H.-M. Microstructural control during laser additive manufacturing of single-crystal nickel-base superalloys: new processing–microstructure maps involving powder feeding. Mater. Des. 130, 197–207 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Meid, C. et al. Effect of heat treatment on the high temperature fatigue life of single crystalline nickel base superalloy additively manufactured by means of selective electron beam melting. Scr. Mater. 168, 124–128 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    Pistor, J. & Körner, C. Formation of topologically closed packed phases within CMSX-4 single crystals produced by additive manufacturing. Mater. Lett. X 1, 100003 (2019).

    Google Scholar 

  21. 21.

    Ramsperger, M. et al. Solution heat treatment of the single crystal nickel-base superalloy CMSX-4 fabricated by selective electron beam melting. Adv. Eng. Mater. 17, 1486–1493 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Körner, C. et al. Microstructure and mechanical properties of CMSX-4 single crystals prepared by additive manufacturing. Metall. Mater. Trans. A 49, 3781–3792 (2018).

    Article  CAS  Google Scholar 

  23. 23.

    Liang, Y.-J. et al. Experimental optimization of laser additive manufacturing process of single-crystal nickel-base superalloys by a statistical experiment design method. J. Alloy. Comp. 697, 174–181 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Butler, T. M., Brice, C. A., Tayon, W. A., Semiatin, S. L. & Pilchak, A. L. Evolution of texture from a single crystal Ti–6Al–4V substrate during electron beam directed energy deposition. Metall. Mater. Trans. A 48, 4441–4446 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Zhou, Z. et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing. Mater. Des. 160, 1238–1249 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Wei, H. L., Elmer, J. W. & DebRoy, T. Three-dimensional modeling of grain structure evolution during welding of an aluminum alloy. Acta Mater. 126, 413–425 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    MacDonald, E. & Wicker, R. Multiprocess 3D printing for increasing component functionality. Science 353, aaf2093 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Niendorf, T. et al. Functionally graded alloys obtained by additive manufacturing. Adv. Eng. Mater. 16, 857–861 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Bobbio, L. D. et al. Analysis of formation and growth of the σ phase in additively manufactured functionally graded materials. J. Alloy. Comp. 814, 151729 (2020).

    CAS  Article  Google Scholar 

  30. 30.

    Zuback, J., Palmer, T. & DebRoy, T. Additive manufacturing of functionally graded transition joints between ferritic and austenitic alloys. J. Alloy. Comp. 770, 995–1003 (2019).

    CAS  Article  Google Scholar 

  31. 31.

    Ge, W., Lin, F. & Guo, C. in Proc. 26th Annu. Int. Solid Freeform Fabrication Symp. — An Addit. Manuf. Conf. (eds Bourell, D. L., Crawford, R.H., Seepersad, C. C., Beaman, J., J., Fish, S. & Marcus, H.) 10–12 (The University of Texas, Austin, 2015).

  32. 32.

    Wang, F., Mei, J., Jiang, H. & Wu, X. H. Production of functionally-graded samples using simultaneous powder and wire-feed. Mater. Sci. Forum. 539, 3631–3636 (2007).

    Article  Google Scholar 

  33. 33.

    Hofmann, D. C. et al. Developing gradient metal alloys through radial deposition additive manufacturing. Sci. Rep. 4, 5357 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Bobbio, L. D. et al. Additive manufacturing of a functionally graded material from Ti–6Al–4V to Invar: experimental characterization and thermodynamic calculations. Acta Mater. 127, 133–142 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Gan, Z., Yu, G., He, X. & Li, S. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel. Int. J. Heat Mass Transf. 104, 28–38 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Eliseeva, O. et al. Functionally graded materials through robotics-inspired path planning. Mater. Des. 182, 107975 (2019).

    CAS  Article  Google Scholar 

  37. 37.

    Wang, Y. M. et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 17, 63 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Yin, Y., Sun, J., Guo, J., Kan, X. & Yang, D. Mechanism of high yield strength and yield ratio of 316 L stainless steel by additive manufacturing. Mater. Sci. Eng. A 744, 773–777 (2019).

    CAS  Article  Google Scholar 

  39. 39.

    Liu, L. et al. Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Mater. Today 21, 354–361 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Sun, Z., Tan, X., Tor, S. B. & Chua, C. K. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater. 10, 127 (2018).

    CAS  Article  Google Scholar 

  41. 41.

    Pham, M., Dovgyy, B. & Hooper, P. Twinning induced plasticity in austenitic stainless steel 316L made by additive manufacturing. Mater. Sci. Eng. A 704, 102–111 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Wang, D. et al. Selective laser melting under the reactive atmosphere: a convenient and efficient approach to fabricate ultrahigh strength commercially pure titanium without sacrificing ductility. Mater. Sci. Eng. A. 762, 138078 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    Zhou, Y. et al. Selective laser melting enabled additive manufacturing of Ti–22Al–25Nb intermetallic: excellent combination of strength and ductility, and unique microstructural features associated. Acta Mater. 173, 117–129 (2019).

    CAS  Article  Google Scholar 

  44. 44.

    Lin, J. et al. Enhanced strength and ductility in thin Ti–6Al–4V alloy components by alternating the thermal cycle strategy during plasma arc additive manufacturing. Mater. Sci. Eng. A 759, 288–297 (2019).

    CAS  Article  Google Scholar 

  45. 45.

    De Formanoir, C. et al. Micromechanical behavior and thermal stability of a dual-phase α + α′ titanium alloy produced by additive manufacturing. Acta Mater. 162, 149–162 (2019).

    Article  CAS  Google Scholar 

  46. 46.

    Sabban, R., Bahl, S., Chatterjee, K. & Suwas, S. Globularization using heat treatment in additively manufactured Ti–6Al–4V for high strength and toughness. Acta Mater. 162, 239–254 (2019).

    CAS  Article  Google Scholar 

  47. 47.

    Azizi, H. et al. Additive manufacturing of a novel Ti–Al–V–Fe alloy using selective laser melting. Addit. Manuf. 21, 529–535 (2018).

    CAS  Google Scholar 

  48. 48.

    He, B. et al. Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting. Vacuum 150, 79–83 (2018).

    CAS  Article  Google Scholar 

  49. 49.

    AlMangour, B., Kim, Y.-K., Grzesiak, D. & Lee, K.-A. Novel TiB2-reinforced 316L stainless steel nanocomposites with excellent room- and high-temperature yield strength developed by additive manufacturing. Compos. Part. B Eng. 156, 51–63 (2019).

    CAS  Article  Google Scholar 

  50. 50.

    Dong, Z., Kang, H., Xie, Y., Chi, C. & Peng, X. Effect of powder oxygen content on microstructure and mechanical properties of a laser additively-manufactured 12CrNi2 alloy steel. Mater. Lett. 236, 214–217 (2019).

    CAS  Article  Google Scholar 

  51. 51.

    Suryawanshi, J. et al. Simultaneous enhancements of strength and toughness in an Al–12Si alloy synthesized using selective laser melting. Acta Mater. 115, 285–294 (2016).

    CAS  Article  Google Scholar 

  52. 52.

    Wang, Z., Palmer, T. A. & Beese, A. M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater. 110, 226–235 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Dadbakhsh, S., Mertens, R., Hao, L., Van Humbeeck, J. & Kruth, J. P. Selective laser melting to manufacture “in situ” metal matrix composites: a review. Adv. Eng. Mater. 21, 1801244 (2019).

    CAS  Article  Google Scholar 

  54. 54.

    Wang, Y., Shi, J., Deng, X. & Lu, S. in ASME 2016 International Mechanical Engineering Congress and Exposition https://doi.org/10.1115/IMECE2016-67304 (American Society of Mechanical Engineers Digital Collection, 2016).

  55. 55.

    Gu, D. et al. Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance. Compos. Part. B Eng. 163, 585–597 (2019).

    CAS  Article  Google Scholar 

  56. 56.

    Gu, D., Cao, S. & Lin, K. Laser metal deposition additive manufacturing of TiC reinforced Inconel 625 composites: influence of the additive TiC particle and its starting size. J. Manuf. Sci. Eng. 139, 041014 (2017).

    Article  Google Scholar 

  57. 57.

    Zhang, B. et al. Comparison of carbon-based reinforcement on laser aided additive manufacturing Inconel 625 composites. Appl. Surf. Sci. 490, 522–534 (2019).

    CAS  Article  Google Scholar 

  58. 58.

    Li, X. P. et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater. 129, 183–193 (2017).

    CAS  Article  Google Scholar 

  59. 59.

    Zhou, W. et al. In situ formation of uniformly dispersed Al4C3 nanorods during additive manufacturing of graphene oxide/Al mixed powders. Carbon. 141, 67–75 (2019).

    CAS  Article  Google Scholar 

  60. 60.

    Du, Z., Tan, M. J., Guo, J. F., Chua, C. K. & Lim, J. J. D. The effect of laser power and scanning speed on the density of selective laser melting fabricated Al–CNT composites. DR-NTU https://hdl.handle.net/10356/84568 (Research Publishing, 2016).

  61. 61.

    Mereddy, S. et al. Trace carbon addition to refine microstructure and enhance properties of additive-manufactured Ti–6Al–4V. JOM 70, 1670–1676 (2018).

    CAS  Article  Google Scholar 

  62. 62.

    Yu, W., Sing, S., Chua, C., Kuo, C. & Tian, X. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: a state of the art review. Prog. Mater. Sci. 104, 330–379 (2019).

    CAS  Article  Google Scholar 

  63. 63.

    Wei, H. L., Knapp, G. L., Mukherjee, T. & DebRoy, T. Three-dimensional grain growth during multi-layer printing of a nickel-based alloy Inconel 718. Addit. Manuf. 25, 448–459 (2019).

    CAS  Google Scholar 

  64. 64.

    Jadhav, S. et al. Influence of selective laser melting process parameters on texture evolution in pure copper. J. Mater. Process. Tech. 270, 47–58 (2019).

    CAS  Article  Google Scholar 

  65. 65.

    Andreau, O. et al. Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting. J. Mater. Process. Tech. 264, 21–31 (2019).

    CAS  Article  Google Scholar 

  66. 66.

    Martin, J. H. et al. 3D printing of high-strength aluminium alloys. Nature 549, 365 (2017).

    CAS  Article  Google Scholar 

  67. 67.

    Wen, X. et al. Laser solid forming additive manufacturing TiB2 reinforced 2024Al composite: microstructure and mechanical properties. Mater. Sci. Eng. A 745, 319–325 (2019).

    CAS  Article  Google Scholar 

  68. 68.

    Bermingham, M. J., StJohn, D. H., Krynen, J., Tedman-Jones, S. & Dargusch, M. S. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing. Acta Mater. 168, 261–274 (2019).

    CAS  Article  Google Scholar 

  69. 69.

    Li, J. et al. Microstructures and mechanical properties of laser additive manufactured Al–5Si–1Cu–Mg alloy with different layer thicknesses. J. Alloy. Comp. 789, 15–24 (2019).

    CAS  Article  Google Scholar 

  70. 70.

    Helmer, H., Bauereiß, A., Singer, R. & Körner, C. Grain structure evolution in Inconel 718 during selective electron beam melting. Mater. Sci. Eng. A 668, 180–187 (2016).

    CAS  Article  Google Scholar 

  71. 71.

    Haines, M., Plotkowski, A., Frederick, C., Schwalbach, E. & Babu, S. S. A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing. Comp. Mater. Sci. 155, 340–349 (2018).

    CAS  Article  Google Scholar 

  72. 72.

    Raghavan, N. et al. Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing. Acta Mater. 140, 375–387 (2017).

    CAS  Article  Google Scholar 

  73. 73.

    Jia, Q. et al. Selective laser melting of a high strength AlMnSc alloy: alloy design and strengthening mechanisms. Acta Mater. 171, 108–118 (2019).

    CAS  Article  Google Scholar 

  74. 74.

    Todaro, C. J. et al. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat. Commun. 11, 142 (2020).

    CAS  Article  Google Scholar 

  75. 75.

    Lee, H. W., Jung, K.-H., Hwang, S.-K., Kang, S.-H. & Kim, D.-K. Microstructure and mechanical anisotropy of CoCrW alloy processed by selective laser melting. Mater. Sci. Eng. A 749, 65–73 (2019).

    CAS  Article  Google Scholar 

  76. 76.

    Bahl, S. et al. Non-equilibrium microstructure, crystallographic texture and morphological texture synergistically result in unusual mechanical properties of 3D printed 316L stainless steel. Addit. Manuf. 28, 65–77 (2019).

    CAS  Google Scholar 

  77. 77.

    Gordon, J., Hochhalter, J., Haden, C. & Harlow, D. G. Enhancement in fatigue performance of metastable austenitic stainless steel through directed energy deposition additive manufacturing. Mater. Des. 168, 107630 (2019).

    CAS  Article  Google Scholar 

  78. 78.

    Tarasov, S. Y. et al. Microstructural evolution and chemical corrosion of electron beam wire-feed additively manufactured AISI 304 stainless steel. J. Alloy. Comp. 803, 364–370 (2019).

    CAS  Article  Google Scholar 

  79. 79.

    Du, D. et al. Influence of build orientation on microstructure, mechanical and corrosion behavior of Inconel 718 processed by selective laser melting. Mater. Sci. Eng. A 760, 469–480 (2019).

    CAS  Article  Google Scholar 

  80. 80.

    Wang, L. Y., Zhou, Z. J., Li, C. P., Chen, G. F. & Zhang, G. P. Comparative investigation of small punch creep resistance of Inconel 718 fabricated by selective laser melting. Mater. Sci. Eng. A 745, 31–38 (2019).

    CAS  Article  Google Scholar 

  81. 81.

    Dinda, G., Dasgupta, A. & Mazumder, J. Texture control during laser deposition of nickel-based superalloy. Scr. Mater. 67, 503–506 (2012).

    CAS  Article  Google Scholar 

  82. 82.

    Wei, H. L., Mazumder, J. & DebRoy, T. Evolution of solidification texture during additive manufacturing. Sci. Rep. 5, 16446 (2015).

    CAS  Article  Google Scholar 

  83. 83.

    Carlton, H. D., Klein, K. D. & Elmer, J. W. Evolution of microstructure and mechanical properties of selective laser melted Ti–5Al–5V–5Mo–3Cr after heat treatments. Sci. Technol. Weld. Join. 24, 465–473 (2019).

    CAS  Article  Google Scholar 

  84. 84.

    Thijs, L., Kempen, K., Kruth, J. P. & Van Humbeeck, J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 61, 1809–1819 (2013).

    CAS  Article  Google Scholar 

  85. 85.

    Garibaldi, M., Ashcroft, I., Simonelli, M. & Hague, R. Metallurgy of high-silicon steel parts produced using selective laser melting. Acta Mater. 110, 207–216 (2016).

    CAS  Article  Google Scholar 

  86. 86.

    Antonysamy, A. A., Meyer, J. & Prangnell, P. B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting. Mater. Charact. 84, 153–168 (2013).

    CAS  Article  Google Scholar 

  87. 87.

    Ocelík, V., Furár, I. & De Hosson, J. T. M. Microstructure and properties of laser clad coatings studied by orientation imaging microscopy. Acta Mater. 58, 6763–6772 (2010).

    Article  CAS  Google Scholar 

  88. 88.

    Bhattacharya, S., Dinda, G. P., Dasgupta, A. K. & Mazumder, J. A comparative study of microstructure and mechanical behavior of CO2 and diode laser deposited Cu–38Ni alloy. J. Mater. Sci. 49, 2415–2429 (2014).

    CAS  Article  Google Scholar 

  89. 89.

    Dinda, G. P., Dasgupta, A. K. & Mazumder, J. Evolution of microstructure in laser deposited Al–11.28%Si alloy. Surf. Coat. Tech. 206, 2152–2160 (2012).

    CAS  Article  Google Scholar 

  90. 90.

    Kontis, P. et al. Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys. Acta Mater. 177, 209–221 (2019).

    CAS  Article  Google Scholar 

  91. 91.

    Dryburgh, P. et al. Spatially resolved acoustic spectroscopy for integrity assessment in wire–arc additive manufacturing. Addit. Manuf. 28, 236–251 (2019).

    CAS  Google Scholar 

  92. 92.

    Patel, R. et al. Imaging material texture of as-deposited selective laser melted parts using spatially resolved acoustic spectroscopy. Appl. Sci. 8, 1991 (2018).

    Article  CAS  Google Scholar 

  93. 93.

    Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K. & Clare, A. T. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater. Des. 95, 431–445 (2016).

    CAS  Article  Google Scholar 

  94. 94.

    Koepf, J. A., Gotterbarm, M. R., Markl, M. & Körner, C. 3D multi-layer grain structure simulation of powder bed fusion additive manufacturing. Acta Mater. 152, 119–126 (2018).

    CAS  Article  Google Scholar 

  95. 95.

    Coeck, S., Bisht, M., Plas, J. & Verbist, F. Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring data. Addit. Manuf. 25, 347–356 (2019).

    CAS  Google Scholar 

  96. 96.

    Mukherjee, T., Zuback, J. S., Zhang, W. & DebRoy, T. Residual stresses and distortion in additively manufactured compositionally graded and dissimilar joints. Comp. Mater. Sci. 143, 325–337 (2018).

    CAS  Article  Google Scholar 

  97. 97.

    Cunningham, R. et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging. Science 363, 849–852 (2019).

    CAS  Article  Google Scholar 

  98. 98.

    Martin, A. A. et al. Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nat. Commun. 10, 1987 (2019).

    Article  CAS  Google Scholar 

  99. 99.

    Ge, J. et al. Wire-arc additive manufacturing H13 part: 3D pore distribution, microstructural evolution, and mechanical performances. J. Alloy. Comp. 783, 145–155 (2019).

    CAS  Article  Google Scholar 

  100. 100.

    Yu, W., Sing, S. L., Chua, C. K. & Tian, X. Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting. J. Alloy. Comp. 792, 574–581 (2019).

    CAS  Article  Google Scholar 

  101. 101.

    Leung, C. L. A. et al. The effect of powder oxidation on defect formation in laser additive manufacturing. Acta Mater. 166, 294–305 (2019).

    CAS  Article  Google Scholar 

  102. 102.

    Tillmann, W. et al. Hot isostatic pressing of IN718 components manufactured by selective laser melting. Addit. Manuf. 13, 93–102 (2017).

    CAS  Google Scholar 

  103. 103.

    AlMangour, B., Grzesiak, D. & Yang, J.-M. Selective laser melting of TiB2/H13 steel nanocomposites: influence of hot isostatic pressing post-treatment. J. Mater. Process. Technol. 244, 344–353 (2017).

    CAS  Article  Google Scholar 

  104. 104.

    Khomutov, M. et al. Effect of hot isostatic pressing on structure and properties of intermetallic NiAl–Cr–Mo alloy produced by selective laser melting. Intermetallics 120, 106766 (2020).

    CAS  Article  Google Scholar 

  105. 105.

    Kou, S. A criterion for cracking during solidification. Acta Mater. 88, 366–374 (2015).

    CAS  Article  Google Scholar 

  106. 106.

    Withers, P. J. & Bhadeshia, H. Residual stress. Part 2—nature and origins. Mater. Sci. Technol. 17, 366–375 (2001).

    CAS  Article  Google Scholar 

  107. 107.

    Levkulich, N. C. et al. The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti–6Al–4V. Addit. Manuf. 28, 475–484 (2019).

    CAS  Google Scholar 

  108. 108.

    Onuike, B. & Bandyopadhyay, A. Additive manufacturing of Inconel 718–Ti6Al4V bimetallic structures. Addit. Manuf. 22, 844–851 (2018).

    CAS  Google Scholar 

  109. 109.

    Li, C., Liu, Z. Y., Fang, X. Y. & Guo, Y. B. Residual stress in metal additive manufacturing. Procedia CIRP 71, 348–353 (2018).

    Article  Google Scholar 

  110. 110.

    Lu, X. et al. Residual stress and distortion of rectangular and S-shaped Ti–6Al–4V parts by directed energy deposition: modelling and experimental calibration. Addit. Manuf. 26, 166–179 (2019).

    CAS  Google Scholar 

  111. 111.

    Tyagi, P. et al. Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing. Addit. Manuf. 25, 32–38 (2019).

    CAS  Google Scholar 

  112. 112.

    Bhaduri, D. et al. Evaluation of surface/interface quality, microstructure and mechanical properties of hybrid additive–subtractive aluminium parts. CIRP Ann. 68, 237–240 (2019).

    Article  Google Scholar 

  113. 113.

    Yang, T. et al. The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting. J. Mater. Process. Technol. 266, 26–36 (2019).

    CAS  Article  Google Scholar 

  114. 114.

    Chen, Z., Wu, X., Tomus, D. & Davies, C. H. J. Surface roughness of selective laser melted Ti–6Al–4V alloy components. Addit. Manuf. 21, 91–103 (2018).

    CAS  Google Scholar 

  115. 115.

    Derekar, K. S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater. Sci. Technol. 34, 895–916 (2018).

    CAS  Article  Google Scholar 

  116. 116.

    Ali, U. et al. Identification and characterization of spatter particles and their effect on surface roughness, density and mechanical response of 17-4 PH stainless steel laser powder-bed fusion parts. Mater. Sci. Eng. A 756, 98–107 (2019).

    CAS  Article  Google Scholar 

  117. 117.

    Cao, L. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int. J. Heat Mass Transf. 141, 1036–1048 (2019).

    Article  Google Scholar 

  118. 118.

    Manvatkar, V., De, A. & DebRoy, T. Heat transfer and material flow during laser assisted multi-layer additive manufacturing. J. Appl. Phys. 116, 124905 (2014).

    Article  CAS  Google Scholar 

  119. 119.

    Mukherjee, T., Wei, H. L., De, A. & DebRoy, T. Heat and fluid flow in additive manufacturing — Part I: modeling of powder bed fusion. Comput. Mater. Sci. 150, 304–313 (2018).

    CAS  Article  Google Scholar 

  120. 120.

    Ou, W., Mukherjee, T., Knapp, G. L., Wei, Y. & DebRoy, T. Fusion zone geometries, cooling rates and solidification parameters during wire arc additive manufacturing. Int. J. Heat Mass Transf. 127, 1084–1094 (2018).

    CAS  Article  Google Scholar 

  121. 121.

    Mukherjee, T., Wei, H. L., De, A. & DebRoy, T. Heat and fluid flow in additive manufacturing — Part II: powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys. Comput. Mater. Sci. 150, 369–380 (2018).

    CAS  Article  Google Scholar 

  122. 122.

    Knapp, G. L. et al. Building blocks for a digital twin of additive manufacturing. Acta Mater. 135, 390–399 (2017).

    CAS  Article  Google Scholar 

  123. 123.

    Mukherjee, T. & DebRoy, T. Printability of 316 stainless steel. Sci. Technol. Weld. Join. 24, 412–419 (2019).

    CAS  Article  Google Scholar 

  124. 124.

    Mukherjee, T., Zuback, J. S., De, A. & DebRoy, T. Printability of alloys for additive manufacturing. Sci. Rep. 6, 19717 (2016).

    CAS  Article  Google Scholar 

  125. 125.

    Tan, J. H. K., Sing, S. L. & Yeong, W. Y. Microstructure modelling for metallic additive manufacturing: a review. Virtual Phys. Prototyp. 15, 87–105 (2020).

    Article  Google Scholar 

  126. 126.

    Bhadeshia, H., Svensson, L.-E. & Gretoft, B. A model for the development of microstructure in low-alloy steel (Fe–Mn–Si–C) weld deposits. Acta Metall. 33, 1271–1283 (1985).

    CAS  Article  Google Scholar 

  127. 127.

    Li, X. & Tan, W. Numerical investigation of effects of nucleation mechanisms on grain structure in metal additive manufacturing. Comput. Mater. Sci. 153, 159–169 (2018).

    CAS  Article  Google Scholar 

  128. 128.

    Nie, P., Ojo, O. A. & Li, Z. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Mater. 77, 85–95 (2014).

    CAS  Article  Google Scholar 

  129. 129.

    Yang, Y., Jamshidinia, M., Boulware, P. & Kelly, S. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process. Comput. Mech. 61, 599–615 (2018).

    Article  Google Scholar 

  130. 130.

    Baykasoglu, C., Akyildiz, O., Candemir, D., Yang, Q. & To, A. C. Predicting microstructure evolution during directed energy deposition additive manufacturing of Ti–6Al–4V. J. Manuf. Sci. Eng. 140, 051003 (2018).

    Article  Google Scholar 

  131. 131.

    Sui, S. et al. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing. Acta Mater. 164, 413–427 (2019).

    CAS  Article  Google Scholar 

  132. 132.

    Qin, R. & Bhadeshia, H. Phase field method. Mater. Sci. Technol. 26, 803–811 (2010).

    Article  CAS  Google Scholar 

  133. 133.

    Zheng, W. et al. Phase field investigation of dendrite growth in the welding pool of aluminum alloy 2A14 under transient conditions. Comput. Mater. Sci. 82, 525–530 (2014).

    CAS  Article  Google Scholar 

  134. 134.

    Keller, T. et al. Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys. Acta Mater. 139, 244–253 (2017).

    CAS  Article  Google Scholar 

  135. 135.

    Shi, R. et al. Integrated simulation framework for additively manufactured Ti–6Al–4V: melt pool dynamics, microstructure, solid-state phase transformation, and microelastic response. JOM 71, 3640–3655 (2019).

    CAS  Article  Google Scholar 

  136. 136.

    Lian, Y., Lin, S., Yan, W., Liu, W. K. & Wagner, G. J. A parallelized three-dimensional cellular automaton model for grain growth during additive manufacturing. Comput. Mech. 61, 543–558 (2018).

    Article  Google Scholar 

  137. 137.

    Rodgers, T. M., Madison, J. D. & Tikare, V. Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Comput. Mater. Sci. 135, 78–89 (2017).

    Article  Google Scholar 

  138. 138.

    Mukherjee, T., Zhang, W. & DebRoy, T. An improved prediction of residual stresses and distortion in additive manufacturing. Comput. Mater. Sci. 126, 360–372 (2017).

    CAS  Article  Google Scholar 

  139. 139.

    Mukherjee, T., Manvatkar, V., De, A. & DebRoy, T. Mitigation of thermal distortion during additive manufacturing. Scr. Mater. 127, 79–83 (2017).

    CAS  Article  Google Scholar 

  140. 140.

    Wang, Z., Yan, W., Liu, W. K. & Liu, M. Powder-scale multi-physics modeling of multi-layer multi-track selective laser melting with sharp interface capturing method. Comput. Mech. 63, 649–661 (2019).

    Article  Google Scholar 

  141. 141.

    Lee, Y. & Zhang, W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit. Manuf. 12, 178–188 (2016).

    CAS  Google Scholar 

  142. 142.

    Tang, C., Tan, J. L. & Wong, C. H. A numerical investigation on the physical mechanisms of single track defects in selective laser melting. Int. J. Heat Mass Transf. 126, 957–968 (2018).

    CAS  Article  Google Scholar 

  143. 143.

    Khairallah, S. A., Anderson, A. T., Rubenchik, A. & King, W. E. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36–45 (2016).

    CAS  Article  Google Scholar 

  144. 144.

    Knoll, H. et al. Combinatorial alloy design by laser additive manufacturing. Steel Res. Int. 88, 1600416 (2017).

    Article  CAS  Google Scholar 

  145. 145.

    Schwendner, K. I., Banerjee, R., Collins, P. C., Brice, C. A. & Fraser, H. L. Direct laser deposition of alloys from elemental powder blends. Scr. Mater. 45, 1123–1129 (2001).

    CAS  Article  Google Scholar 

  146. 146.

    Aversa, A. et al. New aluminum alloys specifically designed for laser powder bed fusion: a review. Materials 12, 1007 (2019).

    CAS  Article  Google Scholar 

  147. 147.

    Mitchell, T. M. Machine Learning (McGraw-Hill, 1997).

  148. 148.

    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    CAS  Article  Google Scholar 

  149. 149.

    Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

    CAS  Article  Google Scholar 

  150. 150.

    Zhang, B., Jaiswal, P., Rai, R., Guerrier, P. & Baggs, G. Convolutional neural network-based inspection of metal additive manufacturing parts. Rapid Prototyp. J. 25, 530–540 (2019).

    Article  Google Scholar 

  151. 151.

    Aoyagi, K., Wang, H., Sudo, H. & Chiba, A. Simple method to construct process maps for additive manufacturing using a support vector machine. Addit. Manuf. 27, 353–362 (2019).

    CAS  Google Scholar 

  152. 152.

    Wang, Y., Blache, R., Zheng, P. & Xu, X. A knowledge management system to support design for additive manufacturing using Bayesian networks. J. Mech. Des. 140, 051701 (2018).

    Article  Google Scholar 

  153. 153.

    Wu, D., Wei, Y. & Terpenny, J. Predictive modelling of surface roughness in fused deposition modelling using data fusion. Int. J. Prod. Res. 57, 3992–4006 (2019).

    Article  Google Scholar 

  154. 154.

    Zhao, Z., Guo, Y., Bai, L., Wang, K. & Han, J. Quality monitoring in wire-arc additive manufacturing based on cooperative awareness of spectrum and vision. Optik 181, 351–360 (2019).

    CAS  Article  Google Scholar 

  155. 155.

    Du, Y., Mukherjee, T. & DebRoy, T. Conditions for void formation in friction stir welding from machine learning. NPJ Comput. Mater. 5, 68 (2019).

    Article  CAS  Google Scholar 

  156. 156.

    Xiong, J., Zhang, G., Hu, J. & Wu, L. Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. J. Intell. Manuf. 25, 157–163 (2014).

    Article  Google Scholar 

  157. 157.

    Ding, D. et al. Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part. Comput. Aid. Des. 73, 66–75 (2016).

    Article  Google Scholar 

  158. 158.

    Kappes, B., Moorthy, S., Drake, D., Geerlings, H. & Stebner, A. in Proc. 9th Int. Symp. on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications (eds Ott, E., Liu, X., Andersson, J., Bi, Z., Bockenstedt, K., Dempster, I., Groh, J., Heck, K., Jablonski, P., Kaplan, M., Nagahama, D. & Sudbrack, C.) 595–610 (Springer, 2018).

  159. 159.

    Zhang, W., Mehta, A., Desai, P. S. & Higgs, C. in Int. Solid Freeform Fabrication Symp. (eds Bourell, D. L., Crawford, R. H., Seepersad, C. C., Beaman, J. J. & Fish, S.) 1235–1249 (The University of Texas, Austin, 2017).

  160. 160.

    Rosa, B., Mognol, P. & Hascoët, J.-Y. Modelling and optimization of laser polishing of additive laser manufacturing surfaces. Rapid Prototyp. J. 22, 956–964 (2016).

    Article  Google Scholar 

  161. 161.

    Imani, F., Chen, R., Diewald, E., Reutzel, E. & Yang, H. Deep learning of variant geometry in layerwise imaging profiles for additive manufacturing quality control. J. Manuf. Sci. Eng. 141, 111001 (2019).

    Article  Google Scholar 

  162. 162.

    DeCost, B. L., Jain, H., Rollett, A. D. & Holm, E. A. Computer vision and machine learning for autonomous characterization of AM powder feedstocks. JOM 69, 456–465 (2017).

    Article  Google Scholar 

  163. 163.

    Amini, M. & Chang, S. I. MLCPM: a process monitoring framework for 3D metal printing in industrial scale. Comput. Ind. Eng. 124, 322–330 (2018).

    Article  Google Scholar 

  164. 164.

    Mazumder, J. Design for metallic additive manufacturing machine with capability for “Certify as You Build”. Procedia CIRP 36, 187–192 (2015).

    Article  Google Scholar 

  165. 165.

    Wu, Q., Mukherjee, T., Liu, C., Lu, J. & DebRoy, T. Residual stresses and distortion in the patterned printing of titanium and nickel alloys. Addit. Manuf. 29, 100808 (2019).

    CAS  Google Scholar 

  166. 166.

    Yuan, B. et al. Machine-learning-based monitoring of laser powder bed fusion. Adv. Mater. Technol. 3, 1800136 (2018).

    Article  CAS  Google Scholar 

  167. 167.

    Caiazzo, F. & Caggiano, A. Laser direct metal deposition of 2024 Al alloy: trace geometry prediction via machine learning. Materials 11, 444 (2018).

    Article  CAS  Google Scholar 

  168. 168.

    Kamath, C. Data mining and statistical inference in selective laser melting. Int. J. Adv. Manuf. Technol. 86, 1659–1677 (2016).

    Article  Google Scholar 

  169. 169.

    Zhu, Z., Anwer, N., Huang, Q. & Mathieu, L. Machine learning in tolerancing for additive manufacturing. CIRP Ann. 67, 157–160 (2018).

    Article  Google Scholar 

  170. 170.

    Wan, H., Chen, G., Li, C., Qi, X. & Zhang, G. Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens. J. Mater. Sci. Technol. 35, 1137–1146 (2019).

    Article  Google Scholar 

  171. 171.

    Popova, E. et al. Process-structure linkages using a data science approach: application to simulated additive manufacturing data. Integr. Mater. Manuf. Innov. 6, 54–68 (2017).

    Article  Google Scholar 

  172. 172.

    Collins, P. C. et al. Progress toward an integration of process–structure–property–performance models for “three-dimensional (3-D) printing” of titanium alloys. JOM 66, 1299–1309 (2014).

    CAS  Article  Google Scholar 

  173. 173.

    Khanzadeh, M., Chowdhury, S., Marufuzzaman, M., Tschopp, M. A. & Bian, L. Porosity prediction: supervised-learning of thermal history for direct laser deposition. J. Manuf. Syst. 47, 69–82 (2018).

    Article  Google Scholar 

  174. 174.

    Scime, L. & Beuth, J. A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Addit. Manuf. 24, 273–286 (2018).

    Google Scholar 

  175. 175.

    Scime, L. & Beuth, J. Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit. Manuf. 19, 114–126 (2018).

    Google Scholar 

  176. 176.

    Bharadwaj, R. Artificial intelligence applications in additive manufacturing (3D printing). Emerj — Artificial Intelligence Research and Insight https://emerj.com/ai-sector-overviews/artificial-intelligence-applications-additive-manufacturing-3d-printing/ (2019).

  177. 177.

    Ali, A. B. Deep learning for advanced additive manufacturing. Medium https://medium.com/@amynebenali/deep-learning-for-advanced-additive-manufacturing-65157e7a1b06 (2018).

  178. 178.

    Du, Y., Mukherjee, T., Mitra, P. & DebRoy, T. Machine learning based hierarchy of causative variables for tool failure in friction stir welding. Acta Mater. 192, 67–77 (2020).

    CAS  Article  Google Scholar 

  179. 179.

    Tofail, S. A. et al. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today 21, 22–37 (2018).

    Article  Google Scholar 

  180. 180.

    Johnson, L. et al. Assessing printability maps in additive manufacturing of metal alloys. Acta Mater. 176, 199–210 (2019).

    CAS  Article  Google Scholar 

  181. 181.

    Huang, D. J. & Li, H. in Proc. 3rd Int. Conf. Progress Addit. Manuf. (eds, Chua, C. K, Yeong, W. Y., Tan, M. J., Liu, E. & Tor, S. B.) (Pro-AM, 2018).

  182. 182.

    Li, B.-h, Hou, B.-c, Yu, W.-t, Lu, X.-b & Yang, C.-w. Applications of artificial intelligence in intelligent manufacturing: a review. Front. Inf. Technol. Electron. Eng. 18, 86–96 (2017).

    Article  Google Scholar 

  183. 183.

    Qi, Q. & Tao, F. Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access. 6, 3585–3593 (2018).

    Article  Google Scholar 

  184. 184.

    Wohlers, T., Caffrey, T., Campbell, R. I., Diegel, O. & Kowen, J. Wohlers Report 2018: 3D Printing and Additive Manufacturing State of the Industry; Annual Worldwide Progress Report (Wohlers Associates, 2018).

  185. 185.

    Mukherjee, T. & DebRoy, T. Mitigation of lack of fusion defects in powder bed fusion additive manufacturing. J. Manuf. Process. 36, 442–449 (2018).

    Article  Google Scholar 

  186. 186.

    3DscienceValley. Digital Alloys’ guide to metal additive manufacturing — Part 13, Joule Printing™ vs wire DED. Digital Alloys https://www.digitalalloys.com/blog/joule-printing-vs-wire-ded (2019).

  187. 187.

    Donoghue, J. et al. The effectiveness of combining rolling deformation with wire–arc additive manufacture on β-grain refinement and texture modification in Ti–6Al–4V. Mater. Charact. 114, 103–114 (2016).

    CAS  Article  Google Scholar 

  188. 188.

    Majeed, M., Khan, H. & Rasheed, I. Finite element analysis of melt pool thermal characteristics with passing laser in SLM process. Optik 194, 163068 (2019).

    CAS  Article  Google Scholar 

  189. 189.

    Khan, K. & De, A. Modelling of selective laser melting process with adaptive remeshing. Sci. Technol. Weld. Join. 24, 391–400 (2019).

    Article  Google Scholar 

  190. 190.

    Huang, Y. et al. Rapid prediction of real-time thermal characteristics, solidification parameters and microstructure in laser directed energy deposition (powder-fed additive manufacturing). J. Mater. Process. Technol. 274, 116286 (2019).

    CAS  Article  Google Scholar 

  191. 191.

    Bai, X. et al. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. Int. J. Heat Mass Transf. 124, 504–516 (2018).

    Article  Google Scholar 

  192. 192.

    He, X. & Mazumder, J. Transport phenomena during direct metal deposition. J. Appl. Phys. 101, 053113 (2007).

    Article  CAS  Google Scholar 

  193. 193.

    Klassen, A., Scharowsky, T. & Körner, C. Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. J. Phys. D. Appl. Phys. 47, 275303 (2014).

    Article  CAS  Google Scholar 

  194. 194.

    Rausch, A. M., Markl, M. & Körner, C. Predictive simulation of process windows for powder bed fusion additive manufacturing: influence of the powder size distribution. Comput. Math. Appl. 78, 2351–2359 (2019).

    Article  Google Scholar 

  195. 195.

    Lindwall, G. et al. Simulation of TTT curves for additively manufactured Inconel 625. Metall. Mater. Trans. A 50, 457–467 (2019).

    CAS  Article  Google Scholar 

  196. 196.

    Rai, A., Markl, M. & Körner, C. A coupled cellular automaton–lattice Boltzmann model for grain structure simulation during additive manufacturing. Comput. Mater. Sci. 124, 37–48 (2016).

    Article  Google Scholar 

  197. 197.

    Zhang, Z. et al. Numerical methods for microstructural evolutions in laser additive manufacturing. Comput. Math. Appl. 78, 2296–2307 (2019).

    Article  Google Scholar 

  198. 198.

    Wang, Y., Shi, J. & Liu, Y. Competitive grain growth and dendrite morphology evolution in selective laser melting of Inconel 718 superalloy. J. Cryst. Growth 521, 15–29 (2019).

    CAS  Article  Google Scholar 

  199. 199.

    Kumara, C. et al. Predicting the microstructural evolution of electron beam melting of alloy 718 with phase-field modeling. Metall. Mater. Trans. A 50, 2527–2537 (2019).

    CAS  Article  Google Scholar 

  200. 200.

    Schänzel, M., Shakirov, D., Ilin, A. & Ploshikhin, V. Coupled thermo-mechanical process simulation method for selective laser melting considering phase transformation steels. Comput. Math. Appl. 78, 2230–2246 (2019).

    Article  Google Scholar 

  201. 201.

    Denlinger, E. R., Gouge, M., Irwin, J. & Michaleris, P. Thermomechanical model development and in situ experimental validation of the laser powder-bed fusion process. Addit. Manuf. 16, 73–80 (2017).

    Google Scholar 

  202. 202.

    Caggiano, A. et al. Machine learning-based image processing for on-line defect recognition in additive manufacturing. CIRP Ann. 68, 451–454 (2019).

    Article  Google Scholar 

  203. 203.

    Chowdhury, S. & Anand, S. in ASME 2016 11th Int. Manuf. Sci. Eng. Conf. https://doi.org/10.1115/MSEC2016-8784 (American Society of Mechanical Engineers Digital Collection, 2016).

  204. 204.

    Dastjerdi, A. A., Movahhedy, M. R. & Akbari, J. Optimization of process parameters for reducing warpage in selected laser sintering of polymer parts. Addit. Manuf. 18, 285–294 (2017).

    Google Scholar 

  205. 205.

    Shevchik, S. A., Kenel, C., Leinenbach, C. & Wasmer, K. Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks. Addit. Manuf. 21, 598–604 (2018).

    Google Scholar 

  206. 206.

    Shevchik, S. A., Masinelli, G. G., Kenel, C., Leinenbach, C. & Wasmer, K. Deep learning for in situ and real-time quality monitoring in additive manufacturing using acoustic emission. IEEE Trans. Industr. Inform. 15, 5194–5203 (2019).

    Article  Google Scholar 

  207. 207.

    Wei, Q., Akrotirianakis, I., Dasgupta, A. & Chakraborty, A. Learn to learn: application to topology optimization. Smart Sust. Manuf. Syst. 2, 250–260 (2018).

    Google Scholar 

  208. 208.

    Barrios, J. M. & Romero, P. E. Decision tree methods for predicting surface roughness in fused deposition modeling parts. Materials 12, 2574 (2019).

    Article  Google Scholar 

  209. 209.

    Tootooni, M. S. et al. Classifying the dimensional variation in additive manufactured parts from laser-scanned three-dimensional point cloud data using machine learning approaches. J. Manuf. Sci. Eng. 139, 091005 (2017).

    Article  Google Scholar 

  210. 210.

    He, H., Yang, Y. & Pan, Y. Machine learning for continuous liquid interface production: printing speed modelling. J. Manuf. Syst. 50, 236–246 (2019).

    Article  Google Scholar 

  211. 211.

    Gordon, E. R. et al. in Sustainable Design and Manufacturing 2016 (eds Setchi, R., Howlett, R. J., Liu Y. & Theobald, P.) 423–434 (Springer International, 2016).

  212. 212.

    Gobert, C., Reutzel, E. W., Petrich, J., Nassar, A. R. & Phoha, S. Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Addit. Manuf. 21, 517–528 (2018).

    Google Scholar 

  213. 213.

    Song, L., Huang, W., Han, X. & Mazumder, J. Real-time composition monitoring using support vector regression of laser-induced plasma for laser additive manufacturing. IEEE Trans. Ind. Electron. 64, 633–642 (2016).

    Article  Google Scholar 

  214. 214.

    Zhang, J., Wang, P. & Gao, R. X. Deep learning-based tensile strength prediction in fused deposition modeling. Comput. Ind. 107, 11–21 (2019).

    Article  Google Scholar 

  215. 215.

    Chen, Z., Zong, X., Shi, J. & Zhang, X. Online monitoring based on temperature field features and prediction model for selective laser sintering process. Appl. Sci. 8, 2383 (2018).

    CAS  Article  Google Scholar 

  216. 216.

    Aminzadeh, M. & Kurfess, T. R. Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images. J. Intell. Manuf. 30, 2505–2523 (2019).

    Article  Google Scholar 

  217. 217.

    Bacha, A., Sabry, A. H. & Benhra, J. Fault diagnosis in the field of additive manufacturing (3D printing) using Bayesian networks. Int. J. Online Eng. 15 (2019).

  218. 218.

    Li, J., Jin, R. & Hang, Z. Y. Integration of physically-based and data-driven approaches for thermal field prediction in additive manufacturing. Mater. Des. 139, 473–485 (2018).

    Article  Google Scholar 

  219. 219.

    Tapia, G., Elwany, A. & Sang, H. Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit. Manuf. 12, 282–290 (2016).

    CAS  Google Scholar 

  220. 220.

    Aboutaleb, A. M. et al. Accelerated process optimization for laser-based additive manufacturing by leveraging similar prior studies. IISE Trans. 49, 31–44 (2017).

    Article  Google Scholar 

  221. 221.

    Tapia, G., Khairallah, S., Matthews, M., King, W. E. & Elwany, A. Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel. Int. J. Adv. Manuf. Technol. 94, 3591–3603 (2018).

    Article  Google Scholar 

  222. 222.

    Martínez, J., Song, H., Dumas, J. & Lefebvre, S. Orthotropic k-nearest foams for additive manufacturing. ACM Trans. Graph. 36, 121 (2017).

    Article  Google Scholar 

  223. 223.

    Mutiargo, B., Garbout, A. & Malcolm, A. A. in International Forum on Medical Imaging in Asia 2019 110500L (International Society for Optics and Photonics, 2019).

  224. 224.

    Wu, M., Phoha, V. V., Moon, Y. B. & Belman, A. K. in ASME 2016 Int. Mech. Eng. Congress Exposition https://doi.org/10.1115/IMECE201667641 (American Society of Mechanical Engineers Digital Collection, 2016).

  225. 225.

    Qin, J., Liu, Y. & Grosvenor, R. A framework of energy consumption modelling for additive manufacturing using Internet of Things. Procedia CIRP 63, 307–312 (2017).

    Article  Google Scholar 

  226. 226.

    Alwoimi, B. M. Development of a Framework for Design for Additive Manufacturing (North Carolina A&T State University, 2018).

  227. 227.

    Chou, R., Ghosh, A., Chou, S., Paliwal, M. & Brochu, M. Microstructure and mechanical properties of Al10SiMg fabricated by pulsed laser powder bed fusion. Mater. Sci. Eng. A 689, 53–62 (2017).

    CAS  Article  Google Scholar 

  228. 228.

    Baturynska, I., Semeniuta, O. & Wang, K. in Advanced Manufacturing and Automation VIII. IWAMA 2018. Lecture Notes in Electrical Engineering Vol 484 (eds Wang, K., Wang, Y., Strandhagen, J. & Yu, T.) 245–252 (Springer, 2019).

  229. 229.

    Paul, A. et al. A real-time iterative machine learning approach for temperature profile prediction in additive manufacturing processes in 2019 IEEE International Conference on Data Scienceand Advanced Analytics (DSAA) (eds, Singh, L., De Veaux, R., Karypis, G., Bonchi,F. & Hill, J.) 541–550 (IEEE, Piscataway, 2019).

  230. 230.

    DeCost, B. L. & Holm, E. A. Characterizing powder materials using keypoint-based computer vision methods. Comput. Mater. Sci. 126, 438–445 (2017).

    Article  Google Scholar 

  231. 231.

    Mitchell, J. A. An Approach to Upscaling SPPARKS Generated Synthetic Microstructures of Additively Manufactured Metals (Sandia National Lab., 2019).

  232. 232.

    Wang, Y., Lin, Y., Zhong, R. Y. & Xu, X. IoT-enabled cloud-based additive manufacturing platform to support rapid product development. Int. J. Prod. Res. 57, 3975–3991 (2019).

    Article  Google Scholar 

  233. 233.

    Koeppe, A., Padilla, C. A. H., Voshage, M., Schleifenbaum, J. H. & Markert, B. Efficient numerical modeling of 3D-printed lattice-cell structures using neural networks. Manuf. Lett. 15, 147–150 (2018).

    Article  Google Scholar 

  234. 234.

    Kunkel, M. H., Gebhardt, A., Mpofu, K. & Kallweit, S. Quality assurance in metal powder bed fusion via deep-learning-based image classification. Rapid Prototyp. J. (2019).

  235. 235.

    Francis, J. & Bian, L. Deep learning for distortion prediction in laser-based additive manufacturing using big data. Manuf. Lett. 20, 10–14 (2019).

    Article  Google Scholar 

  236. 236.

    Mozaffar, M. et al. Data-driven prediction of the high-dimensional thermal history in directed energy deposition processes via recurrent neural networks. Manuf. Lett. 18, 35–39 (2018).

    Article  Google Scholar 

  237. 237.

    Gonzalez-Val, C., Pallas, A., Panadeiro, V. & Rodriguez, A. A convolutional approach to quality monitoring for laser manufacturing. J. Intell. Manuf. 31, 789–795 (2020).

    Article  Google Scholar 

  238. 238.

    Petrich, J., Gobert, C., Phoha, S., Nassar, A. R. & Reutzel, E. W. in Proc. 27th Int. Solid Freeform Fabrication Symp. (eds Bourell, D. L., Crawford, R. H., Seepersad, C. C., Beaman, J. J. & Fish, S.) 1660–1674 (The University of Texas, Austin, 2017).

  239. 239.

    Murphy, C., Meisel, N., Simpson, T. & McComb, C. in Solid Freeform Fabrication 2018: Proc. 29th Annu. Int. Solid Freeform Fabrication Symp. — An Addit. Manuf. Conf. (eds Bourell, D. L, Beaman, J. J., Crawford, R. H., Fish, S. & Seepersad, C., C.) 1363–1381 (The University of Texas, Austin, 2018).

  240. 240.

    Lu, X. et al. Open-source wire and arc additive manufacturing system: formability, microstructures, and mechanical properties. Int. J. Adv. Manuf. Technol. 93, 2145–2154 (2017).

    Article  Google Scholar 

  241. 241.

    Gong, X. & Chou, K. Phase-field modeling of microstructure evolution in electron beam additive manufacturing. JOM 67, 1176–1182 (2015).

    CAS  Article  Google Scholar 

  242. 242.

    Tan, J. L., Tang, C. & Wong, C. H. A computational study on porosity evolution in parts produced by selective laser melting. Metall. Mater. Trans. A 49, 3663–3673 (2018).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors contributed in researching previous works, discussions of the contents of the manuscript, writing portions of the text and reviewing and editing the manuscript.

Corresponding author

Correspondence to T. DebRoy.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

DebRoy, T., Mukherjee, T., Wei, H.L. et al. Metallurgy, mechanistic models and machine learning in metal printing. Nat Rev Mater 6, 48–68 (2021). https://doi.org/10.1038/s41578-020-00236-1

Download citation

Further reading

Search

Quick links