Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heusler, Weyl and Berry

Abstract

Heusler compounds, initially discovered by Fritz Heusler more than a century ago, have grown into a family of more than 1,000 compounds, synthesized from combinations of more than 40 elements. Recently, by incorporating heavy elements that can give rise to strong spin–orbit coupling, non-trivial topological phases of matter, such as topological insulators, have been discovered in Heusler materials. Moreover, interplay between the symmetry, spin–orbit coupling and magnetic structure allows for the realization of a wide variety of topological phases through Berry curvature design. The topological properties of Heusler compounds can be manipulated by various external perturbations, resulting in exotic properties, such as the chiral anomaly and large anomalous, spin and topological Hall effects. In addition, the non-zero Berry curvature that arises as a result of non-collinear order gives rise to a non-zero anomalous Hall effect. Besides this k-space Berry curvature, Heusler compounds with non-collinear magnetic structures also possess real-space topological states in the form of magnetic antiskyrmions, which have not yet been observed in other materials. In this Review, we discuss Heusler compounds from a topological perspective and the connection between the topology and the symmetry properties, spin gapless semiconductors, magnetic compensated ferrimagnets, non-collinear order in ferromagnetic and antiferromagnetic Heusler compounds, the anomalous Hall effect and, finally, magnetic antiskyrmions. Together with the new topological viewpoint and the high tunability, novel physical properties and phenomena await discovery in Heusler compounds.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Weyl semimetal state in GdPtBi.
Fig. 2: Influence of symmetry and Berry curvature on the anomalous Hall effect.
Fig. 3: Effect of magnetic compensation on the magnetization and transport properties of full-Heuslers.
Fig. 4: Non-collinear spin structures.
Fig. 5: Tuning the anomalous Hall effect through the Berry curvature.

References

  1. 1.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011). This study on Weyl semimetals indicates the relationship between Weyl points, Berry curvature and surface Fermi arcs.

    Article  CAS  Google Scholar 

  2. 2.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  Google Scholar 

  3. 3.

    Graf, T., Felser, C. & Parkin, S. S. P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Wollmann, L., Nayak, A. K., Parkin, S. S. P. & Felser, C. Heusler 4.0: tunable materials. Annu. Rev. Mater. Res. 47, 247–270 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Heusler, F. Ueber magnetische Manganlegierungen [German]. Verh. Dtsch. Phys. Ges. 5, 219 (1903).

    CAS  Google Scholar 

  6. 6.

    Heusler, F., W. S. & Haupt, E. Magnetisch-Chemische Studien [German]. Verh. Dtsch. Phys. Ges. 5, 220–223 (1903).

    Google Scholar 

  7. 7.

    Heusler, O. Kristallstruktur und Ferromagnetismus der Mangan-Aluminium-Kupferlegierungen [German]. Ann. Phys 411, 155–201 (1934).

    Article  Google Scholar 

  8. 8.

    Bradley, A. J. & Rodgers, J. W. The crystal structure of the Heusler alloys. Proc. R. Soc. A 144, 340–359 (1934).

    CAS  Article  Google Scholar 

  9. 9.

    Zeier, W. G. et al. Engineering half-Heusler thermoelectric materials using Zintl chemistry. Nat. Rev. Mater. 1, 16032 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Casper, F., Graf, T., Chadov, S., Balke, B. & Felser, C. Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond. Sci. Technol. 27, 063001 (2012).

    Article  CAS  Google Scholar 

  11. 11.

    Graf, T., Parkin, S. S. P. & Felser, C. Heusler compounds — a material class with exceptional properties. IEEE Trans. Magn 47, 367–373 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Hem, C. K., Gerhard, H. F. & Claudia, F. Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D. 40, 1507–1523 (2007).

    Article  CAS  Google Scholar 

  13. 13.

    Graf, T. et al. in Handbook of Magnetic Materials Vol. 21 (ed. Buschow, K. H. J.) 1–75 (Elsevier, 2013).

  14. 14.

    Tafti, F. F. et al. Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi: a candidate for topological superconductivity. Phys. Rev. B 87, 184504 (2013).

    Article  CAS  Google Scholar 

  15. 15.

    Nakajima, Y. et al. Topological RPdBi half-Heusler semimetals: a new family of noncentrosymmetric magnetic superconductors. Sci. Adv. 1, e1500242 (2015).

    Article  CAS  Google Scholar 

  16. 16.

    Chadov, S. et al. Tunable multifunctional topological insulators in ternary Heusler compounds. Nat. Mater. 9, 541–545 (2010). This study presents the prediction of the existence of topological insulators in Heusler compounds.

    CAS  Article  Google Scholar 

  17. 17.

    Lin, H. et al. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 9, 546–549 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    Weyl, H. Elektron und Gravitation [German]. Phys. Z. 56, 330–352 (1929). This report defines the Weyl equation and Weyl particles.

    Article  Google Scholar 

  19. 19.

    Weyl, H. Gravitation and the electron. Proc. Natl Acad. Sci. USA 15, 323–334 (1929).

    CAS  Article  Google Scholar 

  20. 20.

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  23. 23.

    Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

    Article  CAS  Google Scholar 

  24. 24.

    Sun, Y., Zhang, Y., Felser, C. & Yan, B. Strong intrinsic spin Hall effect in the TaAs family of Weyl semimetals. Phys. Rev. Lett. 117, 146403 (2016).

    Article  CAS  Google Scholar 

  25. 25.

    Wang, Z. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016).

    Article  CAS  Google Scholar 

  26. 26.

    Chang, G. et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X = Si, Ge, or Sn). Sci. Rep 6, 38839 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Manna, K. et al. From colossal to zero: controlling the anomalous Hall effect in magnetic Heusler compounds via Berry curvature design. Preprint at arXiv https://arxiv.org/abs/1712.10174 (2017).

  28. 28.

    Belopolski, I. et al. A three-dimensional magnetic topological phase. Preprint at arXiv https://arxiv.org/abs/1712.09992 (2017).

  29. 29.

    Shi, W. et al. Prediction of a magnetic Weyl semimetal without spin-orbit coupling and strong anomalous Hall effect in the Heusler compensated ferrimagnet Ti2MnAl. Preprint at arXiv https://arxiv.org/abs/1801.03273 (2018).

  30. 30.

    Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45–57 (1984). This report defines the Berry phase and Berry curvature.

    Article  Google Scholar 

  31. 31.

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    Article  Google Scholar 

  33. 33.

    Shen, S.-Q. in Topological Insulators: Dirac Equation in Condensed Matter (ed. Shen, S.-Q.) 207–229 (Springer, 2017).

  34. 34.

    Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  35. 35.

    Shekhar, C. et al. Observation of chiral magneto-transport in RPtBi topological Heusler compounds. Preprint at arXiv https://arxiv.org/abs/1604.01641 (2016).

  36. 36.

    Kübler, J. & Felser, C. Berry curvature and the anomalous Hall effect in Heusler compounds. Phys. Rev. B 85, 012405 (2012).

    Article  CAS  Google Scholar 

  37. 37.

    Vilanova Vidal, E., Stryganyuk, G., Schneider, H., Felser, C. & Jakob, G. Exploring Co2MnAl Heusler compound for anomalous Hall effect sensors. Appl. Phys. Lett. 99, 132509 (2011).

    Article  Google Scholar 

  38. 38.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  39. 39.

    Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    Haldane, F. D. M. Berry curvature on the Fermi surface: anomalous Hall effect as a topological Fermi-liquid property. Phys. Rev. Lett. 93, 206602 (2004).

    CAS  Article  Google Scholar 

  41. 41.

    Ye, J. et al. Berry phase theory of the anomalous Hall effect: application to colossal magnetoresistance manganites. Phys. Rev. Lett. 83, 3737–3740 (1999).

    CAS  Article  Google Scholar 

  42. 42.

    Steiner, J. F., Andreev, A. V. & Pesin, D. A. Anomalous Hall effect in type-I Weyl metals. Phys. Rev. Lett. 119, 036601 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Burkov, A. A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113, 187202 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    Zyuzin, A. A. & Tiwari, R. P. Intrinsic anomalous Hall effect in type-II Weyl semimetals. JETP Lett. 103, 717–722 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Shekhar, C. et al. Electronic structure and nonsaturating magnetoresistance of superconducting Heusler topological insulators. J. Appl. Phys. 113, 17142E (2013).

    Article  CAS  Google Scholar 

  46. 46.

    Liu, Z. K. et al. Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln = Lu, Y). Nat. Commun 7, 12924 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Yan, B. & de Visser, A. Half-Heusler topological insulators. MRS Bull. 39, 859–866 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    Pan, Y. et al. Superconductivity and magnetic order in the noncentrosymmetric half-Heusler compound ErPdBi. Europhys. Lett. 104, 27001 (2013).

    Article  CAS  Google Scholar 

  49. 49.

    Carter, J.-M., Shankar, V. V., Zeb, M. A. & Kee, H.-Y. Semimetal and topological insulator in perovskite iridates. Phys. Rev. B 85, 115105 (2012).

    Article  CAS  Google Scholar 

  50. 50.

    Zhang, X., Abdalla, L. B., Liu, Q. & Zunger, A. The enabling electronic motif for topological insulation in ABO3 perovskites. Adv. Funct. Mater. 27, 1701266 (2017).

    Article  CAS  Google Scholar 

  51. 51.

    Chen, Y., Lu, Y.-M. & Kee, H.-Y. Topological crystalline metal in orthorhombic perovskite iridates. Nat. Commun. 6, 6593 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    Liu, E. et al. Giant anomalous Hall angle in a half-metallic magnetic Weyl semimetal. Preprint at arXiv https://arxiv.org/abs/1712.06722 (2017).

  53. 53.

    Xu, Q. et al. Topological surface Fermi arcs in magnetic Weyl semimetal Co3Sn2S2. Preprint at arXiv https://arxiv.org/abs/1801.00136 (2017).

  54. 54.

    Xu, Q. et al. Magnetic Weyl semimetal in quasi two-dimensional half metallic Co3Sn2Se2. Preprint at arXiv https://arxiv.org/abs/1712.08915 (2017).

  55. 55.

    Muechler, L., Liu, E., Xu, Q., Felser, C. & Sun, Y. Realization of quantum anomalous Hall effect from a magnetic Weyl semimetal. Preprint at arXiv https://arxiv.org/abs/1712.08115 (2017).

  56. 56.

    Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Preprint at arXiv https://arxiv.org/abs/1712.09947 (2017).

  57. 57.

    Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    CAS  Article  Google Scholar 

  58. 58.

    König, M. et al. The quantum spin Hall effect: theory and experiment. J. Phys. Soc. Jpn 77, 031007 (2008).

    Article  CAS  Google Scholar 

  59. 59.

    Xiao, D. et al. Half-Heusler compounds as a new class of three-dimensional topological insulators. Phys. Rev. Lett. 105, 096404 (2010).

    Article  CAS  Google Scholar 

  60. 60.

    Al-Sawai, W. et al. Topological electronic structure in half-Heusler topological insulators. Phys. Rev. B 82, 125208 (2010).

    Article  CAS  Google Scholar 

  61. 61.

    Logan, J. A. et al. Observation of a topologically non-trivial surface state in half-Heusler PtLuSb (001) thin films. Nat. Commun. 7, 11993 (2016).

    CAS  Article  Google Scholar 

  62. 62.

    Liu, C. et al. Metallic surface electronic state in half-Heusler compounds RPtBi (R = Lu, Dy, Gd). Phys. Rev. B 83, 205133 (2011).

    Article  CAS  Google Scholar 

  63. 63.

    Kumar, N., Felser, C. & Shekhar, C. Planar Hall effect in Weyl semimetal GdPtBi. Preprint at arXiv https://arxiv.org/abs/1711.04133 (2017).

  64. 64.

    Hirschberger, M. et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161–1165 (2016). This is an experimental report of a magnetic-field-induced Weyl semimetal.

    CAS  Article  Google Scholar 

  65. 65.

    Suzuki, T. et al. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016).

    CAS  Article  Google Scholar 

  66. 66.

    Hütt, F. et al. Strong optical evidence of 3D linear electronic bands in GdPtBi in zero magnetic field. Preprint at arXiv https://arxiv.org/abs/1803.00840 (2018).

  67. 67.

    Burkov, A. A. Giant planar Hall effect in topological metals. Phys. Rev. B 96, 041110 (2017).

    Article  Google Scholar 

  68. 68.

    de Groot, R. A., Mueller, F. M., Engen, P. G.v. & Buschow, K. H. J. New class of materials: half-Metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983).

    Article  Google Scholar 

  69. 69.

    Wang, X. L. Proposal for a new class of materials: spin gapless semiconductors. Phys. Rev. Lett. 100, 156404 (2008).

    CAS  Article  Google Scholar 

  70. 70.

    Katsnelson, M. I., Irkhin, V. Y., Chioncel, L., Lichtenstein, A. I. & de Groot, R. A. Half-metallic ferromagnets: from band structure to many-body effects. Rev. Mod. Phys. 80, 315–378 (2008).

    CAS  Article  Google Scholar 

  71. 71.

    Chadov, S., Wu, S.-C., Felser, C. & Galanakis, I. Stability of Weyl points in magnetic half-metallic Heusler compounds. Phys. Rev. B 96, 024435 (2017).

    Article  Google Scholar 

  72. 72.

    Wurmehl, S. et al. Investigation of Co2FeSi: the Heusler compound with highest Curie temperature and magnetic moment. Appl. Phys. Lett. 88, 032503 (2006).

    Article  CAS  Google Scholar 

  73. 73.

    Kandpal, H. C., Fecher, G. H., Felser, C. & Schönhense, G. Correlation in the transition-metal-based Heusler compounds Co2MnSi and Co2FeSi. Phys. Rev. B 73, 094422 (2006).

    Article  CAS  Google Scholar 

  74. 74.

    Jen-Chuan, T. & Guang-Yu, G. High spin polarization of the anomalous Hall current in Co-based Heusler compounds. New Phys, J. 15, 033014 (2013).

    Article  CAS  Google Scholar 

  75. 75.

    Kübler, J. & Felser, C. Weyl points in the ferromagnetic Heusler compound Co2MnAl. Europhys. Lett. 114, 47005 (2016).

    Article  CAS  Google Scholar 

  76. 76.

    Ouardi, S., Fecher, G. H., Felser, C. & Kubler, J. Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl. Phys. Rev. Lett. 110, 100401 (2013).

    Article  CAS  Google Scholar 

  77. 77.

    Jourdan, M. et al. Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nat. Commun. 5, 3974 (2014).

    CAS  Article  Google Scholar 

  78. 78.

    Wang, Y. Y. et al. Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. Phys. Rev. Lett. 109, 137201 (2012).

    CAS  Article  Google Scholar 

  79. 79.

    Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    CAS  Article  Google Scholar 

  80. 80.

    van Leuken, H. & de Groot, R. A. Half-metallic antiferromagnets. Phys. Rev. Lett. 74, 1171–1173 (1995).

    Article  Google Scholar 

  81. 81.

    Hu, X. Half-metallic antiferromagnet as a prospective material for spintronics. Adv. Mater. 24, 294–298 (2012).

    CAS  Article  Google Scholar 

  82. 82.

    Galanakis, I., Dederichs, P. H. & Papanikolaou, N. Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66, 174429 (2002).

    Article  CAS  Google Scholar 

  83. 83.

    Stinshoff, R. et al. Completely compensated ferrimagnetism and sublattice spin crossing in the half-metallic Heusler compound Mn1.5FeV0.5Al. Phys. Rev. B 95, 060410 (2017).

    Article  Google Scholar 

  84. 84.

    Stinshoff, R. et al. Half-metallic compensated ferrimagnetism with a tunable compensation point over a wide temperature range in the Mn-Fe-V-Al Heusler system. AIP Adv. 7, 105009 (2017).

    Article  CAS  Google Scholar 

  85. 85.

    Stinshoff, R. et al. Temperature-dependent charge transport in the compensated ferrimagnet Mn1.5V0.5FeAl from first principles. Preprint at arXiv https://arxiv.org/abs/1710.04453 (2017).

  86. 86.

    Khmelevskyi, S., Simon, E. & Szunyogh, L. Antiferromagnetism in Ru2MnZ (Z = Sn, Sb, Ge, Si) full Heusler alloys: effects of magnetic frustration and chemical disorder. Phys. Rev. B 91, 094432 (2015).

    Article  CAS  Google Scholar 

  87. 87.

    Feng, W. et al. Spin gapless semiconductor like Ti2MnAl film as a new candidate for spintronics application. Phys. Status Solidi RRL 9, 641–645 (2015).

    CAS  Article  Google Scholar 

  88. 88.

    Felser, C., Wollmann, L., Chadov, S., Fecher, G. H. & Parkin, S. S. P. Basics and prospective of magnetic Heusler compounds. APL Mater. 3, 041518 (2015).

    Article  CAS  Google Scholar 

  89. 89.

    Wollmann, L., Chadov, S., Kübler, J. & Felser, C. Magnetism in tetragonal manganese-rich Heusler compounds. Phys. Rev. B 92, 064417 (2015).

    Article  CAS  Google Scholar 

  90. 90.

    Balke, B., Fecher, G. H., Winterlik, J. & Felser, C. Mn3Ga, a compensated ferrimagnet with high Curie temperature and low magnetic moment for spin torque transfer applications. Appl. Phys. Lett. 90, 152504 (2007).

    Article  CAS  Google Scholar 

  91. 91.

    Winterlik, J. et al. Structural, electronic, and magnetic properties of tetragonal Mn3−xGa: experiments and first-principles calculations. Phys. Rev. B 77, 054406 (2008).

    Article  CAS  Google Scholar 

  92. 92.

    Jeong, J. et al. Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy. Nat. Commun. 7, 10276 (2016).

    CAS  Article  Google Scholar 

  93. 93.

    Wollmann, L., Chadov, S., Kübler, J. & Felser, C. Magnetism in cubic manganese-rich Heusler compounds. Phys. Rev. B 90, 214420 (2014).

    Article  CAS  Google Scholar 

  94. 94.

    Nayak, A. K. et al. Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias. Nat. Mater. 14, 679–684 (2015).

    CAS  Article  Google Scholar 

  95. 95.

    Singh, S. et al. Room-temperature tetragonal non-collinear Heusler antiferromagnet Pt2MnGa. Nat. Commun. 7, 12671 (2016).

    CAS  Article  Google Scholar 

  96. 96.

    Sahoo, R. et al. Compensated ferrimagnetic tetragonal Heusler thin films for antiferromagnetic spintronics. Adv. Mater. 28, 8499–8504 (2016).

    CAS  Article  Google Scholar 

  97. 97.

    Krén, E. et al. Magnetic structures and exchange interactions in the Mn-Pt system. Phys. Rev. 171, 574–585 (1968).

    Article  Google Scholar 

  98. 98.

    Krén, E. & Kádár, G. Neutron diffraction study of Mn3Ga. Solid State Commun. 8, 1653–1655 (1970).

    Article  Google Scholar 

  99. 99.

    Nagamiya, T. Triangular spin ordering in Mn3Sn and Mn3Ge. J. Phys. Soc. Jpn 46, 787–792 (1979).

    CAS  Article  Google Scholar 

  100. 100.

    Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn 51, 2478–2486 (1982).

    CAS  Article  Google Scholar 

  101. 101.

    Brown, P. J., Nunez, V., Tasset, F., Forsyth, J. B. & Radhakrishna, P. Determination of the magnetic structure of Mn3Sn using generalized neutron polarization analysis. J. Phys. Condens. Matter 2, 9409–9422 (1990).

    CAS  Article  Google Scholar 

  102. 102.

    Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    CAS  Article  Google Scholar 

  103. 103.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    CAS  Article  Google Scholar 

  104. 104.

    Kübler, J., Höck, K. H., Sticht, J. & Williams, A. R. Local spin-density functional theory of noncollinear magnetism. J. Appl. Phys. 63, 3482–3486 (1988).

    Article  Google Scholar 

  105. 105.

    Sticht, J., Höck, K. H. & Kübler, J. Non-collinear itinerant magnetism: the case of Mn3Sn. J. Phys. Condens. Matter 1, 8155–8170 (1989).

    Article  Google Scholar 

  106. 106.

    Sandratskii, L. M. & Kübler, J. Role of orbital polarization in weak ferromagnetism. Phys. Rev. Lett. 76, 4963–4966 (1996).

    CAS  Article  Google Scholar 

  107. 107.

    Shindou, R. & Nagaosa, N. Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice. Phys. Rev. Lett. 87, 116801 (2001). This is a theoretical study on the AHE in antiferromagnets.

    CAS  Article  Google Scholar 

  108. 108.

    Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article  CAS  Google Scholar 

  109. 109.

    Delin, Z. et al. First-principles study of the structural stability of cubic, tetragonal and hexagonal phases in Mn3Z (Z = Ga, Sn and Ge) Heusler compounds. J. Phys. Condens. Matter 25, 206006 (2013).

    Article  CAS  Google Scholar 

  110. 110.

    Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014). This study presents the prediction that the AHE can be observed in the hexagonal non-collinear antiferromagnetic systems Mn 3 Ge and Mn 3 Sn.

    Article  CAS  Google Scholar 

  111. 111.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). This study reports the experimental observation of the AHE in a non-collinear antiferromagnet, Mn 3 Sn.

    CAS  Article  Google Scholar 

  112. 112.

    Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016). This study presents the largest AHE reported to date in any non-collinear antiferromagnetic system (Mn 3 Ge).

    Article  CAS  Google Scholar 

  113. 113.

    Kiyohara, N., Tomita, T. & Nakatsuji, S. Giant anomalous Hall effect in the chiral antiferromagnet Mn3Ge. Phys. Rev. Appl. 5, 064009 (2016).

    Article  CAS  Google Scholar 

  114. 114.

    Hao, Y. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

    Article  CAS  Google Scholar 

  115. 115.

    Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    Article  Google Scholar 

  116. 116.

    Zhang, Y. et al. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 95, 075128 (2017).

    Article  Google Scholar 

  117. 117.

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  Google Scholar 

  118. 118.

    Mott, N. F. The scattering of fast electrons by atomic nuclei. Proc. R. Soc. A 124, 425–442 (1929).

    CAS  Article  Google Scholar 

  119. 119.

    Zhang, Y., Zelezny, J., Sun, Y., van den Brink, J. & Yan, B. Spin Hall effect emerging from a chiral magnetic lattice without spin-orbit coupling. Preprint at arXiv https://arxiv.org/abs/1704.03917 (2017).

  120. 120.

    Zhang, W. et al. Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2, e1600759 (2016).

    Article  CAS  Google Scholar 

  121. 121.

    Behnia, K. & Aubin, H. Nernst effect in metals and superconductors: a review of concepts and experiments. Rep. Prog. Phys. 79, 046502 (2016).

    Article  Google Scholar 

  122. 122.

    Li, X. et al. Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).

    Article  Google Scholar 

  123. 123.

    Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    CAS  Article  Google Scholar 

  124. 124.

    Kübler, J. & Felser, C. Weyl fermions in antiferromagnetic Mn3Sn and Mn3Ge. Europhys. Lett. 120, 47002 (2017).

    Article  CAS  Google Scholar 

  125. 125.

    Bogdanov, A. N. & Yablonskii, D. Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets. Exp. J. Theor. Phys. 95, 178–182 (1989).

    Google Scholar 

  126. 126.

    Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    CAS  Article  Google Scholar 

  127. 127.

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    CAS  Article  Google Scholar 

  128. 128.

    Nayak, A. K. et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548, 561–566 (2017). The initial report of the observation of an antiskyrmion.

    CAS  Article  Google Scholar 

  129. 129.

    Felser, C. Skyrmions. Angew. Chem. Int. Ed. 52, 1631–1634 (2013).

    CAS  Article  Google Scholar 

  130. 130.

    Koshibae, W. & Nagaosa, N. Theory of antiskyrmions in magnets. Nat. Commun. 7, 10542 (2016).

    CAS  Article  Google Scholar 

  131. 131.

    Hoffmann, M. et al. Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii–Moriya interactions. Nat. Commun. 8, 308 (2017).

    Article  CAS  Google Scholar 

  132. 132.

    Göbel, B., Mook, A., Henk, J. & Mertig, I. Unconventional topological Hall effect in skyrmion crystals caused by the topology of the lattice. Phys. Rev. B 95, 094413 (2017).

    Article  Google Scholar 

  133. 133.

    Rana, K. G. et al. Observation of topological Hall effect in Mn2RhSn films. New J. Phys. 18, 085007 (2016).

    Article  CAS  Google Scholar 

  134. 134.

    Neubauer, A. et al. Topological Hall effect in the A-phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    CAS  Article  Google Scholar 

  135. 135.

    Yin, G., Liu, Y., Barlas, Y., Zang, J. & Lake, R. K. Topological spin Hall effect resulting from magnetic skyrmions. Phys. Rev. B 92, 024411 (2015).

    Article  CAS  Google Scholar 

  136. 136.

    Meshcheriakova, O. et al. Large noncollinearity and spin reorientation in the novel Mn2RhSn Heusler magnet. Phys. Rev. Lett. 113, 087203 (2014).

    CAS  Article  Google Scholar 

  137. 137.

    Olga, M. et al. Structural, electronic, and magnetic properties of perpendicularly magnetised Mn2RhSn thin films. J. Phys. D 48, 164008 (2015).

    Article  CAS  Google Scholar 

  138. 138.

    Yang, H. et al. Prediction of triple point fermions in simple half-Heusler topological insulators. Phys. Rev. Lett. 119, 136401 (2017).

    Article  Google Scholar 

  139. 139.

    Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    Article  CAS  Google Scholar 

  140. 140.

    Yang, W., Xiang, T. & Wu, C. Majorana surface modes of nodal topological pairings in spin-3/2 semimetals. Phys. Rev. B 96, 144514 (2017).

    Article  Google Scholar 

  141. 141.

    Chadova, K. et al. Resonant impurity states in chemically disordered half-Heusler Dirac semimetals. Phys. Rev. B 93, 195102 (2016).

    Article  CAS  Google Scholar 

  142. 142.

    Kübler, J., Fecher, G. H. & Felser, C. in Spintronics: From Materials to Devices (eds Felser, C. & Fecher. G.) 71–95 (Springer, 2013).

  143. 143.

    Balke, B., Kroth, K., Fecher, G. H. & Felser, C. A new diluted magnetic semiconductor: the half-metallic ferromagnet CoTi1−xFexSb. J. Appl. Phys. 103, 07115D (2008).

    Article  CAS  Google Scholar 

  144. 144.

    Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2010).

    Article  CAS  Google Scholar 

  145. 145.

    Yu, X. et al. Observation of the magnetic skyrmion lattice in a MnSi nanowire by Lorentz TEM. Nano Lett. 13, 3755–3759 (2013).

    CAS  Article  Google Scholar 

  146. 146.

    Kanazawa, N. et al. Possible skyrmion-lattice ground state in the B20 chiral-lattice magnet MnGe as seen via small-angle neutron scattering. Phys. Rev. B 86, 134425 (2012).

    Article  CAS  Google Scholar 

  147. 147.

    Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    CAS  Article  Google Scholar 

  148. 148.

    Seki, S., Yu, X. Z., Ishiwata, S. & Tokura, Y. Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).

    CAS  Article  Google Scholar 

  149. 149.

    Tokunaga, Y. et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6, 7638 (2015).

    CAS  Article  Google Scholar 

  150. 150.

    Morikawa, D. et al. Deformation of topologically-protected supercooled skyrmions in a thin plate of chiral magnet Co8Zn8Mn4. Nano Lett. 17, 1637–1641 (2017).

    CAS  Article  Google Scholar 

  151. 151.

    Takagi, R. et al. Spin-wave spectroscopy of the Dzyaloshinskii–Moriya interaction in room-temperature chiral magnets hosting skyrmions. Phys. Rev. B 95, 220406 (2017).

    Article  Google Scholar 

  152. 152.

    Kézsmárki, I. et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 14, 1116–1122 (2015).

    Article  CAS  Google Scholar 

  153. 153.

    Kurumaji, T. et al. Néel-type Skyrmion lattice in the tetragonal polar magnet VOSe2O5. Phys. Rev. Lett. 119, 237201 (2017).

    Article  Google Scholar 

  154. 154.

    Rais, A., Gismelseed, A. M. & Al-Rawas, A. D. Magnetic properties of natural chalcopyrite at low temperature. Mater. Lett. 46, 349–353 (2000).

    CAS  Article  Google Scholar 

  155. 155.

    Caneschi, A., Cipriani, C., Benedetto, F. D. & Sessoli, R. Characterisation of the antiferromagnetic transition of Cu2FeSnS4, the synthetic analogue of stannite. Phys. Chem. Miner. 31, 190–193 (2004).

    CAS  Article  Google Scholar 

  156. 156.

    López-Vergara, F., Galdámez, A., Manríquez, V., Barahona, P. & Peña, O. Cu2Mn1−xCoxSnS4: novel kësterite type solid solutions. J. Solid State Chem. 198, 386–391 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the European Research Council (ERC) Advanced Grant No. 291472 (Idea Heusler), ERC Advanced Grant No. 742068 (TOPMAT) and the Deutsche Forschungsgemeinschaft under Sonderforschungsbereich 1143.

Author information

Affiliations

Authors

Contributions

All authors made a substantial contribution to the discussion of content. K.M., Y.S., L.M. and C.F. researched data for the article. K.M., Y.S. and L.M. wrote the article, and C.F. and J.K. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Claudia Felser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manna, K., Sun, Y., Muechler, L. et al. Heusler, Weyl and Berry. Nat Rev Mater 3, 244–256 (2018). https://doi.org/10.1038/s41578-018-0036-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing