Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors

Abstract

The active sites of heterogeneous catalysts can be difficult to identify and understand, and, hence, the introduction of active sites into catalysts to tailor their function is challenging. During the past two decades, scaling relationships have been established for important heterogeneous catalytic reactions. More specifically, a physical or chemical property of the reaction system, termed as a reactivity descriptor, scales with another property often in a linear manner, which can describe and/or predict the catalytic performance. In this Review, we describe scaling relationships and reactivity descriptors for heterogeneous catalysis, including electronic descriptors represented by d-band theory, structural descriptors, which can be directly applied to catalyst design, and, ultimately, universal descriptors. The prediction of trends in catalytic performance using reactivity descriptors can enable the rational design of catalysts and the efficient screening of high-throughput catalysts. Finally, we outline methods to break scaling relationships and, hence, to break the constraint that active sites pose on the catalytic performance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A timeline of the development of reactivity descriptors and scaling relationships in heterogeneous catalysis.
Fig. 2: Typical reactivity descriptors in metallic catalysts.
Fig. 3: Typical reactivity descriptors of metal-oxide catalysts.
Fig. 4: Preliminary attempts to explore universal descriptors.
Fig. 5: Methods to break the scaling relationships in heterogeneous catalysis.

Change history

  • 09 March 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    CAS  Google Scholar 

  2. 2.

    Nørskov, J. K. et al. Universality in heterogeneous catalysis. J. Catal. 209, 275–278 (2002).

    Google Scholar 

  3. 3.

    Mizuno, N. & Misono, M. Heterogeneous catalysis. Chem. Rev. 98, 199–218 (1998).

    CAS  Google Scholar 

  4. 4.

    Hammer, B. & Nørskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    CAS  Google Scholar 

  5. 5.

    Nørskov, J. K. Electronic is factors in catalysis. Prog. Surf. Sci. 38, 103–144 (1991).

    Google Scholar 

  6. 6.

    Nilsson, A. et al. The electronic structure effect in heterogeneous catalysis. Catal. Lett. 100, 111–114 (2005).

    CAS  Google Scholar 

  7. 7.

    Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Google Scholar 

  8. 8.

    Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

    CAS  Google Scholar 

  9. 9.

    Montemore, M. M. & Medlin, J. W. Scaling relations between adsorption energies for computational screening and design of catalysts. Catal. Sci. Technol. 4, 3748–3761 (2014).

    CAS  Google Scholar 

  10. 10.

    Greeley, J. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu. Rev. Chem. Biomol. Eng. 7, 605–635 (2016).

    Google Scholar 

  11. 11.

    Hammer, B., Morikawa, Y. & Norskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76, 2141–2144 (1996).

    CAS  Google Scholar 

  12. 12.

    Nørskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl Acad. Sci. USA 108, 937–943 (2011).

    Google Scholar 

  13. 13.

    Hammer, B. & Nørskov, J. K. Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. 45, 71–129 (2000).

    CAS  Google Scholar 

  14. 14.

    Kitchin, J. R., Nørskov, J. K., Barteau, M. A. & Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 120, 10240–10246 (2004).

    CAS  Google Scholar 

  15. 15.

    Greeley, J. & Mavrikakis, M. Alloy catalysts designed from first principles. Nat. Mater. 3, 810–815 (2004).

    CAS  Google Scholar 

  16. 16.

    Kitchin, J. R., Nørskov, J. K., Barteau, M. A. & Chen, J.G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 93, 156801 (2004).

    CAS  Google Scholar 

  17. 17.

    Cai, W. et al. Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Sci. Adv. 4, eaar5418 (2018).

    CAS  Google Scholar 

  18. 18.

    Xin, H., Vojvodic, A., Voss, J., Nørskov, J. K. & Abild-Pedersen, F. Effects of d-band shape on the surface reactivity of transition-metal alloys. Phys. Rev. B 89, 15114 (2014).

    Google Scholar 

  19. 19.

    Visikovskiy, A. et al. Electronic d-band properties of gold nanoclusters grown on amorphous carbon. Phys. Rev. B 83, 165428 (2011).

    Google Scholar 

  20. 20.

    Logadottir, A. et al. The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 197, 229–231 (2001).

    CAS  Google Scholar 

  21. 21.

    Wang, S. et al. Universal Brønsted–Evans–Polanyi relations for C–C, C–O, C–N, N–O, N–N, and O–O dissociation reactions. Catal. Lett. 141, 370–373 (2010).

    Google Scholar 

  22. 22.

    Nørskov, J. K. et al. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 37, 2163–2171 (2008).

    Google Scholar 

  23. 23.

    Michaelides, A. et al. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. J. Am. Chem. Soc. 125, 3704–3705 (2003).

    CAS  Google Scholar 

  24. 24.

    Bligaard, T. et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004).

    CAS  Google Scholar 

  25. 25.

    Loffreda, D., Delbecq, F., Vigne, F. & Sautet, P. Fast prediction of selectivity in heterogeneous catalysis from extended Brønsted–Evans–Polanyi relations: a theoretical insight. Angew. Chem. Int. Ed. 48, 8978–8980 (2009).

    CAS  Google Scholar 

  26. 26.

    Vojvodic, A. et al. On the behavior of Brønsted–Evans–Polanyi relations for transition metal oxides. J. Chem. Phys. 134, 244509 (2011).

    CAS  Google Scholar 

  27. 27.

    Wang, S. et al. Universal transition state scaling relations for (de)hydrogenation over transition metals. Phys. Chem. Chem. Phys. 13, 20760–20765 (2011).

    CAS  Google Scholar 

  28. 28.

    Viñes, F., Vojvodic, A., Abild-Pedersen, F. & Illas, F. Brønsted–Evans–Polanyi relationship for transition metal carbide and transition metal oxide surfaces. J. Phys. Chem. C 117, 4168–4171 (2013).

    Google Scholar 

  29. 29.

    Yang, B., Burch, R., Hardacre, C., Headdock, G. & Hu, P. Understanding the optimal adsorption energies for catalyst screening in heterogeneous catalysis. ACS Catal. 4, 182–186 (2013).

    Google Scholar 

  30. 30.

    Fajín, J. L. C., Cordeiro, M. N. D. S., Illas, F. & Gomes, J. R. B. Generalized Brønsted–Evans–Polanyi relationships and descriptors for O–H bond cleavage of organic molecules on transition metal surfaces. J. Catal. 313, 24–33 (2014).

    Google Scholar 

  31. 31.

    Kitchin, J. R. Machine learning in catalysis. Nat. Catal. 1, 230–232 (2018).

    Google Scholar 

  32. 32.

    Marti, S. et al. Computational design of biological catalysts. Chem. Soc. Rev. 37, 2634–2643 (2008).

    CAS  Google Scholar 

  33. 33.

    Behler, J. Constructing high-dimensional neural network potentials: a tutorial review. Int. J. Quantum Chem. 115, 1032–1050 (2015).

    CAS  Google Scholar 

  34. 34.

    Brockherde, F. et al. Bypassing the Kohn–Sham equations with machine learning. Nat. Commun. 8, 872 (2017).

    Google Scholar 

  35. 35.

    Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine learning in materials informatics: recent applications and prospects. npj Comput. Mater. 3, 54 (2017).

    Google Scholar 

  36. 36.

    Klanner, C. et al. The development of descriptors for solids: teaching “catalytic intuition” to a computer. Angew. Chem. Int. Ed. 116, 5461–5463 (2004).

    Google Scholar 

  37. 37.

    Back, S. et al. Convolutional neural network of atomic surface structures to predict binding energies for high-throughput screening of catalysts. J. Phys. Chem. Lett. 10, 4401–4408 (2019).

    CAS  Google Scholar 

  38. 38.

    Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    CAS  Google Scholar 

  39. 39.

    Calle-Vallejo, F., Martínez, J. I., García-Lastra, J. M., Rossmeisl, J. & Koper, M. T. Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces. Phys. Rev. Lett. 108, 116103 (2012).

    CAS  Google Scholar 

  40. 40.

    Stamenkovic, V. et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 118, 2963–2967 (2006).

    Google Scholar 

  41. 41.

    Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).

    Google Scholar 

  42. 42.

    Zhou, Y. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018).

    CAS  Google Scholar 

  43. 43.

    Sabatier, P. Hydrogénations et déshydrogénations par catalyse. Ber. Dtsch. Chem. Ges. 44, 1984–2001 (1911).

    CAS  Google Scholar 

  44. 44.

    Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    CAS  Google Scholar 

  45. 45.

    Laursen, A. B. et al. Electrochemical hydrogen evolution: Sabatier’s principle and the volcano plot. J. Chem. Educ. 89, 1595–1599 (2012).

    CAS  Google Scholar 

  46. 46.

    Huang, B. et al. A CO adsorption site change induced by copper substitution in a ruthenium catalyst for enhanced CO oxidation activity. Angew. Chem. Int. Ed. 131, 2252–2257 (2019).

    Google Scholar 

  47. 47.

    Kattel, S., Ramirez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296–1299 (2017).

    CAS  Google Scholar 

  48. 48.

    Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).

    CAS  Google Scholar 

  49. 49.

    Lima, F. H. B. et al. Catalytic activity−d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J. Phys. Chem. C 111, 404–410 (2007).

    CAS  Google Scholar 

  50. 50.

    Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

    CAS  Google Scholar 

  51. 51.

    Zhang, Y.-J., Sethuraman, V., Michalsky, R. & Peterson, A. A. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 4, 3742–3748 (2014).

    CAS  Google Scholar 

  52. 52.

    Cave, E. R. et al. Trends in the catalytic activity of hydrogen evolution during CO2 electroreduction on transition metals. ACS Catal. 8, 3035–3040 (2018).

    CAS  Google Scholar 

  53. 53.

    Greeley, J., Nørskov, J. K., Kibler, L. A., El-Aziz, A. M. & Kolb, D. M. Hydrogen evolution over bimetallic systems: understanding the trends. ChemPhysChem 7, 1032–1035 (2006).

    CAS  Google Scholar 

  54. 54.

    Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).

    CAS  Google Scholar 

  55. 55.

    Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

    CAS  Google Scholar 

  56. 56.

    Wang, W., Wang, S., Ma, X. & Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727 (2011).

    CAS  Google Scholar 

  57. 57.

    Studt, F. et al. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014).

    CAS  Google Scholar 

  58. 58.

    Jia, C. et al. Catalytic chemistry predicted by a charge polarization descriptor: synergistic O2 activation and CO oxidation by Au–Cu bimetallic clusters on TiO2(101). ACS Appl. Mater. Interfaces 11, 9629–9640 (2019).

    CAS  Google Scholar 

  59. 59.

    Dickens, C. F., Montoya, J. H., Kulkarni, A. R., Bajdich, M. & Nørskov, J. K. An electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfaces. Surf. Sci. 681, 122–129 (2019).

    CAS  Google Scholar 

  60. 60.

    Kirlin, P. S. & Gates, B. C. Activation of the C–C bond provides a molecular basis for structure sensitivity in metal catalysis. Nature 325, 38–40 (1987).

    CAS  Google Scholar 

  61. 61.

    Carberry, J. Structure sensitivity in heterogeneous catalysis: activity and yield/selectivity. J. Catal. 114, 277–283 (1988).

    CAS  Google Scholar 

  62. 62.

    Haruta, M. When gold is not noble: catalysis by nanoparticles. Chem. Rec. 3, 75–87 (2003).

    CAS  Google Scholar 

  63. 63.

    Gustafson, J. et al. Sensitivity of catalysis to surface structure: the example of CO oxidation on Rh under realistic conditions. Phys. Rev. B 78, 045423 (2008).

    Google Scholar 

  64. 64.

    Calle-Vallejo, F., Loffreda, D., Koper, M. T. & Sautet, P. Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    CAS  Google Scholar 

  65. 65.

    Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).

    CAS  Google Scholar 

  66. 66.

    Zhu, W. et al. Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance. Angew. Chem. Int. Ed. 57, 11544–11548 (2018).

    CAS  Google Scholar 

  67. 67.

    Choksi, T. S., Roling, L. T., Streibel, V. & Abild-Pedersen, F. Predicting adsorption properties of catalytic descriptors on bimetallic nanoalloys with site-specific precision. J. Phys. Chem. Lett. 10, 1852–1859 (2019).

    CAS  Google Scholar 

  68. 68.

    Jinnouchi, R. & Asahi, R. Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm. J. Phys. Chem. Lett. 8, 4279–4283 (2017).

    CAS  Google Scholar 

  69. 69.

    Ma, X. & Xin, H. Orbitalwise coordination number for predicting adsorption properties of metal nanocatalysts. Phys. Rev. Lett. 118, 036101 (2017).

    Google Scholar 

  70. 70.

    Zhao, Z. J., Mu, R., Wang, X. & Gong, J. Fast prediction of CO binding energy via the local structure effect on PtCu alloy surfaces. Langmuir 33, 8700–8706 (2017).

    CAS  Google Scholar 

  71. 71.

    Xu, H., Cheng, D., Cao, D. & Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1, 339–348 (2018).

    CAS  Google Scholar 

  72. 72.

    Fung, V., Tao, F. F. & Jiang, D. E. General structure–reactivity relationship for oxygen on transition-metal oxides. J. Phys. Chem. Lett. 8, 2206–2211 (2017).

    CAS  Google Scholar 

  73. 73.

    Strmcnik, D., Lopes, P. P., Genorio, B., Stamenkovic,V. R. & Markovic, N. M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016).

    CAS  Google Scholar 

  74. 74.

    Chattot, R. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018).

    CAS  Google Scholar 

  75. 75.

    Liu, S. et al. Adsorption preference determines segregation direction: a shortcut to more realistic surface models of alloy catalysts. ACS Catal. 9, 5011–5018 (2019).

    CAS  Google Scholar 

  76. 76.

    Ulissi, Z. W. et al. Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal. 7, 6600–6608 (2017).

    CAS  Google Scholar 

  77. 77.

    Medford, A. J., Kunz, M. R., Ewing, S. M., Borders, T. & Fushimi, R. Extracting knowledge from data through catalysis informatics. ACS Catal. 8, 7403–7429 (2018).

    CAS  Google Scholar 

  78. 78.

    Jinnouchi, R., Hirata, H. & Asahi, R. Extrapolating energetics on clusters and single-crystal surfaces to nanoparticles by machine-learning scheme. J. Phys. Chem. C 121, 26397–26405 (2017).

    Google Scholar 

  79. 79.

    Li, Z., Wang, S., Chin, W. S., Achenie, L. E. & Xin, H. High-throughput screening of bimetallic catalysts enabled by machine learning. J. Mater. Chem. A 5, 24131–24138 (2017).

    CAS  Google Scholar 

  80. 80.

    Schlexer Lamoureux, P. et al. Machine learning for computational heterogeneous catalysis. ChemCatChem 11, 3581–3601 (2019).

    CAS  Google Scholar 

  81. 81.

    Wang, H. et al. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015).

    CAS  Google Scholar 

  82. 82.

    Li, Y. H. et al. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat. Commun. 6, 8064 (2015).

    CAS  Google Scholar 

  83. 83.

    Liu, X. et al. Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10, 402–434 (2017).

    CAS  Google Scholar 

  84. 84.

    Han, B. et al. Iron-based perovskites for catalyzing oxygen evolution reaction. J. Phys. Chem. C 122, 8445–8454 (2018).

    CAS  Google Scholar 

  85. 85.

    Vojvodic, A. & Nørskov, J. K. Optimizing perovskites for the water-splitting reaction. Science 334, 1355–1356 (2011).

    CAS  Google Scholar 

  86. 86.

    Wang, J. et al. Water splitting with an enhanced bifunctional double perovskite. ACS Catal. 8, 364–371 (2017).

    Google Scholar 

  87. 87.

    Han, X., Yu, Y., Huang, Y., Liu, D. & Zhang, B. Photogenerated carriers boost water splitting activity over transition-metal/semiconducting metal oxide bifunctional electrocatalysts. ACS Catal. 7, 6464–6470 (2017).

    CAS  Google Scholar 

  88. 88.

    Kim, N. I. et al. Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions. Sci. Adv. 4, eaap9360 (2018).

    Google Scholar 

  89. 89.

    Jung, S., McCrory, C. C. L., Ferrer, I. M., Peters, J. C. & Jaramillo, T. F. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J. Mater. Chem. A 4, 3068–3076 (2016).

    CAS  Google Scholar 

  90. 90.

    Liu, X. et al. High-performance non-spinel cobalt–manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc–air batteries. Nano Energy 20, 315–325 (2016).

    CAS  Google Scholar 

  91. 91.

    Hwang, J. et al. Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017).

    CAS  Google Scholar 

  92. 92.

    Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).

    CAS  Google Scholar 

  93. 93.

    Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    CAS  Google Scholar 

  94. 94.

    Wei, C. et al. Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29, 1606800 (2017).

    Google Scholar 

  95. 95.

    Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011).

    CAS  Google Scholar 

  96. 96.

    Choi, S. O., Penninger, M., Kim, C. H., Schneider, W. F. & Thompson, L. T. Experimental and computational investigation of effect of Sr on NO oxidation and oxygen exchange for La1–xSrxCoO3 perovskite catalysts. ACS Catal. 3, 2719–2728 (2013).

    CAS  Google Scholar 

  97. 97.

    Haverkort, M. W. et al. Spin state transition in LaCoO3 studied using soft X-ray absorption spectroscopy and magnetic circular dichroism. Phys. Rev. Lett. 97, 176405 (2006).

    CAS  Google Scholar 

  98. 98.

    Lee, Y.-L., Kleis, J., Rossmeisl, J., Shao-Horn, Y. & Morgan, D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966–3970 (2011).

    CAS  Google Scholar 

  99. 99.

    Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013).

    Google Scholar 

  100. 100.

    Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    CAS  Google Scholar 

  101. 101.

    Getsoian, A. B., Zhai, Z. & Bell, A. T. Band-gap energy as a descriptor of catalytic activity for propene oxidation over mixed metal oxide catalysts. J. Am. Chem. Soc. 136, 13684–13697 (2014).

    CAS  Google Scholar 

  102. 102.

    Deml, A. M., Stevanović, V., Muhich, C. L., Musgrave, C. B. & O’Hayre, R. Oxide enthalpy of formation and band gap energy as accurate descriptors of oxygen vacancy formation energetics. Energy Environ. Sci. 7, 1996–2004 (2014).

    CAS  Google Scholar 

  103. 103.

    Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016).

    CAS  Google Scholar 

  104. 104.

    Calle-Vallejo, F. et al. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chem. Sci. 4, 1245–1249 (2013).

    CAS  Google Scholar 

  105. 105.

    Fernandez, E. M. et al. Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew. Chem. Int. Ed. 47, 4683–4686 (2008).

    CAS  Google Scholar 

  106. 106.

    Calle-Vallejo, F., Martínez, J. I., García-Lastra, J. M., Sautet, P. & Loffreda, D. Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers. Angew. Chem. Int. Ed. 53, 8316–8319 (2014).

    CAS  Google Scholar 

  107. 107.

    Tao, H. B. et al. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J. Am. Chem. Soc. 138, 9978–9985 (2016).

    CAS  Google Scholar 

  108. 108.

    Wu, D., Dong, C., Zhan, H. & Du, X. W. Bond-energy-integrated descriptor for oxygen electrocatalysis of transition metal oxides. J. Phys. Chem. Lett. 9, 3387–3391 (2018).

    CAS  Google Scholar 

  109. 109.

    Zhang, L. et al. Guiding principles for designing highly efficient metal-free carbon catalysts. Adv. Mater. 31, 1805252 (2019).

    Google Scholar 

  110. 110.

    Zhao, Z., Li, M., Zhang, L., Dai, L. & Xia, Z. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal–air batteries. Adv. Mater. 27, 6834–6840 (2015).

    CAS  Google Scholar 

  111. 111.

    Zhao, Z., Lin, C.-Y., Tang, J. & Xia, Z. Catalytic mechanism and design principles for heteroatom-doped graphene catalysts in dye-sensitized solar cells. Nano Energy 49, 193–199 (2018).

    CAS  Google Scholar 

  112. 112.

    Zhang, J., Zhao, Z., Xia, Z. & Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444–452 (2015).

    CAS  Google Scholar 

  113. 113.

    Zheng, Y. et al. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014).

    Google Scholar 

  114. 114.

    Lin, C. Y., Zhang, L., Zhao, Z. & Xia, Z. Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production. Adv. Mater. 29, 1606635 (2017).

    Google Scholar 

  115. 115.

    Sinthika, S., Waghmare, U. V. & Thapa, R. Structural and electronic descriptors of catalytic activity of graphene-based materials: first-principles theoretical analysis. Small 14, 1703609 (2018).

    Google Scholar 

  116. 116.

    Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  117. 117.

    Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    CAS  Google Scholar 

  118. 118.

    Latimer, A. A. et al. Understanding trends in C–H bond activation in heterogeneous catalysis. Nat. Mater. 16, 225–229 (2017).

    CAS  Google Scholar 

  119. 119.

    Fields, M. et al. Scaling relations for adsorption energies on doped molybdenum phosphide surfaces. ACS Catal. 7, 2528–2534 (2017).

    CAS  Google Scholar 

  120. 120.

    Wexler, R. B., Martirez, J. M. P. & Rappe, A. M. Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning. J. Am. Chem. Soc. 140, 4678–4683 (2018).

    CAS  Google Scholar 

  121. 121.

    Zhuang, H., Tkalych, A. J. & Carter, E. A. Surface energy as a descriptor of catalytic activity. J. Phys. Chem. C 120, 23698–23706 (2016).

    CAS  Google Scholar 

  122. 122.

    Tsai, C., Chan, K., Nørskov, J. K. & Abild-Pedersen, F. Understanding the reactivity of layered transition-metal sulfides: a single electronic descriptor for structure and adsorption. J. Phys. Chem. Lett. 5, 3884–3889 (2014).

    CAS  Google Scholar 

  123. 123.

    Fečík, M., Plessow, P. N. & Studt, F. Simple scheme to predict transition-state energies of dehydration reactions in zeolites with relevance to biomass conversion. J. Phys. Chem. C 122, 23062–23067 (2018).

    Google Scholar 

  124. 124.

    Göltl, F., Müller, P., Uchupalanun, P., Sautet, P. & Hermans, I. Developing a descriptor-based approach for CO and NO adsorption strength to transition metal sites in zeolites. Chem. Mater. 29, 6434–6444 (2017).

    Google Scholar 

  125. 125.

    Wang, C. M., Brogaard, R. Y., Weckhuysen, B. M., Nørskov, J. K. & Studt, F. Reactivity descriptor in solid acid catalysis: predicting turnover frequencies for propene methylation in zeotypes. J. Phys. Chem. Lett. 5, 1516–1521 (2014).

    CAS  Google Scholar 

  126. 126.

    Brogaard, R. Y., Wang, C.-M. & Studt, F. Methanol–alkene reactions in zeotype acid catalysts: insights from a descriptor-based approach and microkinetic modeling. ACS Catal. 4, 4504–4509 (2014).

    CAS  Google Scholar 

  127. 127.

    Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    CAS  Google Scholar 

  128. 128.

    Marcinkowski, M. D. et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 10, 325–332 (2018).

    CAS  Google Scholar 

  129. 129.

    Zhang, Z. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017).

    CAS  Google Scholar 

  130. 130.

    Mehta, P. et al. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 1, 269–275 (2018).

    Google Scholar 

  131. 131.

    Sun, G. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 9, 4454 (2018).

    Google Scholar 

  132. 132.

    Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

    CAS  Google Scholar 

  133. 133.

    Liu, J. et al. Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 138, 6396–6399 (2016).

    CAS  Google Scholar 

  134. 134.

    Lucci, F. R. et al. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit. Nat. Commun. 6, 8550 (2015).

    Google Scholar 

  135. 135.

    Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    CAS  Google Scholar 

  136. 136.

    Bruix, A. et al. Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. Angew. Chem. Int. Ed. 53, 10525–10530 (2014).

    CAS  Google Scholar 

  137. 137.

    Wei, H. et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5, 5634 (2014).

    CAS  Google Scholar 

  138. 138.

    Zhang, S. et al. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 6, 7938 (2015).

    CAS  Google Scholar 

  139. 139.

    Cheng, M.-J., Clark, E. L., Pham, H. H., Bell, A. T. & Head-Gordon, M. Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons. ACS Catal. 6, 7769–7777 (2016).

    CAS  Google Scholar 

  140. 140.

    Lin, L. et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 14, 354–361 (2019).

    CAS  Google Scholar 

  141. 141.

    Liu, D. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4, 512–518 (2019).

    CAS  Google Scholar 

  142. 142.

    Zhao, Y. et al. Simultaneous activation of CH4 and CO2 for concerted C–C coupling at oxide–oxide interfaces. ACS Catal. 9, 3187–3197 (2019).

    CAS  Google Scholar 

  143. 143.

    Wang, P. et al. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 9, 64–70 (2017).

    CAS  Google Scholar 

  144. 144.

    Wang, Y. Y., Chen, D. J., Allison, T. C. & Tong, Y. J. Effect of surface-bound sulfide on oxygen reduction reaction on Pt: breaking the scaling relationship and mechanistic insights. J. Chem. Phys. 150, 041728 (2019).

    Google Scholar 

  145. 145.

    Khorshidi, A., Violet, J., Hashemi, J. & Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 1, 263–268 (2018).

    Google Scholar 

  146. 146.

    Darby, M. T., Stamatakis, M., Michaelides, A. & Sykes, E. C. H. Lonely atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys. J. Phys. Chem. Lett. 9, 5636–5646 (2018).

    CAS  Google Scholar 

  147. 147.

    Ye, S. et al. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 12, 1000–1007 (2019).

    CAS  Google Scholar 

  148. 148.

    Therrien, A. J. et al. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1, 192–198 (2018).

    CAS  Google Scholar 

  149. 149.

    Jeong, H. et al. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 140, 9558–9565 (2018).

    CAS  Google Scholar 

  150. 150.

    Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018).

    CAS  Google Scholar 

  151. 151.

    Greiner, M. T. et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018).

    CAS  Google Scholar 

  152. 152.

    Thirumalai, H. & Kitchin, J. R. Investigating the reactivity of single atom alloys using density functional theory. Top. Catal. 61, 462–474 (2018).

    CAS  Google Scholar 

  153. 153.

    Hülsey, M. J. et al. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat. Commun. 10, 1330 (2019).

    Google Scholar 

  154. 154.

    Pegis, M. L., Wise, C. F., Koronkiewicz, B. & Mayer, J. M. Identifying and breaking scaling relations in molecular catalysis of electrochemical reactions. J. Am. Chem. Soc. 139, 11000–11003 (2017).

    CAS  Google Scholar 

  155. 155.

    Stegelmann, C., Andreasen, A. & Campbell, C. T. Degree of rate control: how much the energies of intermediates and transition states control rates. J. Am. Chem. Soc. 131, 8077–8082 (2009).

    CAS  Google Scholar 

  156. 156.

    Wolcott, C. A., Medford, A. J., Studt, F. & Campbell, C. T. Degree of rate control approach to computational catalyst screening. J. Catal. 330, 197–207 (2015).

    CAS  Google Scholar 

  157. 157.

    Yao, K., Herr, J. E., Toth, D. W., McKintyre, R. & Parkhill, J. The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics. Chem. Sci. 9, 2261–2269 (2018).

    CAS  Google Scholar 

  158. 158.

    Kolb, B., Lentz, L. C. & Kolpak, A. M. Discovering charge density functionals and structure-property relationships with PROPhet: a general framework for coupling machine learning and first-principles methods. Sci. Rep. 7, 1192 (2017).

    Google Scholar 

  159. 159.

    Khorshidi, A. & Peterson, A. A. Amp: a modular approach to machine learning in atomistic simulations. Comput. Phys. Commun. 207, 310–324 (2016).

    CAS  Google Scholar 

  160. 160.

    Artrith, N. & Urban, A. An implementation of artificial neural-network potentials for atomistic materials simulations: performance for TiO2. Comput. Mater. Sci. 114, 135–150 (2016).

    CAS  Google Scholar 

  161. 161.

    Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011).

    Google Scholar 

  162. 162.

    Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Google Scholar 

Download references

Acknowledgements

Z.-J.Z., S.L, S.Z., D.C. and J.G. gratefully acknowledge the National Key R&D Program of China (2016YFB0600901) and the National Natural Science Foundation of China (nos. 21525626 and 21761132023). J.G. gratefully acknowledges the Program of Introducing Talents of Discipline to Universities (B06006) for financial support. F.S. gratefully acknowledges financial support from Deutsche Forschungsgemeinschaft (STU 703/1-1).

Author information

Affiliations

Authors

Contributions

J.G., Z.-J.Z., S.Z., S.L. and D.C. wrote the manuscript. All the authors participated in the revising of the manuscript.

Corresponding author

Correspondence to Jinlong Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Liu, S., Zha, S. et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat Rev Mater 4, 792–804 (2019). https://doi.org/10.1038/s41578-019-0152-x

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing