Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Topological nanomaterials

Abstract

The past decade has witnessed the emergence of a new frontier in condensed matter physics: topological materials with an electronic band structure belonging to a different topological class from that of ordinary insulators and metals. This non-trivial band topology gives rise to robust, spin-polarized electronic states with linear energy–momentum dispersion at the edge or surface of the materials. For topological materials to be useful in electronic devices, precise control and accurate detection of the topological states must be achieved in nanostructures, which can enhance the topological states because of their large surface-to-volume ratios. In this Review, we discuss notable synthesis and electron transport results of topological nanomaterials, from topological insulator nanoribbons and plates to topological crystalline insulator nanowires and Weyl and Dirac semimetal nanobelts. We also survey superconductivity in topological nanowires, a nanostructure platform that might enable the controlled creation of Majorana bound states for robust quantum computations. Two material systems that can host Majorana bound states are compared: spin–orbit coupled semiconducting nanowires and topological insulating nanowires, a focus of this Review. Finally, we consider the materials and measurement challenges that must be overcome before topological nanomaterials can be used in next-generation electronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Historical timeline of the synthesis of nanostructures of topological materials.
Fig. 2: Topological insulators, topological crystalline insulators, and Dirac and Weyl semimetallic nanostructures.
Fig. 3: Historical timeline of transport measurements in topological nanostructures.
Fig. 4: Aharonov–Bohm effects of topological surface states in TI and TCI nanostructures.
Fig. 5: Superconducting transitions in various InxSn1xTe nanostructures.
Fig. 6: Electron transport studies of Weyl and Dirac semimetals.
Fig. 7: 1D topological superconductors.
Fig. 8: Controlling and detecting Majorana bound states in topological insulator nanowires.
Fig. 9: Josephson junctions.

Similar content being viewed by others

References

  1. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Google Scholar 

  2. Kane, C. L. & Mele, E. J. Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    CAS  Google Scholar 

  3. Fu, L. & Kane, C. L. Time reversal polarization and a Z 2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006).

    Google Scholar 

  4. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    CAS  Google Scholar 

  5. Armitage, N., Mele, E. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    CAS  Google Scholar 

  6. Dirac, P. A. M. The quantum theory of the electron. Proc. R. Soc. A 117, 610–624 (1928).

    Google Scholar 

  7. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    CAS  Google Scholar 

  8. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Google Scholar 

  9. Ren, Z., Taskin, A., Sasaki, S., Segawa, K. & Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 82, 241306 (2010).

    Google Scholar 

  10. Kim, D. et al. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3. Nat. Phys. 8, 459 (2012).

    Google Scholar 

  11. Xu, Y., Miotkowski, I. & Chen, Y. P. Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators. Nat. Commun. 7, 11434 (2016).

    CAS  Google Scholar 

  12. Zhang, Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 6, 584–588 (2010).

    Google Scholar 

  13. Zhang, T. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 103, 266803 (2009).

    Google Scholar 

  14. Chen, Y. L. et al. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329, 659–662 (2010).

    CAS  Google Scholar 

  15. Analytis, J. G. et al. Two-dimensional surface state in the quantum limit of a topological insulator. Nat. Phys. 6, 960–964 (2010).

    CAS  Google Scholar 

  16. Alpichshev, Z. et al. STM Imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. Phys. Rev. Lett. 104, 016401 (2010).

    Google Scholar 

  17. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Google Scholar 

  18. Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012).

    Google Scholar 

  19. Yan, B. & Zhang, S.-C. Topological materials. Rep. Prog. Phys. 75, 096501 (2012).

    Google Scholar 

  20. Müchler, L., Casper, F., Yan, B., Chadov, S. & Felser, C. Topological insulators and thermoelectric materials. Phys. Status Solidi Rapid Res. Lett. 7, 91–100 (2013).

    Google Scholar 

  21. Ando, Y. & Fu, L. Topological crystalline insulators and topological superconductors: from concepts to materials. Annu. Rev. Condens. Matter Phys. 6, 361–381 (2015).

    CAS  Google Scholar 

  22. Heremans, J. P., Cava, R. J. & Samarth, N. Tetradymites as thermoelectrics and topological insulators. Nat. Rev. Mater. 2, 17049 (2017).

    CAS  Google Scholar 

  23. Tian, W., Yu, W., Shi, J. & Wang, Y. The property, preparation and application of topological insulators: a review. Materials 10, 814 (2017).

    Google Scholar 

  24. Mishra, S., Satpathy, S. & Jepsen, O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J. Phys. Condens. Matter 9, 461 (1997).

    CAS  Google Scholar 

  25. Xu, J.-L. et al. Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers. Sci. Rep. 5, 14856 (2015).

    CAS  Google Scholar 

  26. Yang, J. et al. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity. Small 14, 1802598 (2018).

    Google Scholar 

  27. Hsieh, D. et al. Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009).

    CAS  Google Scholar 

  28. Tian, J., Miotkowski, I., Hong, S. & Chen, Y. P. Electrical injection and detection of spin-polarized currents in topological insulator Bi2Te2Se. Sci. Rep. 5, 14293 (2015).

    CAS  Google Scholar 

  29. Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012).

    CAS  Google Scholar 

  30. Ando, Y. et al. Electrical detection of the spin polarization due to charge flow in the surface state of the topological insulator Bi1.5Sb0.5Te1.7Se1.3. Nano Lett. 14, 6226–6230 (2014).

    CAS  Google Scholar 

  31. Tian, J., Hong, S., Miotkowski, I., Datta, S. & Chen, Y. P. Observation of current-induced, long-lived persistent spin polarization in a topological insulator: a rechargeable spin battery. Sci. Adv. 3, e1602531 (2017).

    Google Scholar 

  32. Fan, Y. et al. Electric-field control of spin–orbit torque in a magnetically doped topological insulator. Nat. Nanotechnol. 11, 352–359 (2016).

    CAS  Google Scholar 

  33. Kandala, A. et al. Growth and characterization of hybrid insulating ferromagnet–topological insulator heterostructure devices. Appl. Phys. Lett. 103, 202409 (2013).

    Google Scholar 

  34. Yao, J., Shao, J., Wang, Y., Zhao, Z. & Yang, G. Ultra-broadband and high response of the Bi2Te3–Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 7, 12535–12541 (2015).

    CAS  Google Scholar 

  35. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009).

    CAS  Google Scholar 

  36. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009).

    CAS  Google Scholar 

  37. Arakane, T. et al. Tunable Dirac cone in the topological insulator Bi2−xSbxTe3−ySey. Nat. Commun. 3, 636 (2012).

    CAS  Google Scholar 

  38. Nayak, J. et al. Temperature-induced modification of the Dirac cone in the tetradymite topological insulator Bi2Te2Se. Phys. Rev. B 98, 075206 (2018).

    CAS  Google Scholar 

  39. Xu, Y. et al. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys. 10, 956–963 (2014).

    CAS  Google Scholar 

  40. Yoshimi, R. et al. Quantum Hall effect on top and bottom surface states of topological insulator (Bi1−xSbx)2Te3 films. Nat. Commun. 6, 6627 (2015).

    CAS  Google Scholar 

  41. Koirala, N. et al. Record surface state mobility and quantum Hall effect in topological insulator thin films via interface engineering. Nano Lett. 15, 8245–8249 (2015).

    CAS  Google Scholar 

  42. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Google Scholar 

  43. Nowack, K. C. et al. Imaging currents in HgTe quantum wells in the quantum spin Hall regime. Nat. Mater. 12, 787–791 (2013).

    CAS  Google Scholar 

  44. Ma, E. Y. et al. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry. Nat. Commun. 6, 7252 (2015).

    Google Scholar 

  45. Samarth, N. Quantum materials discovery from a synthesis perspective. Nat. Mater. 16, 1068–1076 (2017).

    CAS  Google Scholar 

  46. Liu, Y. et al. Direct visualization of current-induced spin accumulation in topological insulators. Nat. Commun. 9, 2492 (2018).

    Google Scholar 

  47. Di Pietro, P. et al. Observation of Dirac plasmons in a topological insulator. Nat. Nanotechnol. 8, 556–560 (2013).

    Google Scholar 

  48. Bansal, N., Kim, Y. S., Brahlek, M., Edrey, E. & Oh, S. Thickness-independent transport channels in topological insulator Bi2Se3 thin films. Phys. Rev. Lett. 109, 116804 (2012).

    Google Scholar 

  49. Shi, S. et al. Efficient charge-spin conversion and magnetization switching through the Rashba effect at topological-insulator/Ag interfaces. Phys. Rev. B 97, 041115 (2018).

    CAS  Google Scholar 

  50. Belopolski, I. et al. A novel artificial condensed matter lattice and a new platform for one-dimensional topological phases. Sci. Adv. 3, e1501692 (2017).

    Google Scholar 

  51. Zhang, J. et al. Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nat. Commun. 2, 574 (2011).

    Google Scholar 

  52. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    CAS  Google Scholar 

  53. Fan, Y. et al. Unidirectional magneto-resistance in modulation-doped magnetic topological insulators. Nano Lett. 19, 692–698 (2019).

    Google Scholar 

  54. Cen, C. et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008).

    CAS  Google Scholar 

  55. Annadi, A. et al. Quantized ballistic transport of electrons and electron pairs in LaAlO3/SrTiO3 nanowires. Nano Lett. 18, 4473–4481 (2018).

    CAS  Google Scholar 

  56. Peng, H. et al. Aharonov–Bohm interference in topological insulator nanoribbons. Nat. Mater. 9, 225–229 (2009).

    Google Scholar 

  57. Hong, S. S., Zhang, Y., Cha, J. J., Qi, X.-L. & Cui, Y. One-dimensional helical transport in topological insulator nanowire interferometers. Nano Lett. 14, 2815–2821 (2014).

    CAS  Google Scholar 

  58. Du, R. et al. Robustness of topological surface states against strong disorder observed in Bi2Te3 nanotubes. Phys. Rev. B 93, 195402 (2016).

    Google Scholar 

  59. Jauregui, L. A., Pettes, M. T., Rokhinson, L. P., Shi, L. & Chen, Y. P. Magnetic field-induced helical mode and topological transitions in a topological insulator nanoribbon. Nat. Nanotechnol. 11, 345–351 (2016).

    CAS  Google Scholar 

  60. Safdar, M. et al. Topological surface transport properties of single-crystalline SnTe nanowire. Nano Lett. 13, 5344–5349 (2013).

    CAS  Google Scholar 

  61. Zhang, E. et al. Magnetotransport properties of Cd3As2 nanostructures. ACS Nano 9, 8843–8850 (2015).

    CAS  Google Scholar 

  62. Majorana, E. Teoria simmetrica dell’elettrone e del positrone. Nuovo Cimento 14, 171 (1937).

    CAS  Google Scholar 

  63. Alicea, J., Oreg, Y., Refael, G., von Oppen, F. & Fisher, M. P. A. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011).

    CAS  Google Scholar 

  64. Lutchyn, R. M. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018).

    CAS  Google Scholar 

  65. Kong, D. et al. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 10, 2245–2250 (2010).

    CAS  Google Scholar 

  66. Hamdou, B., Gooth, J., Dorn, A., Pippel, E. & Nielsch, K. Aharonov–Bohm oscillations and weak antilocalization in topological insulator Sb2Te3 nanowires. Appl. Phys. Lett. 102, 223110 (2013).

    Google Scholar 

  67. Purkayastha, A., Lupo, F., Kim, S., Borca-Tasciuc, T. & Ramanath, G. Low-temperature, template-free synthesis of single-crystal bismuth telluride nanorods. Adv. Mater. 18, 496–500 (2006).

    CAS  Google Scholar 

  68. Xiao, F., Yoo, B., Lee, K. H. & Myung, N. V. Synthesis of Bi2Te3 nanotubes by galvanic displacement. J. Am. Chem. Soc. 129, 10068–10069 (2007).

    CAS  Google Scholar 

  69. Jiang, Y. & Zhu, Y.-J. Bi2Te3 nanostructures prepared by microwave heating. J. Cryst. Growth 306, 351–355 (2007).

    CAS  Google Scholar 

  70. Wang, W. et al. High-yield synthesis of single-crystalline antimony telluride hexagonal nanoplates using a solvothermal approach. J. Am. Chem. Soc. 127, 13792–13793 (2005).

    CAS  Google Scholar 

  71. Kong, D. et al. Topological insulator nanowires and nanoribbons. Nano Lett. 10, 329–333 (2010).

    CAS  Google Scholar 

  72. Kong, D. et al. Ambipolar field effect in the ternary topological insulator (BixSb1 − x)2Te3 by composition tuning. Nat. Nanotechnol. 6, 705–709 (2011).

    CAS  Google Scholar 

  73. Cha, J. J. et al. Weak antilocalization in Bi2(SexTe1−x)3 nanoribbons and nanoplates. Nano Lett. 12, 1107–1111 (2012).

    CAS  Google Scholar 

  74. Cha, J. J. et al. Magnetic doping and Kondo effect in Bi2Se3 nanoribbons. Nano Lett. 10, 1076–1081 (2010).

    CAS  Google Scholar 

  75. Wang, Y. et al. Gate-controlled surface conduction in Na-doped Bi2Te3 topological insulator nanoplates. Nano Lett. 12, 1170–1175 (2012).

    CAS  Google Scholar 

  76. Cheng, L. et al. High Curie temperature Bi1.85Mn0.15Te3 nanoplates. J. Am. Chem. Soc. 134, 18920–18923 (2012).

    CAS  Google Scholar 

  77. Hong, S. S., Cha, J. J., Kong, D. & Cui, Y. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons. Nat. Commun. 3, 757 (2012).

    Google Scholar 

  78. Dun, C. et al. Flexible n-type thermoelectric films based on Cu-doped Bi2Se3 nanoplate and polyvinylidene fluoride composite with decoupled Seebeck coefficient and electrical conductivity. Nano Energy 18, 306–314 (2015).

    CAS  Google Scholar 

  79. Chen, Z.-G. et al. Paramagnetic Cu-doped Bi2Te3 nanoplates. Appl. Phys. Lett. 104, 053105 (2014).

    Google Scholar 

  80. Senthil, T. Symmetry-protected topological phases of quantum matter. Annu. Rev. Condens. Matter Phys. 6, 299–324 (2015).

    CAS  Google Scholar 

  81. Shen, J. et al. Synthesis of SnTe nanoplates with {100} and {100} surfaces. Nano Lett. 14, 4183–4188 (2014).

    CAS  Google Scholar 

  82. Liu, X.-J., He, J. J. & Law, K. T. Demonstrating lattice symmetry protection in topological crystalline superconductors. Phys. Rev. B 90, 235141 (2014).

    Google Scholar 

  83. Safdar, M., Wang, Q., Mirza, M., Wang, Z. & He, J. Crystal shape engineering of topological crystalline insulator SnTe microcrystals and nanowires with huge thermal activation energy gap. Cryst. Growth Des. 14, 2502–2509 (2014).

    CAS  Google Scholar 

  84. Wang, Q. et al. Rational design of ultralarge Pb1−xSnxTe nanoplates for exploring crystalline symmetry-protected topological transport. Adv. Mater. 28, 617–623 (2016).

    CAS  Google Scholar 

  85. Wang, Q. et al. Van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices. Nano Lett. 15, 1183–1189 (2015).

    CAS  Google Scholar 

  86. Wang, Q. et al. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8, 7497–7505 (2014).

    CAS  Google Scholar 

  87. Wang, Q. et al. Topological crystalline insulator Pb1−xSnxSe nanowires with {100} facets. Small 11, 2019–2025 (2015).

    CAS  Google Scholar 

  88. Safdar, M. et al. Weak antilocalization effect of topological crystalline insulator Pb1−xSnxTe nanowires with tunable composition and distinct {100} facets. Nano Lett. 15, 2485–2490 (2015).

    CAS  Google Scholar 

  89. Shen, J., Xie, Y. & Cha, J. J. Revealing surface states in In-doped SnTe nanoplates with low bulk mobility. Nano Lett. 15, 3827–3832 (2015).

    CAS  Google Scholar 

  90. Sasaki, S. & Ando, Y. Superconducting Sn1−xInxTe nanoplates. Cryst. Growth Des. 15, 2748–2752 (2015).

    CAS  Google Scholar 

  91. Shen, J., Woods, J. M., Xie, Y., Morales-Acosta, M. D. & Cha, J. J. Structural phase transition and carrier density tuning in SnSexTe1−x nanoplates. Adv. Electron. Mater. 2, 1600144 (2016).

    Google Scholar 

  92. Xu, N. et al. Observation of Weyl nodes and Fermi arcs in tantalum phosphide. Nat. Commun. 7, 11006 (2016).

    CAS  Google Scholar 

  93. Xu, S.-Y. et al. Experimental discovery of a topological Weyl semimetal state in TaP. Sci. Adv. 1, e1501092 (2015).

    Google Scholar 

  94. Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

    CAS  Google Scholar 

  95. Liu, Z. et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15, 27–31 (2016).

    CAS  Google Scholar 

  96. Zhou, L. et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 137, 11892–11895 (2015).

    CAS  Google Scholar 

  97. Naylor, C. H. et al. Monolayer single-crystal 1Tʹ-MoTe2 grown by chemical vapor deposition exhibits weak antilocalization effect. Nano Lett. 16, 4297–4304 (2016).

    CAS  Google Scholar 

  98. Kwak, J. et al. Single-crystalline nanobelts composed of transition metal ditellurides. Adv. Mater. 30, 1707260 (2018).

    Google Scholar 

  99. Naylor, C. H. et al. Large-area synthesis of high-quality monolayer 1Tʹ-WTe2 flakes. 2D Mater. 4, 021008 (2017).

    Google Scholar 

  100. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    CAS  Google Scholar 

  101. Li, H. et al. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 134, 6132–6135 (2012).

    CAS  Google Scholar 

  102. Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009).

    CAS  Google Scholar 

  103. Cho, S. et al. Aharonov–Bohm oscillations in a quasi-ballistic three-dimensional topological insulator nanowire. Nat. Commun. 6, 7634 (2015).

    Google Scholar 

  104. Williams, J. R. et al. Unconventional Josephson effect in hybrid superconductor–topological insulator devices. Phys. Rev. Lett. 109, 056803 (2012).

    CAS  Google Scholar 

  105. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    CAS  Google Scholar 

  106. Sacépé, B. et al. Gate-tuned normal and superconducting transport at the surface of a topological insulator. Nat. Commun. 2, 575 (2011).

    Google Scholar 

  107. Cho, S. et al. Symmetry protected Josephson supercurrents in three-dimensional topological insulators. Nat. Commun. 4, 1689 (2013).

    Google Scholar 

  108. Wang, L.-X., Li, C.-Z., Yu, D.-P. & Liao, Z.-M. Aharonov–Bohm oscillations in Dirac semimetal Cd3As2 nanowires. Nat. Commun. 7, 10769 (2016).

    CAS  Google Scholar 

  109. Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015).

    CAS  Google Scholar 

  110. Li, P. et al. Evidence for topological type-II Weyl semimetal WTe2. Nat. Commun. 8, 2150 (2017).

    Google Scholar 

  111. Cha, J. J., Koski, K. J. & Cui, Y. Topological insulator nanostructures. Phys. Status Solidi Rapid Res. Lett. 7, 15–25 (2013).

    CAS  Google Scholar 

  112. Shen, J. & Cha, J. J. Topological crystalline insulator nanostructures. Nanoscale 6, 14133–14140 (2014).

    CAS  Google Scholar 

  113. Kong, D., Koski, K. J., Cha, J. J., Hong, S. S. & Cui, Y. Ambipolar field effect in Sb-doped Bi2Se3 nanoplates by solvothermal synthesis. Nano Lett. 13, 632–636 (2013).

    CAS  Google Scholar 

  114. Steinberg, H., Gardner, D. R., Lee, Y. S. & Jarillo-Herrero, P. Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Lett. 10, 5032–5036 (2010).

    CAS  Google Scholar 

  115. Hikami, S., Larkin, A. I. & Nagaoka, Y. Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys. 63, 707–710 (1980).

    Google Scholar 

  116. Hamdou, B., Gooth, J., Dorn, A., Pippel, E. & Nielsch, K. Surface state dominated transport in topological insulator Bi2Te3 nanowires. Appl. Phys. Lett. 103, 193107 (2013).

    Google Scholar 

  117. Ning, W. et al. One-dimensional weak antilocalization in single-crystal Bi2Te3 nanowires. Sci. Rep. 3, 1564 (2013).

    Google Scholar 

  118. Cao, H. et al. Quantized Hall effect and Shubnikov–de Haas oscillations in highly doped Bi2Se3: evidence for layered transport of bulk carriers. Phys. Rev. Lett. 108, 216803 (2012).

    Google Scholar 

  119. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    CAS  Google Scholar 

  120. Tang, H., Liang, D., Qiu, R. L. J. & Gao, X. P. A. Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano 5, 7510–7516 (2011).

    CAS  Google Scholar 

  121. McIver, J., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2012).

    CAS  Google Scholar 

  122. Kong, D. et al. Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS Nano 5, 4698–4703 (2011).

    CAS  Google Scholar 

  123. Liu, J., Duan, W. & Fu, L. Two types of surface states in topological crystalline insulators. Phys. Rev. B 88, 241303 (2013).

    Google Scholar 

  124. Assaf, B. A. et al. Quantum coherent transport in SnTe topological crystalline insulator thin films. Appl. Phys. Lett. 105, 102108 (2014).

    Google Scholar 

  125. Katayama, S. & Mills, D. Theory of anomalous resistivity associated with structural phase transitions in IV–VI compounds. Phys. Rev. B 22, 336 (1980).

    CAS  Google Scholar 

  126. Kobayashi, K., Kato, Y., Katayama, Y. & Komatsubara, K. Carrier-concentration-dependent phase transition in SnTe. Phys. Rev. Lett. 37, 772 (1976).

    CAS  Google Scholar 

  127. Kristoffel, N. & Konsin, P. Pseudo-Jahn–Teller effect and second order phase transitions in crystals. Phys. Status Solidi 21, K39–K43 (1967).

    Google Scholar 

  128. Kumaravadivel, P. et al. Synthesis and superconductivity of In-doped SnTe nanostructures. APL Mater. 5, 076110 (2017).

    Google Scholar 

  129. Atherton, S., Steele, B. & Sasaki, S. Unexpected Au alloying in tailoring In-doped SnTe nanostructures with gold nanoparticles. Crystals 7, 78 (2017).

    Google Scholar 

  130. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    CAS  Google Scholar 

  131. Zhang, C. et al. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature 565, 331–336 (2019).

    CAS  Google Scholar 

  132. Moll, P. J. et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2. Nature 535, 266–270 (2016).

    CAS  Google Scholar 

  133. Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    CAS  Google Scholar 

  134. Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018).

    CAS  Google Scholar 

  135. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    CAS  Google Scholar 

  136. Hor, Y. S. et al. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett. 104, 057001 (2010).

    CAS  Google Scholar 

  137. Sasaki, S. et al. Topological superconductivity in CuxBi2Se3. Phys. Rev. Lett. 107, 217001 (2011).

    Google Scholar 

  138. Liu, Z. et al. Superconductivity with topological surface state in SrxBi2Se3. J. Am. Chem. Soc. 137, 10512–10515 (2015).

    CAS  Google Scholar 

  139. Zhao, L. et al. Emergent surface superconductivity in the topological insulator Sb2Te3. Nat. Commun. 6, 8279 (2015).

    Google Scholar 

  140. Novak, M., Sasaki, S., Kriener, M., Segawa, K. & Ando, Y. Unusual nature of fully gapped superconductivity in In-doped SnTe. Phys. Rev. B 88, 140502 (2013).

    Google Scholar 

  141. Sato, T. et al. Fermiology of the strongly spin-orbit coupled superconductor Sn1−xInxTe: implications for topological superconductivity. Phys. Rev. Lett. 110, 206804 (2013).

    CAS  Google Scholar 

  142. Erickson, A. S., Chu, J. H., Toney, M. F., Geballe, T. H. & Fisher, I. R. Enhanced superconducting pairing interaction in indium-doped tin telluride. Phys. Rev. B 79, 024520 (2009).

    Google Scholar 

  143. Kang, D. et al. Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride. Nat. Commun. 6, 7804 (2015).

    Google Scholar 

  144. Pan, X.-C. et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride. Nat. Commun. 6, 7805 (2015).

    Google Scholar 

  145. Qi, Y. et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016).

    CAS  Google Scholar 

  146. Chen, F. C. et al. Superconductivity enhancement in the S-doped Weyl semimetal candidate MoTe2. Appl. Phys. Lett. 108, 162601 (2016).

    Google Scholar 

  147. Sasaki, S. et al. Odd-parity pairing and topological superconductivity in a strongly spin–orbit coupled semiconductor. Phys. Rev. Lett. 109, 217004 (2012).

    Google Scholar 

  148. Koski, K. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 13773–13779 (2012).

    CAS  Google Scholar 

  149. Koski, K. J. et al. High-density chemical intercalation of zero-valent copper into Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 7584–7587 (2012).

    CAS  Google Scholar 

  150. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131 (2001).

    Google Scholar 

  151. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).

    CAS  Google Scholar 

  152. Ivanov, D. A. Non-Abelian statistics of Half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).

    CAS  Google Scholar 

  153. Snyder, R. et al. Weak-link Josephson junctions made from topological crystalline insulators. Phys. Rev. Lett. 121, 097701 (2018).

    CAS  Google Scholar 

  154. Cook, A. M., Vazifeh, M. M. & Franz, M. Stability of Majorana fermions in proximity-coupled topological insulator nanowires. Phys. Rev. B 86, 155431 (2012).

    Google Scholar 

  155. Nomura, K., Koshino, M. & Ryu, S. Topological delocalization of two-dimensional massless Dirac fermions. Phys. Rev. Lett. 99, 146806 (2007).

    Google Scholar 

  156. Bardarson, J. H., Brouwer, P. W. & Moore, J. E. Aharonov–Bohm oscillations in disordered topological insulator nanowires. Phys. Rev. Lett. 105, 156803 (2010).

    CAS  Google Scholar 

  157. Huang, Y. et al. Metamorphosis of Andreev bound states into Majorana bound states in pristine nanowires. Phys. Rev. B 98, 144511 (2018).

    CAS  Google Scholar 

  158. Estrada Saldaña, J. C. et al. Split-channel ballistic transport in an InSb nanowire. Nano Lett. 18, 2282–2287 (2018).

    Google Scholar 

  159. Potter, A. C. & Lee, P. A. Engineering a p + ip superconductor: comparison of topological insulator and Rashba spin–orbit-coupled materials. Phys. Rev. B 83, 184520 (2011).

    Google Scholar 

  160. Liu, P. et al. Dislocation-driven SnTe surface defects during chemical vapor deposition growth. J. Phys. Chem. Solids https://doi.org/10.1016/j.jpcs.2017.12.016 (2017).

    CAS  Google Scholar 

  161. Kim, B. J. et al. Kinetics of individual nucleation events observed in nanoscale vapor–liquid–solid growth. Science 322, 1070–1073 (2008).

    CAS  Google Scholar 

  162. Hannon, J. B., Kodambaka, S., Ross, F. M. & Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006).

    CAS  Google Scholar 

  163. Oh, S. H. et al. Oscillatory mass transport in vapor–liquid–solid growth of sapphire nanowires. Science 330, 489–493 (2010).

    CAS  Google Scholar 

  164. Jacobsson, D. et al. Interface dynamics and crystal phase switching in GaAs nanowires. Nature 531, 317–322 (2016).

    CAS  Google Scholar 

  165. Bhimanapati, G. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015).

    CAS  Google Scholar 

  166. Govind Rajan, A., Warner, J. H., Blankschtein, D. & Strano, M. S. Generalized mechanistic model for the chemical vapor deposition of 2D transition metal dichalcogenide monolayers. ACS Nano 10, 4330–4344 (2016).

    CAS  Google Scholar 

  167. Shi, Y., Li, H. & Li, L.-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44, 2744–2756 (2015).

    CAS  Google Scholar 

  168. Hong, S. et al. Chemical vapor deposition synthesis of MoS2 layers from the direct sulfidation of MoO3 surfaces using reactive molecular dynamics simulations. J. Phys. Chem. C. 122, 7494–7503 (2018).

    CAS  Google Scholar 

  169. Deringer, V. L. & Dronskowski, R. Stability of pristine and defective SnTe surfaces from first principles. ChemPhysChem 14, 3108–3111 (2013).

    CAS  Google Scholar 

  170. Li, Z. et al. Single crystalline nanostructures of topological crystalline insulator SnTe with distinct facets and morphologies. Nano Lett. 13, 5443–5448 (2013).

    CAS  Google Scholar 

  171. Zhang, J., Sun, J., Li, Y., Shi, F. & Cui, Y. Electrochemical control of copper intercalation into nanoscale Bi2Se3. Nano Lett. 17, 1741–1747 (2017).

    CAS  Google Scholar 

  172. Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019).

    CAS  Google Scholar 

  173. Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    CAS  Google Scholar 

  174. Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486–489 (2019).

    CAS  Google Scholar 

  175. Sochnikov, I. et al. Nonsinusoidal current–phase relationship in Josephson junctions from the 3D topological insulator HgTe. Phys. Rev. Lett. 114, 066801 (2015).

    CAS  Google Scholar 

  176. Wang, A.-Q. et al. 4π-periodic supercurrent from surface states in Cd3As2 nanowire-based Josephson junctions. Phys. Rev. Lett. 121, 237701 (2018).

    CAS  Google Scholar 

  177. Furusaki, A. Josephson current carried by Andreev levels in superconducting quantum point contacts. Superlattices Microstruct. 25, 809–818 (1999).

    CAS  Google Scholar 

  178. Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect (Wiley, 1982).

  179. Grbic, B. et al. Aharonov–Bohm oscillations in the presence of strong spin–orbit interactions. Phys. Rev. Lett. 99, 176803 (2007).

    Google Scholar 

  180. Akhmerov, A. R., Dahlhaus, J. P., Hassler, F., Wimmer, M. & Beenakker, C. W. J. Quantized conductance at the Majorana phase transition in a disordered superconducting wire. Phys. Rev. Lett. 106, 057001 (2011).

    CAS  Google Scholar 

  181. Banerjee, M. et al. Observation of half-integer thermal Hall conductance. Nature 559, 205–210 (2018).

    CAS  Google Scholar 

  182. Gibney, E. Thousands of exotic ‘topological’ materials discovered through sweeping search. Nature 560, 151–152 (2018).

    CAS  Google Scholar 

  183. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    CAS  Google Scholar 

  184. Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J. & Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001).

    CAS  Google Scholar 

  185. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002).

    CAS  Google Scholar 

  186. Lauhon, L. J., Gudiksen, M. S., Wang, D. & Lieber, C. M. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002).

    CAS  Google Scholar 

  187. Tang, J., Huo, Z., Brittman, S., Gao, H. & Yang, P. Solution-processed core–shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 6, 568–572 (2011).

    CAS  Google Scholar 

  188. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    CAS  Google Scholar 

  189. Shi, Y. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, 4134–4139 (2010).

    CAS  Google Scholar 

  190. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Google Scholar 

  191. Zhang, K. et al. Controllable synthesis and magnetotransport properties of Cd3As2 Dirac semimetal nanostructures. RSC Adv. 7, 17689–17696 (2017).

    CAS  Google Scholar 

  192. Kim, D. et al. Intrinsic electron–phonon resistivity of Bi2Se3 in the topological regime. Phys. Rev. Lett. 109, 166801 (2012).

    Google Scholar 

  193. Fong, K. C. & Schwab, K. Ultrasensitive and wide-bandwidth thermal measurements of graphene at low temperatures. Phys. Rev. X 2, 031006 (2012).

    Google Scholar 

Download references

Acknowledgements

P.L. is supported by the US National Science Foundation (NSF) DMR 1743896. J.R.W. acknowledges support from NSF DMR 1743913. J.J.C. acknowledges support from the US Department of Energy DE-SC0014476.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and writing of the manuscript.

Corresponding authors

Correspondence to James R. Williams or Judy J. Cha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Williams, J.R. & Cha, J.J. Topological nanomaterials. Nat Rev Mater 4, 479–496 (2019). https://doi.org/10.1038/s41578-019-0113-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0113-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing