Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

2D materials as an emerging platform for nanopore-based power generation

Abstract

Osmotic power generation, the extraction of power from mixing salt solutions of different concentrations, can provide an efficient power source for both nanoscale and industrial-level applications. Power is generated using ion-selective channels or pores of nanometric dimensions in synthetic membrane materials. 2D materials such as graphene and MoS2 provide energy extraction efficiencies that are several orders of magnitude higher than those of more established bulky membranes. In this Review, we survey the current state of the art in power generation with both 2D materials and solid-state devices. We discuss the current understanding of the processes underlying power generation in boron nitride nanotubes and 2D materials, as well as the available fabrication methods and their impact on power generation. Finally, we overview future directions of research, which include increasing efficiency, upscaling single pores to porous membranes and solving other issues related to the potential practical application of 2D materials for osmotic power generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Typical solid-state nanopore devices.
Fig. 2: Power densities per membrane area for different materials.
Fig. 3: Different materials used for nanopore power generation.
Fig. 4: Scaling properties of 2D nanoporous membranes.
Fig. 5: Nanopore drilling techniques.
Fig. 6: Osmotic conductance per single pore as a function of pore size for different materials.
Fig. 7: Influence of pore density and size.

Similar content being viewed by others

References

  1. Shafiee, S. & Topal, E. When will fossil fuel reserves be diminished? Energy Policy 37, 181–189 (2009).

    Google Scholar 

  2. Mohr, S. H., Wang, J., Ellem, G., Ward, J. & Giurco, D. Projection of world fossil fuels by country. Fuel 141, 120–135 (2015).

    CAS  Google Scholar 

  3. Kwok, T. F., Yeung, C. H. & Xu, Y. Swaying public opinion on nuclear energy: a field experiment in Hong Kong. Util. Policy 46, 48–57 (2017).

    Google Scholar 

  4. Soni, A. Out of sight, out of mind? Investigating the longitudinal impact of the Fukushima nuclear accident on public opinion in the United States. Energy Policy 122, 169–175 (2018).

    Google Scholar 

  5. Bisconti, A. S. Changing public attitudes toward nuclear energy. Prog. Nucl. Energy 102, 103–113 (2018).

    Google Scholar 

  6. Khaligh, A. & Onar, O. Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems (CRC Press, 2009).

  7. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    CAS  Google Scholar 

  8. Daw, R., Finkelstein, J. & Helmer, M. Chemistry and energy. Nature 488, 293 (2012).

    CAS  Google Scholar 

  9. Chen, J. et al. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9, 3324–3331 (2015).

    CAS  Google Scholar 

  10. Khan, U. & Kim, S. W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano 10, 6429–6432 (2016).

    CAS  Google Scholar 

  11. Wang, Z. L., Jiang, T. & Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017).

    CAS  Google Scholar 

  12. Pattle, R. E. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature 174, 660 (1954).

    CAS  Google Scholar 

  13. Yip, N. Y. & Elimelech, M. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. Environ. Sci. Technol. 46, 5230–5239 (2012).

    CAS  Google Scholar 

  14. Isaacs, J. D. & Seymour, R. J. The ocean as a power resource. Int. J. Environ. Stud. 4, 201–205 (1973).

    Google Scholar 

  15. Schaetzle, O. & Buisman, C. J. N. Salinity gradient energy: current state and new trends. Engineering 1, 164–166 (2015).

    Google Scholar 

  16. Alvarez-Silva, O. A., Osorio, A. F. & Winter, C. Practical global salinity gradient energy potential. Renew. Sustain. Energy Rev. 60, 1387–1395 (2016).

    Google Scholar 

  17. Tomabechi, K. Energy resources in the future. Energies 3, 686–695 (2010).

    Google Scholar 

  18. Ali, A., Tufa, R. A., Macedonio, F., Curcio, E. & Drioli, E. Membrane technology in renewable-energy-driven desalination. Renew. Sustain. Energy Rev. 81, 1–21 (2018).

    CAS  Google Scholar 

  19. Klaysom, C., Cath, T. Y., Depuydt, T. & Vankelecom, I. F. J. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Chem. Soc. Rev. 42, 6959–6989 (2013).

    CAS  Google Scholar 

  20. Kurihara, M. & Hanakawa, M. Mega-ton Water System: Japanese national research and development project on seawater desalination and wastewater reclamation. Desalination 308, 131–137 (2013).

    CAS  Google Scholar 

  21. Drioli, E., Ali, A., Quist-Jensen, C. A. & Macedonio, F. Water, energy and minerals from the sea. Presented at the 2016 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM16) (2016).

  22. Tedesco, M. et al. Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines. J. Membr. Sci. 500, 33–45 (2016).

    CAS  Google Scholar 

  23. Tedesco, M., Cipollina, A., Tamburini, A. & Micale, G. Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines. J. Membr. Sci. 522, 226–236 (2017).

    CAS  Google Scholar 

  24. Straub, A. P., Deshmukh, A. & Elimelech, M. Pressure-retarded osmosis for power generation from salinity gradients: is it viable? Energy Environ. Sci. 9, 31–48 (2016).

    CAS  Google Scholar 

  25. Chou, S. et al. Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density. J. Membr. Sci. 389, 25–33 (2012).

    CAS  Google Scholar 

  26. Lee, K. P., Arnot, T. C. & Mattia, D. A review of reverse osmosis membrane materials for desalination —development to date and future potential. J. Membr. Sci. 370, 1–22 (2011).

    CAS  Google Scholar 

  27. Nijmeijer, K. & Metz, S. Chapter 5 — salinity gradient energy. Sustain. Sci. Eng. 2, 95–139 (2010).

    Google Scholar 

  28. Gerstandt, K., Peinemann, K. V., Skilhagen, S. E., Thorsen, T. & Holt, T. Membrane processes in energy supply for an osmotic power plant. Desalination 224, 64–70 (2008).

    CAS  Google Scholar 

  29. Skilhagen, S. E. Osmotic power — a new, renewable energy source. Desalin. Water Treat. 15, 271–278 (2010).

    Google Scholar 

  30. Hong, J. G. et al. Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: a review. J. Membr. Sci. 486, 71–88 (2015).

    CAS  Google Scholar 

  31. Mei, Y. & Tang, C. Y. Recent developments and future perspectives of reverse electrodialysis technology: a review. Desalination 425, 156–174 (2017).

    Google Scholar 

  32. Vanoppen, M., Criel, E., Walpot, G., Vermaas, D. A. & Verliefde, A. Assisted reverse electrodialysis—principles, mechanisms, and potential. Clean Water 1, 9 (2018).

    Google Scholar 

  33. Post, J. W. et al. Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis. J. Membr. Sci. 288, 218–230 (2007).

    CAS  Google Scholar 

  34. Turek, M. & Bandura, B. Renewable energy by reverse electrodialysis. Desalination 205, 67–74 (2007).

    CAS  Google Scholar 

  35. Post, J. W., Hamelers, H. V. M. & Buisman, C. J. N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. Environ. Sci. Technol. 42, 5785–5790 (2008).

    CAS  Google Scholar 

  36. Veerman, J., Saakes, M., Metz, S. J. & Harmsen, G. J. Electrical power from sea and river water by reverse electrodialysis: A first step from the laboratory to a real power plant. Environ. Sci. Technol. 44, 9207–9212 (2010).

    CAS  Google Scholar 

  37. Cipollina, A. & Micale, G. Sustainable Energy from Salinity Gradients (Woodhead Publishing, 2016).

  38. Yip, N. Y., Brogioli, D., Hamelers, H. V. M. & Nijmeijer, K. Salinity gradients for sustainable energy: primer, progress, and prospects. Environ. Sci. Technol. 50, 12072–12094 (2016).

    CAS  Google Scholar 

  39. Cohen-Tanugi, D. & Grossman, J. C. Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation. Desalination 366, 59–70 (2015).

    CAS  Google Scholar 

  40. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 366, 59–70 (2016).

    Google Scholar 

  41. Liu, Y. & Chen, X. Mechanical properties of nanoporous graphene membrane. J. Appl. Phys. 115, 034303 (2014).

    Google Scholar 

  42. Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).

    CAS  Google Scholar 

  43. Ramanathan, A. A., Aqra, M. W. & Al-Rawajfeh, A. E. Recent advances in 2D nanopores for desalination. Environ. Chem. Lett. 16, 1217–1231 (2018).

    CAS  Google Scholar 

  44. Gao, J., Feng, Y., Guo, W. & Jiang, L. Nanofluidics in two-dimensional layered materials: Inspirations from nature. Chem. Soc. Rev. 46, 5400–5424 (2017).

    CAS  Google Scholar 

  45. Wang, L. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).

    CAS  Google Scholar 

  46. De Vreede, L. J., Van Den Berg, A. & Eijkel, J. C. T. Nanopore fabrication by heating Au particles on ceramic substrates. Nano Lett. 15, 727–731 (2015).

    Google Scholar 

  47. Tong, H. D. et al. Silicon nitride nanosieve membrane. Nano Lett. 4, 283–287 (2004).

    CAS  Google Scholar 

  48. Dai, J., Singh, J. & Yamamoto, N. Nonbrittle nanopore deformation of anodic aluminum oxide membranes. J. Am. Ceram. Soc. 101, 2170–2180 (2018).

    CAS  Google Scholar 

  49. Lee, S. W., Kim, H. J. & Kim, D. K. Power generation from concentration gradient by reverse electrodialysis in dense silica membranes for microfluidic and nanofluidic systems. Energies 9, 49 (2016).

    Google Scholar 

  50. Kim, D. K., Duan, C., Chen, Y. F. & Majumdar, A. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluidics 9, 1215–1224 (2010).

    CAS  Google Scholar 

  51. Kim, J., Kim, S. J. & Kim, D. K. Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores. Energy 51, 413–421 (2013).

    CAS  Google Scholar 

  52. Kang, B. D., Kim, H. J., Lee, M. G. & Kim, D. K. Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores. Energy 86, 525–538 (2015).

    CAS  Google Scholar 

  53. Kim, S. & Lee, Y. M. Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci. 43, 1–32 (2015).

    CAS  Google Scholar 

  54. Chang, C.-R. et al. Energy conversion from salinity gradient using microchip with Nafion membrane. Int. J. Mod. Phys. Conf. Ser. 42, 1660183 (2016).

    Google Scholar 

  55. Catalano, J. & Bentien, A. Influence of temperature on the electrokinetic properties and power generation efficiency of Nafion 117 membranes. J. Power Sources 262, 192–200 (2014).

    CAS  Google Scholar 

  56. Guo, W. et al. Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 20, 1339–1344 (2010).

    CAS  Google Scholar 

  57. Hsu, J. P., Lin, S. C., Lin, C. Y. & Tseng, S. Power generation by a pH-regulated conical nanopore through reverse electrodialysis. J. Power Sources 366, 169–177 (2017).

    CAS  Google Scholar 

  58. Zhang, Z. et al. Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 139, 8905–8914 (2017).

    CAS  Google Scholar 

  59. Zhu, X. et al. Unique ion rectification in hypersaline environment: a high-performance and sustainable power generator system. Sci. Adv. 4, eaau1665 (2018).

    CAS  Google Scholar 

  60. Kang, D. Y. et al. Single-walled aluminosilicate nanotube/poly(vinyl alcohol) nanocomposite membranes. ACS Appl. Mater. Interfaces 4, 965–976 (2012).

    CAS  Google Scholar 

  61. Chan, W., Chen, H., Surapathi, A. & Taylor, M. Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. ACS Nano 7, 5308–5319 (2013).

    CAS  Google Scholar 

  62. Li, R., Jiang, J., Liu, Q., Xie, Z. & Zhai, J. Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy 53, 643–649 (2018).

    CAS  Google Scholar 

  63. Dumée, L. et al. Carbon nanotube based composite membranes for water desalination by membrane distillation. Desalin. Water Treat. 17, 72–79 (2010).

    Google Scholar 

  64. Dong, Y. et al. Stable superhydrophobic ceramic-based carbon nanotube composite desalination membranes. Nano Lett. 18, 5514–5521 (2018).

    CAS  Google Scholar 

  65. Boo, C. & Elimelech, M. Thermal desalination membranes: carbon nanotubes keep up the heat. Nat. Nanotechnol. 12, 501–503 (2017).

    CAS  Google Scholar 

  66. Vatanpour, V. et al. A thin film nanocomposite reverse osmosis membrane containing amine-functionalized carbon nanotubes. Sep. Purif. Technol. 184, 135–143 (2017).

    CAS  Google Scholar 

  67. Goh, P. S., Ismail, A. F. & Ng, B. C. Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308, 2–14 (2013).

    CAS  Google Scholar 

  68. Zhao, S. et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016).

    CAS  Google Scholar 

  69. Ryder, M. R. & Tan, J.-C. Nanoporous metal organic framework materials for smart applications. Mater. Sci. Technol. 30, 1598–1612 (2014).

    CAS  Google Scholar 

  70. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    CAS  Google Scholar 

  71. Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012).

    CAS  Google Scholar 

  72. Mahmoud, K. A., Mansoor, B., Mansour, A. & Khraisheh, M. Functional graphene nanosheets: the next generation membranes for water desalination. Desalination 356, 208–225 (2015).

    CAS  Google Scholar 

  73. Hegab, H. M. & Zou, L. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J. Membr. Sci. 484, 95–106 (2015).

    CAS  Google Scholar 

  74. Mi, B. Graphene oxide membranes for ionic and molecular sieving. Science 343, 740–742 (2014).

    CAS  Google Scholar 

  75. Aghigh, A. et al. Recent advances in utilization of graphene for filtration and desalination of water: a review. Desalination 365, 389–397 (2015).

    CAS  Google Scholar 

  76. Yoon, H. W., Cho, Y. H. & Park, H. B. Graphene-based membranes: status and prospects. Phil. Trans. R. Soc. A 374, 20150024 (2016).

    Google Scholar 

  77. Huang, L., Zhang, M., Li, C. & Shi, G. Graphene-based membranes for molecular separation. J. Phys. Chem. Lett. 6, 2806–2815 (2015).

    CAS  Google Scholar 

  78. Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).

    CAS  Google Scholar 

  79. Graf, M. et al. Fabrication and practical applications of molybdenum disulfide nanopores. Nat. Protoc. 14, 1130–1168 (2019).

    CAS  Google Scholar 

  80. Homaeigohar, S. & Elbahri, M. Graphene membranes for water desalination. NPG Asia Mater. 9, e427 (2017).

    CAS  Google Scholar 

  81. Heerema, S. J. & Dekker, C. Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016).

    CAS  Google Scholar 

  82. Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

    CAS  Google Scholar 

  83. Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    CAS  Google Scholar 

  84. Siria, A., Bocquet, M.-L. & Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 1, 0091 (2017).

    CAS  Google Scholar 

  85. Yip, N. Y., Vermaas, D. A., Nijmeijer, K. & Elimelech, M. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. Environ. Sci. Technol. 48, 4925–4936 (2014).

    CAS  Google Scholar 

  86. Yip, N. Y. & Elimelech, M. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis. Environ. Sci. Technol. 48, 11002–11012 (2014).

    CAS  Google Scholar 

  87. Fair, J. C. & Osterle, J. F. Reverse electrodialysis in charged capillary membranes. J. Chem. Phys. 54, 3307–3316 (1971).

    CAS  Google Scholar 

  88. Rankin, D. J. & Huang, D. M. The effect of hydrodynamic slip on membrane-based salinity-gradient-driven energy harvesting. Langmuir 32, 3420–3432 (2016).

    CAS  Google Scholar 

  89. Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 7, 11408 (2016).

    CAS  Google Scholar 

  90. Prieve, D. C., Ebel, J. P. & Lowell, M. E. Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 148, 247–269 (1984).

    CAS  Google Scholar 

  91. Cao, L. et al. Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition. Energy Environ. Sci. 4, 2259–2266 (2011).

    CAS  Google Scholar 

  92. Vlassiouk, I., Smirnov, S. & Siwyt, Z. Ionic selectivity of single nanochannels. Nano Lett. 8, 1978–1985 (2008).

    CAS  Google Scholar 

  93. Muthukumar, M. Polymer Translocation (CRC Press, 2011).

  94. Vermaas, D. A., Veerman, J., Saakes, M. & Nijmeijer, K. Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy Environ. Sci. 7, 1434–1445 (2014).

    CAS  Google Scholar 

  95. Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).

    CAS  Google Scholar 

  96. Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).

    CAS  Google Scholar 

  97. Suk, M. E. & Aluru, N. R. Ion transport in sub-5-nm graphene nanopores. J. Chem. Phys. 140, 084707 (2014).

    Google Scholar 

  98. Jain, T. et al. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotechnol. 10, 1053–1057 (2015).

    CAS  Google Scholar 

  99. Feng, J. et al. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).

    CAS  Google Scholar 

  100. Karnik, R., Duan, C., Castelino, K., Daiguji, H. & Majumdar, A. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7, 547–551 (2007).

  101. Siwy, Z., Kosinska, I. D., Fulinski, A. & Martin, C. R. Asymmetric diffusion through synthetic nanopores. Phys. Rev. Lett. 94, 048102 (2005).

    CAS  Google Scholar 

  102. Cao, L., Guo, W., Wang, Y. & Jiang, L. Concentration-gradient-dependent ion current rectification in charged conical nanopores. Langmuir 28, 2194–2199 (2012).

    CAS  Google Scholar 

  103. Jubin, L., Poggioli, A., Siria, A. & Bocquet, L. Dramatic pressure-sensitive ion conduction in conical nanopores. Proc. Natl Acad. Sci. USA 115, 4063–4068 (2018).

    CAS  Google Scholar 

  104. Lan, W. J., Holden, D. A. & White, H. S. Pressure-dependent ion current rectification in conical-shaped glass nanopores. J. Am. Chem. Soc. 133, 13300–13303 (2011).

    CAS  Google Scholar 

  105. Cervera, J., Schiedt, B., Neumann, R., Mafé, S. & Ramírez, P. Ionic conduction, rectification, and selectivity in single conical nanopores. J. Chem. Phys. 124, 104706 (2006).

    Google Scholar 

  106. Poggioli, A. R., Siria, A. & Bocquet, L. Beyond the tradeoff: dynamic selectivity in ionic transport and current rectification. J. Phys. Chem. B 123, 1171–1185 (2019).

    CAS  Google Scholar 

  107. Smeets, R. M. M. et al. Salt dependence of ion transport and DMA translocation through solid-state nanopores. Nano Lett. 6, 89–95 (2006).

    CAS  Google Scholar 

  108. Hall, J. E. Access resistance of a small circular pore. J. Gen. Physiol. 66, 531 (1975).

    CAS  Google Scholar 

  109. Kowalczyk, S. W., Grosberg, A. Y., Rabin, Y. & Dekker, C. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22, 315101 (2011).

    Google Scholar 

  110. Hille, B. Charges and potentials at the nerve surface. Divalent ions and pH. J. Gen. Physiol. 51, 221–236 (1968).

    CAS  Google Scholar 

  111. Lee, C. et al. Large apparent electric size of solid-state nanopores due to spatially extended surface conduction. Nano Lett. 12, 4037–4044 (2012).

    CAS  Google Scholar 

  112. Pérez, M. D. B. et al. Improved model of ionic transport in 2D MoS2 membranes with sub-5 nm pores. Appl. Phys. Lett. 114, 023107 (2019).

    Google Scholar 

  113. Storm, A. J. et al. Fast DNA translocation through a solid-state nanopore. Nano Lett. 5, 1193–1197 (2005).

    CAS  Google Scholar 

  114. Merchant, C. A. et al. DNA translocation through graphene nanopores. Nano Lett. 10, 2915–2921 (2010).

    CAS  Google Scholar 

  115. Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).

    CAS  Google Scholar 

  116. Liu, K., Feng, J., Kis, A. & Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8, 2504–2511 (2014).

    CAS  Google Scholar 

  117. Fologea, D. et al. Detecting single stranded DNA with a solid state nanopore. Nano Lett. 5, 1905–1909 (2005).

    CAS  Google Scholar 

  118. Fologea, D., Uplinger, J., Thomas, B., McNabb, D. S. & Li, J. Slowing DNA translocation in a solid-state nanopore. Nano Lett. 5, 1734–1737 (2005).

    CAS  Google Scholar 

  119. Chen, W. et al. Graphene nanopores toward DNA sequencing: a review of experimental aspects. Sci. China Chem. 60, 721–729 (2017).

    CAS  Google Scholar 

  120. Liu, S. et al. Boron nitride nanopores: highly sensitive DNA single-molecule detectors. Adv. Mater. 25, 4549–4554 (2013).

    CAS  Google Scholar 

  121. Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

    CAS  Google Scholar 

  122. Walker, M. I. et al. Extrinsic cation selectivity of 2D membranes. ACS Nano 11, 1340–1346 (2017).

    CAS  Google Scholar 

  123. Li, L., Dong, J., Nenoff, T. M. & Lee, R. Desalination by reverse osmosis using MFI zeolite membranes. J. Membr. Sci. 243, 401–404 (2004).

    CAS  Google Scholar 

  124. Cho, C. H., Oh, K. Y., Kim, S. K., Yeo, J. G. & Sharma, P. Pervaporative seawater desalination using NaA zeolite membrane: mechanisms of high water flux and high salt rejection. J. Membr. Sci. 371, 226–238 (2011).

    CAS  Google Scholar 

  125. Swenson, P., Tanchuk, B., Gupta, A., An, W. Z. & Kuznicki, S. M. Pervaporative desalination of water using natural zeolite membranes. Desalination 285, 68–72 (2012).

    CAS  Google Scholar 

  126. Gethard, K., Sae-Khow, O. & Mitra, S. Water desalination using carbon-nanotube-enhanced membrane distillation. ACS Appl. Mater. Interfaces 3, 110–114 (2011).

    CAS  Google Scholar 

  127. Das, R., Ali, M. E., Hamid, S. B. A., Ramakrishna, S. & Chowdhury, Z. Z. Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014).

    CAS  Google Scholar 

  128. Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112, 1427–1434 (2008).

    CAS  Google Scholar 

  129. Kalra, A., Garde, S. & Hummer, G. Osmotic water transport through carbon nanotube membranes. Proc. Natl Acad. Sci. USA 100, 10175–10180 (2003).

    CAS  Google Scholar 

  130. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    CAS  Google Scholar 

  131. Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Sci. Vol. 348, 1347–1351 (2015).

    CAS  Google Scholar 

  132. Veerman, J., de Jong, R. M., Saakes, M., Metz, S. J. & Harmsen, G. J. Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density. J. Membr. Sci. 343, 7–15 (2009).

    CAS  Google Scholar 

  133. Lin, C. Y., Combs, C., Su, Y. S., Yeh, L. H. & Siwy, Z. S. Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 141, 3691–3698 (2019).

    CAS  Google Scholar 

  134. Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).

    CAS  Google Scholar 

  135. Kim, M. J., Wanunu, M., Bell, D. C. & Meller, A. Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater. 18, 3149–3153 (2006).

    CAS  Google Scholar 

  136. Deng, T., Wang, Y., Chen, Q., Chen, H. & Liu, Z. Massive fabrication of silicon nanopore arrays with tunable shapes. Appl. Surf. Sci. 390, 681–688 (2016).

    CAS  Google Scholar 

  137. Verschueren, D. V., Yang, W. & Dekker, C. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes. Nanotechnology 29, 145302 (2018).

    Google Scholar 

  138. Gao, J. et al. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 136, 12265–12272 (2014).

    CAS  Google Scholar 

  139. Hsu, J. P., Wu, H. H., Lin, C. Y. & Tseng, S. Ion current rectification behavior of bioinspired nanopores having a pH-tunable zwitterionic surface. Anal. Chem. 89, 3952–3958 (2017).

    CAS  Google Scholar 

  140. Danda, G. & Drndic, M. Two-dimensional nanopores and nanoporous membranes for ion and molecule transport. Curr. Opin. Biotechnol. 55, 124–133 (2019).

    CAS  Google Scholar 

  141. Yan, F., Yao, L., Chen, K., Yang, Q. & Su, B. An ultrathin and highly porous silica nanochannel membrane: toward highly efficient salinity energy conversion. J. Mater. Chem. A 7, 2385–2391 (2019).

    CAS  Google Scholar 

  142. Mao, M., Sherwood, J. D. & Ghosal, S. Electro-osmotic flow through a nanopore. J. Fluid Mech. 749, 167–183 (2014).

    CAS  Google Scholar 

  143. Fornasiero, F. et al. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl Acad. Sci. USA 105, 17250–17255 (2008).

    CAS  Google Scholar 

  144. Farimani, A. B., Min, K. & Aluru, N. R. DNA base detection using a single-layer MoS2. ACS Nano 8, 7914–7922 (2014).

    CAS  Google Scholar 

  145. Steinbock, L. J. & Radenovic, A. The emergence of nanopores in next-generation sequencing. Nanotechnology 26, 074003 (2015).

    CAS  Google Scholar 

  146. Feng, J. et al. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Lett. 15, 3431–3438 (2015).

    CAS  Google Scholar 

  147. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    CAS  Google Scholar 

  148. Han, Y., Xu, Z. & Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700 (2013).

    CAS  Google Scholar 

  149. Wang, E. N. Water desalination: graphene cleans up water. Nat. Nanotechnol. 7, 552–554 (2012).

    CAS  Google Scholar 

  150. Heiranian, M., Farimani, A. B. & Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015).

    CAS  Google Scholar 

  151. Chester, R. & Jickells, T. Marine Geochemistry (Wiley-Blackwell, 2012).

  152. Shan, Y. P. et al. Surface modification of graphene nanopores for protein translocation. Nanotechnology 24, 495102 (2013).

    CAS  Google Scholar 

  153. Huang, Z. et al. The impact of membrane surface charges on the ion transport in MoS2 nanopore power generators. Appl. Phys. Lett. 111, 263104 (2017).

    Google Scholar 

  154. Graf, M. et al. Light-enhanced blue energy generation using MoS2 nanopores. Joule https://doi.org/10.1016/j.joule.2019.04.011 (2019).

    CAS  Google Scholar 

  155. Melnikov, D. V., Hulings, Z. K. & Gracheva, M. E. Electro-osmotic flow through nanopores in thin and ultrathin membranes. Phys. Rev. E 95, 063105 (2017).

    Google Scholar 

  156. Rankin, D. J., Bocquet, L. & Huang, D. M. Entrance effects in concentration-gradient-driven flow through an ultrathin porous membrane. Preprint at arXiv https://arxiv.org/abs/1904.10636 (2019).

  157. Lee, J. et al. Stabilization of graphene nanopore. Proc. Natl Acad. Sci. USA 111, 7522–7526 (2014).

    CAS  Google Scholar 

  158. Yang, T., Lin, H., Zheng, X., Loh, K. P. & Jia, B. Tailoring pores in graphene-based materials: From generation to applications. J. Mater. Chem. A 5, 16537–16558 (2017).

    CAS  Google Scholar 

  159. Liu, Q. et al. Porous hexagonal boron nitride sheets: effect of hydroxyl and secondary amino groups on photocatalytic hydrogen evolution. ACS Appl. Nano Mater. 1, 4566–4575 (2018).

    CAS  Google Scholar 

  160. Mouterde, T. & Bocquet, L. Interfacial transport with mobile surface charges and consequences for ionic transport in carbon nanotubes. Eur. Phys. J. E 41, 148 (2018).

    Google Scholar 

  161. Grosjean, B., Bocquet, M.-L. & Vuilleumier, R. Versatile electrification of two-dimensional nanomaterials in water. Nat. Commun. 10, 1656 (2019).

    Google Scholar 

  162. Sharma, P. et al. A direct sensor to measure minute liquid flow rates. Nano Lett. 18, 5726–5730 (2018).

    CAS  Google Scholar 

  163. Krems, M. & Di Ventra, M. Ionic Coulomb blockade in nanopores. J. Phys. Condens. Matter 25, 065101 (2013).

    Google Scholar 

  164. Wells, D. B., Belkin, M., Comer, J. & Aksimentiev, A. Assessing graphene nanopores for sequencing DNA. Nano Lett. 12, 4117–4123 (2012).

    CAS  Google Scholar 

  165. Venkatesan, B. M. & Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615–624 (2011).

    CAS  Google Scholar 

  166. Danda, G. et al. Monolayer WS2 nanopores for DNA translocation with light-adjustable sizes. ACS Nano 11, 1937–1945 (2017).

    CAS  Google Scholar 

  167. Schneider, G. F. et al. DNA translocation through grapheme nanopores. Nano Lett. 10, 3163–3167 (2010).

    CAS  Google Scholar 

  168. Fanget, A. et al. Nanopore integrated nanogaps for DNA detection. Nano Lett. 14, 244–249 (2014).

    CAS  Google Scholar 

  169. Traversi, F. et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat. Nanotechnol. 8, 939–945 (2013).

    CAS  Google Scholar 

  170. Siwy, Z. S. & Davenport, M. Nanopores: graphene opens up to DNA. Nat. Nanotechnol. 5, 697–698 (2010).

    CAS  Google Scholar 

  171. Schneider, G. F. & Dekker, C. DNA sequencing with nanopores. Nat. Biotechnol. 30, 326–328 (2012).

    CAS  Google Scholar 

  172. Zhang, L. & Wang, X. DNA sequencing by hexagonal boron nitride nanopore: a computational study. Nanomaterials 6, 111 (2016).

    Google Scholar 

  173. Apel, P. Y. et al. Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles. Nanotechnology 18, 305302 (2007).

    Google Scholar 

  174. Harrell, C. C. et al. Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir 22, 10837–10843 (2006).

    CAS  Google Scholar 

  175. Sonck, S., Beuls, E., Mahillon, J. & Francis, L. A. Performance of ion track-etched polyimide as ion exchange membranes for microbial fuel cells. ECS Trans. 35, 251–256 (2011).

    CAS  Google Scholar 

  176. Balme, S., Ma, T., Balanzat, E. & Janot, J. M. Large osmotic energy harvesting from functionalized conical nanopore suitable for membrane applications. J. Membr. Sci. 544, 18–24 (2017).

    CAS  Google Scholar 

  177. Zhang, Z. et al. Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device. J. Am. Chem. Soc. 137, 14765–14772 (2015).

    CAS  Google Scholar 

  178. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    CAS  Google Scholar 

  179. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    CAS  Google Scholar 

  180. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    CAS  Google Scholar 

  181. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    CAS  Google Scholar 

  182. Miseikis, V. et al. Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor. 2D Mater. 2, 014006 (2015).

    Google Scholar 

  183. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Google Scholar 

  184. Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011).

    CAS  Google Scholar 

  185. Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    CAS  Google Scholar 

  186. Kim, T. & Mun, J. Wafer-scale production of highly uniform two-dimensional MoS2 by metal-organic chemical vapor deposition. Nanotechnology 28, 18LT01 (2017).

    Google Scholar 

  187. Yang, P. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018).

    Google Scholar 

  188. Boandoh, S. et al. A novel and facile route to synthesize atomic-layered MoS 2 film for large-area electronics. Small 13, 1701306 (2017).

    Google Scholar 

  189. Yu, H. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 11, 12001–12007 (2017).

    CAS  Google Scholar 

  190. Gupta, A., Sakthivel, T. & Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015).

    CAS  Google Scholar 

  191. Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, 0014 (2017).

    CAS  Google Scholar 

  192. Gurarslan, A. et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 8, 11522–11528 (2014).

    CAS  Google Scholar 

  193. Uwanno, T., Hattori, Y., Taniguchi, T., Watanabe, K. & Nagashio, K. Fully dry PMMA transfer of graphene on h-BN using a heating/cooling system. 2D Mater. 2, 041002 (2015).

    Google Scholar 

  194. Yang, R., Zheng, X., Wang, Z., Miller, C. J. & Feng, P. X.-L. Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing. J. Vac. Sci. Technol. B 32, 061203 (2014).

    Google Scholar 

  195. Shinde, S. M. et al. Surface-functionalization-mediated direct transfer of molybdenum disulfide for large-area flexible devices. Adv. Funct. Mater. 28, 1706231 (2018).

    Google Scholar 

  196. Lin, Y.-C. et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4, 6637–6641 (2012).

    CAS  Google Scholar 

  197. Liang, X. et al. Toward clean and crackless transfer of graphene. ACS Nano 5, 9144–9153 (2011).

    Google Scholar 

  198. Waduge, P. et al. Direct and scalable deposition of atomically thin low-noise MoS2 membranes on apertures direct and scalable deposition of atomically thin low-noise MoS2 membranes on apertures. ACS Nano 9, 7352–7359 (2015).

    CAS  Google Scholar 

  199. Li, W. Z. et al. Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996).

    CAS  Google Scholar 

  200. Ren, Z. F. & Huang, Z. P. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998).

    CAS  Google Scholar 

  201. Fan, S. et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Sci. Vol. 283, 512–514 (1999).

    CAS  Google Scholar 

  202. Su, C. Y. et al. Large-scale synthesis of boron nitride nanotubes with iron-supported catalysts. J. Phys. Chem. C 113, 14732–14738 (2009).

    CAS  Google Scholar 

  203. Lee, K. H. et al. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 12, 714–718 (2012).

    CAS  Google Scholar 

  204. Obraztsov, A. N. Making graphene on a large scale. Nat. Nanotechnol. 4, 212–213 (2009).

    CAS  Google Scholar 

  205. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    CAS  Google Scholar 

  206. Ma, X. et al. Capillary-force-assisted clean-stamp transfer of two-dimensional materials. Nano Lett. 17, 6961–6967 (2017).

    CAS  Google Scholar 

  207. Spinney, P. S., Howitt, D. G., Smith, R. L. & Collins, S. D. Nanopore formation by low-energy focused electron beam machining. Nanotechnology 21, 375301 (2010).

    CAS  Google Scholar 

  208. Deng, Y. et al. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection. Nanotechnology 28, 045302 (2017).

    Google Scholar 

  209. Gierak, J. et al. Sub-5 nm FIB direct patterning of nanodevices. Microelectron. Eng. 84, 779–783 (2007).

    CAS  Google Scholar 

  210. Latif, A. Nanofabrication Using Focused Ion Beam. Thesis, Univ. Cambridge https://doi.org/10.17863/CAM.14195 (2000).

  211. Mussi, V. et al. DNA-functionalized solid state nanopore for biosensing. Nanotechnology 21, 145102 (2010).

    CAS  Google Scholar 

  212. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    CAS  Google Scholar 

  213. Thiruraman, J. P. et al. Angstrom-size defect creation and ionic transport through pores in single-layer MoS2. Nano Lett. 18, 1651–1659 (2018).

    CAS  Google Scholar 

  214. Fischbein, M. & Drndic, M. Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett. 93, 113107 (2008).

    Google Scholar 

  215. Garcia, A. et al. Analysis of electron beam damage of exfoliated MoS2 sheets and quantitative HAADF-STEM imaging. Ultramicroscopy 146, 33–38 (2014).

    CAS  Google Scholar 

  216. Zan, R. et al. Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7, 10167–10174 (2013).

    CAS  Google Scholar 

  217. Barreiro, A. et al. Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing. Sci. Rep. 3, 1115 (2013).

    Google Scholar 

  218. Xu, T. et al. Size-dependent evolution of graphene nanopores under thermal excitation. Small 8, 3422–3426 (2012).

    CAS  Google Scholar 

  219. O’Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).

    Google Scholar 

  220. Russo, C. J. & Golovchenko, J. A. Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl Acad. Sci. USA 109, 5953–5957 (2012).

    CAS  Google Scholar 

  221. Xiao, F. et al. Simulation of osmotic energy conversion in nanoporous materials: a concise single-pore model. Inorg. Chem. Front. 5, 1677–1682 (2018).

    CAS  Google Scholar 

  222. Gadaleta, A. et al. Sub-additive ionic transport across arrays of solid-state nanopores. Phys. Fluids 26, 1–11 (2014).

    Google Scholar 

  223. Hayashi, T. et al. Nanopore fabrication to two-dimensional materials on SiO2 membranes using He ion microscopy. IEEE Trans. Nanotechnol. 4, 727–730 (2018).

    Google Scholar 

  224. O’Hern, S. C. et al. Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett. 15, 3254–3260 (2015).

    Google Scholar 

  225. Kwok, H., Briggs, K. & Tabard-Cossa, V. Nanopore fabrication by controlled dielectric breakdown. PLOS ONE 9, e92880 (2014).

    Google Scholar 

  226. Su, J. et al. Anomalous pore-density dependence in nanofluidic osmotic power generation. Chin. J. Chem. 36, 417–420 (2018).

    CAS  Google Scholar 

  227. Xiao, F. et al. A general strategy to simulate osmotic energy conversion in multi-pore nanofluidic systems. Mater. Chem. Front. 2, 935–941 (2018).

    CAS  Google Scholar 

  228. Yang, J. et al. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection. Nanotechnology 22, 285310 (2011).

    Google Scholar 

  229. Lin, C. Y., Hsu, J. P. & Yeh, L. H. Rectification of ionic current in nanopores functionalized with bipolar polyelectrolyte brushes. Sens. Actuators B 258, 1223–1229 (2018).

    CAS  Google Scholar 

  230. Wang, X. et al. How the geometric configuration and the surface charge distribution influence the ionic current rectification in nanopores. J. Phys. D 40, 7077 (2007).

    CAS  Google Scholar 

  231. Sint, K., Wang, B. & Král, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 130, 16448–16449 (2008).

    CAS  Google Scholar 

  232. Zhao, S., Xue, J. & Kang, W. Ion selection of charge-modified large nanopores in a graphene sheet. J. Chem. Phys. 139, 114702 (2013).

    Google Scholar 

  233. Kiriya, D., Tosun, M., Zhao, P., Kang, J. S. & Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 136, 7853–7856 (2014).

    CAS  Google Scholar 

  234. Cheng, P. et al. Transparent glass with the growth of pyramid-type MoS2 for highly efficient water disinfection under visible-light irradiation. ACS Appl. Mater. Interfaces 10, 23444–23450 (2018).

    CAS  Google Scholar 

  235. Liu, S. & Guo, W. Anti-biofouling and healable materials: preparation, mechanisms, and biomedical applications. Adv. Funct. Mater. 28, 1800596 (2018).

    Google Scholar 

  236. Pandit, S., Karunakaran, S., Boda, S. K., Basu, B. & De, M. High antibacterial activity of functionalized chemically exfoliated MoS2. ACS Appl. Mater. Interfaces 8, 31567–31573 (2016).

    CAS  Google Scholar 

  237. Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

    CAS  Google Scholar 

  238. Wang, F. et al. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chem. Soc. Rev. 47, 6296–6341 (2018).

    CAS  Google Scholar 

  239. Haastrup, S. et al. The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5, 042002 (2018).

    Google Scholar 

  240. Duong, D. L., Yun, S. J. & Lee, Y. H. van der Waals layered materials: opportunities and challenges. ACS Nano 11, 11803–11830 (2017).

    CAS  Google Scholar 

  241. Zhang, H. et al. Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-selective membranes on porous polymer supports. Angew. Chem. 55, 7184–7187 (2016).

    CAS  Google Scholar 

  242. Roth, W. J., Nachtigall, P., Morris, R. E. & Cejka, J. Two-dimensional zeolites: current status and perspectives. Chem. Rev. 114, 4807–4837 (2014).

    CAS  Google Scholar 

  243. Ji, J. et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 27, 1–8 (2017).

    Google Scholar 

  244. Kwon, K., Lee, S. J., Li, L., Han, C. & Kim, D. Energy harvesting system using reverse electrodialysis with nanoporous polycarbonate track-etch membranes. Int. J. Energy Res. 38, 530–537 (2014).

    CAS  Google Scholar 

  245. Tsai, T. C., Liu, C. W. & Yang, R. J. Power generation by reverse electrodialysis in a microfluidic device with a Nafion ion-selective membrane. Micromachines 7, 205 (2016).

    Google Scholar 

  246. Kwak, S. H. et al. Densely charged polyelectrolyte-stuffed nanochannel arrays for power generation from salinity gradient. Sci. Rep. 6, 26416 (2016).

    CAS  Google Scholar 

  247. Varricchio, S. S. G., Piacentini, N., Bertsch, A. & Renaud, P. Multimaterial nanoporous membranes shaped through high aspect-ratio sacrificial silicon nanostructures. ACS Omega 2, 2387–2394 (2017).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.M. and S.M. wrote the manuscript; M.M., S.M. and A.R. researched the data for the article. V.N. contributed to the theory section. All authors discussed the contents and provided important contributions to the manuscript.

Corresponding author

Correspondence to Aleksandra Radenovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Annual Energy Outlook 2019: https://www.eia.gov/outlooks/aeo/

World Energy Resources 2016: https://www.worldenergy.org/wp-content/uploads/2016/10/World-Energy-Resources-Full-report-2016.10.03.pdf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macha, M., Marion, S., Nandigana, V.V.R. et al. 2D materials as an emerging platform for nanopore-based power generation. Nat Rev Mater 4, 588–605 (2019). https://doi.org/10.1038/s41578-019-0126-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0126-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing