Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extracellular matrix-based materials for regenerative medicine

Abstract

In tissue engineering and regenerative medicine, a biomaterial provides mechanical support and biochemical signals to encourage cell attachment and modulate cell behaviour. Nature’s template for a biomaterial is the extracellular matrix (ECM). The ECM contains intrinsic biochemical and mechanical cues that regulate cell phenotype and function in development, in homeostasis and in response to injury. The use of ECM-based materials in biomedical research has advanced from coating cell culture plates with purified ECM components to the design of ECM-mimicking biomaterials and the engineering of decellularized tissues aimed at recapitulating the dynamics, composition and structure of the ECM. In this Review, we highlight important matrix properties and functions in the context of tissue engineering and regenerative medicine, consider techniques such as proteomics for the investigation of matrix structure and composition and discuss different engineering strategies for the design of matrix-mimicking biomaterials. Tissue, whole organ and cell culture decellularization approaches are examined for their potential to preserve the tissue-specific biochemical composition and ultrastructure of the ECM and for the development of biomaterials that promote the formation of functional tissues in clinical applications. Finally, we investigate challenges and opportunities of ECM biomaterials for the design of organotypic models to study disease progression, for the ex vivo creation of engineered tissue and for the clinical translation of functional tissue reconstruction strategies in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestones of decellularization technologies.
Fig. 2: Cell–extracellular matrix interactions and matrix remodelling.
Fig. 3: Fabrication of extracellular matrix biomaterials.
Fig. 4: Decellularization strategies.
Fig. 5: Constructive remodelling by extracellular matrix biomaterials.

Similar content being viewed by others

References

  1. Mecham, R. P. Overview of extracellular matrix. Curr. Protoc. Cell Biol. Chapter 57, 10.1.1–10.1.16 (2012).

    Google Scholar 

  2. Yannas, I. V., Burke, J. F., Orgill, D. P. & Skrabut, E. M. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 215, 174–176 (1982).

    Article  CAS  Google Scholar 

  3. Ozbek, S., Balasubramanian, P. G., Chiquet-Ehrismann, R., Tucker, R. P. & Adams, J. C. The evolution of extracellular matrix. Mol. Biol. Cell 21, 4300–4305 (2010).

    Article  Google Scholar 

  4. Hynes, R. O. The evolution of metazoan extracellular matrix. J. Cell Biol. 196, 671–679 (2012).

    Article  CAS  Google Scholar 

  5. Huxley-Jones, J., Robertson, D. L. & Boot-Handford, R. P. On the origins of the extracellular matrix in vertebrates. Matrix Biol. 26, 2–11 (2007).

    Article  CAS  Google Scholar 

  6. Zagris, N. Extracellular matrix in development of the early embryo. Micron 32, 427–438 (2001).

    Article  CAS  Google Scholar 

  7. Leivo, I., Vaheri, A., Timpl, R. & Wartiovaara, J. Appearance and distribution of collagens and laminin in the early mouse embryo. Dev. Biol. 76, 100–114 (1980).

    Article  CAS  Google Scholar 

  8. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    Article  CAS  Google Scholar 

  9. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

    Article  CAS  Google Scholar 

  10. Bornstein, P., McPherson, J. & Sage, H. in Pathobiology of the Endothelial Cell 1st edn (eds Nossel, H. L. & Vogel, H. J.) 215–228 (Academic Press, 1982).

  11. Schultz, G. S., Davidson, J. M., Kirsner, R. S., Bornstein, P. & Herman, I. M. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen. 19, 134–148 (2011).

    Article  Google Scholar 

  12. Yue, B. Biology of the extracellular matrix: an overview. J. Glaucoma 23, S20–23 (2014).

    Article  Google Scholar 

  13. Neve, A., Cantatore, F. P., Maruotti, N., Corrado, A. & Ribatti, D. Extracellular matrix modulates angiogenesis in physiological and pathological conditions. Biomed. Res. Int. 2014, 756078 (2014).

    Article  Google Scholar 

  14. Ahmed, M. & Ffrench-Constant, C. Extracellular matrix regulation of stem cell behavior. Curr. Stem Cell Rep. 2, 197–206 (2016).

    Article  CAS  Google Scholar 

  15. Gattazzo, F., Urciuolo, A. & Bonaldo, P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta 1840, 2506–2519 (2014).

    Article  CAS  Google Scholar 

  16. Sottile, J. Regulation of angiogenesis by extracellular matrix. Biochim. Biophys. Acta 1654, 13–22 (2004).

    CAS  Google Scholar 

  17. Agrawal, V., Brown, B. N., Beattie, A. J., Gilbert, T. W. & Badylak, S. F. Evidence of innervation following extracellular matrix scaffold-mediated remodelling of muscular tissues. J. Tissue Eng. Regen. Med. 3, 590–600 (2009).

    Article  CAS  Google Scholar 

  18. Schultz, G. S. & Wysocki, A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 17, 153–162 (2009).

    Article  Google Scholar 

  19. Agren, M. S. & Werthen, M. The extracellular matrix in wound healing: a closer look at therapeutics for chronic wounds. Int. J. Low. Extrem. Wounds 6, 82–97 (2007).

    Article  Google Scholar 

  20. Xue, M. & Jackson, C. J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care 4, 119–136 (2015).

    Article  Google Scholar 

  21. Wolfe, P. S., Sell, S. A. & Bowlin, G. L. in Tissue Engineering: From Lab to Clinic (eds Pallua, N. & Christoph Suscheck, C. V.) 41–67 (Springer, Berlin Heidelberg, 2011).

  22. Cruz-Acuna, R. & Garcia, A. J. Synthetic hydrogels mimicking basement membrane matrices to promote cell-matrix interactions. Matrix Biol. 57–58, 324–333 (2017).

    Article  CAS  Google Scholar 

  23. Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31, 4639–4656 (2010).

    Article  CAS  Google Scholar 

  24. Gao, C. et al. Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int. J. Mol. Sci. 15, 4714–4732 (2014).

    Article  CAS  Google Scholar 

  25. Ruvinov, E. & Cohen, S. Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook:from ocean algae to patient bedside. Adv. Drug Deliv. Rev. 96, 54–76 (2016).

    Article  CAS  Google Scholar 

  26. Baranwal, A. et al. Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int. J. Biol Macromol. 110, 110–123 (2018).

    Article  CAS  Google Scholar 

  27. Courtenay, J. C. et al. Surface modified cellulose scaffolds for tissue engineering. Cellulose 24, 253–267 (2017).

    Article  CAS  Google Scholar 

  28. Wang, Y., Kim, H. J., Vunjak-Novakovic, G. & Kaplan, D. L. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27, 6064–6082 (2006).

    Article  CAS  Google Scholar 

  29. Gomes, M. et al. in Handbook of Biopolymers and Biodegradable Plastics (ed. Ebnesajjad, S.) 385–425 (William Andrew Publishing, 2013).

  30. Young, J. L., Holle, A. W. & Spatz, J. P. Nanoscale and mechanical properties of the physiological cell-ECM microenvironment. Exp. Cell Res. 343, 3–6 (2016).

    Article  CAS  Google Scholar 

  31. Miller, R. T. Mechanical properties of basement membrane in health and disease. Matrix Biol. 57–58, 366–373 (2017).

    Article  CAS  Google Scholar 

  32. Muiznieks, L. D. & Keeley, F. W. Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim. Biophys. Acta 1832, 866–875 (2013).

    Article  CAS  Google Scholar 

  33. Stylianopoulos, T. et al. Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys. J. 99, 1342–1349 (2010).

    Article  CAS  Google Scholar 

  34. Taipale, J. & Keski-Oja, J. Growth factors in the extracellular matrix. FASEB J. 11, 51–59 (1997).

    Article  CAS  Google Scholar 

  35. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    Article  CAS  Google Scholar 

  36. Kim, S. H., Turnbull, J. & Guimond, S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209, 139–151 (2011).

    Article  CAS  Google Scholar 

  37. Escobedo-Lucea, C. et al. Development of a human extracellular matrix for applications related with stem cells and tissue engineering. Stem Cell Rev. 8, 170–183 (2012).

    Article  Google Scholar 

  38. Heino, J. & Kapyla, J. Cellular receptors of extracellular matrix molecules. Curr. Pharm. Des. 15, 1309–1317 (2009).

    Article  CAS  Google Scholar 

  39. Campbell, I. D. & Humphries, M. J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 3, a004994 (2011).

    Article  CAS  Google Scholar 

  40. Horton, E. R., Astudillo, P., Humphries, M. J. & Humphries, J. D. Mechanosensitivity of integrin adhesion complexes: role of the consensus adhesome. Exp. Cell Res. 343, 7–13 (2016).

    Article  CAS  Google Scholar 

  41. Rozario, T. & DeSimone, D. W. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol. 341, 126–140 (2010).

    Article  CAS  Google Scholar 

  42. Nelson, C. M. & Bissell, M. J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 22, 287–309 (2006).

    Article  CAS  Google Scholar 

  43. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    Article  CAS  Google Scholar 

  44. Tottey, S. et al. The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials 32, 128–136 (2011).

    Article  CAS  Google Scholar 

  45. Kular, J. K., Basu, S. & Sharma, R. I. The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J. Tissue Eng. 5, 2041731414557112 (2014).

    Article  Google Scholar 

  46. Chester, D. & Brown, A. C. The role of biophysical properties of provisional matrix proteins in wound repair. Matrix Biol. 60–61, 124–140 (2017).

    Article  CAS  Google Scholar 

  47. Lampi, M. C. & Reinhart-King, C. A. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci. Transl Med. 10, eaao0475 (2018).

    Article  Google Scholar 

  48. Diegelmann, R. F. & Evans, M. C. Wound healing: an overview of acute, fibrotic and delayed healing. Front. Biosci. 9, 283–289 (2004).

    Article  CAS  Google Scholar 

  49. Kim, H. E. et al. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J. Clin. Invest. 106, 857–866 (2000).

    Article  CAS  Google Scholar 

  50. Bondeson, J., Wainwright, S., Hughes, C. & Caterson, B. The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis: a review. Clin. Exp. Rheumatol 26, 139–145 (2008).

    CAS  Google Scholar 

  51. Houghton, A. M. Matrix metalloproteinases in destructive lung disease. Matrix Biol. 44–46, 167–174 (2015).

    Article  CAS  Google Scholar 

  52. Badylak, S. F. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol. 12, 367–377 (2004).

    Article  CAS  Google Scholar 

  53. van der Rest, M. & Garrone, R. Collagen family of proteins. FASEB J. 5, 2814–2823 (1991).

    Article  Google Scholar 

  54. Mouw, J. K., Ou, G. & Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15, 771–785 (2014).

    Article  CAS  Google Scholar 

  55. Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 3, a004978 (2011).

    Article  Google Scholar 

  56. Kowitsch, A., Zhou, G. & Groth, T. Medical application of glycosaminoglycans: a review. J. Tissue Eng. Regen. Med. 12, e23–e41 (2018).

    Article  CAS  Google Scholar 

  57. Aumailley, M. The laminin family. Cell Adh. Migr. 7, 48–55 (2013).

    Article  Google Scholar 

  58. Zollinger, A. J. & Smith, M. L. Fibronectin, the extracellular glue. Matrix Biol. 60–61, 27–37 (2017).

    Article  CAS  Google Scholar 

  59. Midwood, K. S., Chiquet, M., Tucker, R. P. & Orend, G. Tenascin-C at a glance. J. Cell Sci. 129, 4321–4327 (2016).

    Article  CAS  Google Scholar 

  60. Kanie, K. et al. Focused screening of ECM-selective adhesion peptides on cellulose-bound peptide microarrays. Bioengineering 3, 31 (2016).

    Article  CAS  Google Scholar 

  61. Bellis, S. L. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 32, 4205–4210 (2011).

    Article  CAS  Google Scholar 

  62. Hubbell, J. A., Massia, S. P., Desai, N. P. & Drumheller, P. D. Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechnology 9, 568–572 (1991).

    CAS  Google Scholar 

  63. Gobin, A. S. & West, J. L. Val-ala-pro-gly, an elastin-derived non-integrin ligand: smooth muscle cell adhesion and specificity. J. Biomed. Mater. Res. A 67, 255–259 (2003).

    Article  CAS  Google Scholar 

  64. Robins, S. P. Biochemistry and functional significance of collagen cross-linking. Biochem. Soc. Trans. 35, 849–852 (2007).

    Article  CAS  Google Scholar 

  65. Hynes, R. O. & Naba, A. Overview of the matrisome — an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4, a004903 (2012).

    Article  CAS  Google Scholar 

  66. Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteom. https://doi.org/10.1074/mcp.M111.014647 (2012).

    Article  Google Scholar 

  67. Li, F. et al. Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells. Endothelium 11, 199–206 (2004).

    Article  CAS  Google Scholar 

  68. Davis, G. E., Bayless, K. J., Davis, M. J. & Meininger, G. A. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am. J. Pathol. 156, 1489–1498 (2000).

    Article  CAS  Google Scholar 

  69. Banerjee, P. & Shanthi, C. Cryptic peptides from collagen: a critical review. Protein Pept. Lett. 23, 664–672 (2016).

    Article  CAS  Google Scholar 

  70. Sicari, B. M., Zhang, L., Londono, R. & Badylak, S. F. An assay to quantify chemotactic properties of degradation products from extracellular matrix. Methods Mol. Biol. 1202, 103–110 (2014).

    Article  CAS  Google Scholar 

  71. Agrawal, V. et al. Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation. Tissue Eng. Part A 17, 2435–2443 (2011).

    Article  CAS  Google Scholar 

  72. Agrawal, V. et al. An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation. Tissue Eng. Part A 17, 3033–3044 (2011).

    Article  CAS  Google Scholar 

  73. Ames, J. J. et al. Identification of an endogenously generated cryptic collagen epitope (XL313) that may selectively regulate angiogenesis by an integrin Yes-associated protein (YAP) mechano-transduction pathway. J. Biol. Chem. 291, 2731–2750 (2016).

    Article  CAS  Google Scholar 

  74. Adair-Kirk, T. L. & Senior, R. M. Fragments of extracellular matrix as mediators of inflammation. Int. J. Biochem. Cell Biol. 40, 1101–1110 (2008).

    Article  CAS  Google Scholar 

  75. Huleihel, L. et al. Matrix-bound nanovesicles within ECM bioscaffolds. Sci. Adv. 2, e1600502 (2016).

    Article  CAS  Google Scholar 

  76. Faust, A. et al. Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching. J. Biomater. Appl. 31, 1277–1295 (2017).

    Article  CAS  Google Scholar 

  77. Huleihel, L. et al. Matrix-Bound Nanovesicles Recapitulate Extracellular Matrix Effects on Macrophage Phenotype. Tissue Eng. Part A 23, 1283–1294 (2017).

    Article  CAS  Google Scholar 

  78. Calle, E. A. et al. Targeted proteomics effectively quantifies differences between native lung and detergent-decellularized lung extracellular matrices. Acta Biomater. 46, 91–100 (2016).

    Article  CAS  Google Scholar 

  79. Hill, R. C., Calle, E. A., Dzieciatkowska, M., Niklason, L. E. & Hansen, K. C. Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering. Mol. Cell. Proteom. 14, 961–973 (2015).

    Article  CAS  Google Scholar 

  80. Goddard, E. T. et al. Quantitative extracellular matrix proteomics to study mammary and liver tissue microenvironments. Int. J. Biochem. Cell Biol. 81, 223–232 (2016).

    Article  CAS  Google Scholar 

  81. Naba, A. et al. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 49, 10–24 (2016).

    Article  CAS  Google Scholar 

  82. Glavey, S. V. et al. Proteomic characterization of human multiple myeloma bone marrow extracellular matrix. Leukemia 31, 2426–2434 (2017).

    Article  CAS  Google Scholar 

  83. Naba, A. et al. Characterization of the extracellular matrix of normal and diseased tissues using proteomics. J. Proteome Res. 16, 3083–3091 (2017).

    Article  CAS  Google Scholar 

  84. FitzGerald, J. F. & Kumar, A. S. Biologic versus synthetic mesh reinforcement: what are the pros and cons? Clin. Colon Rectal Surg. 27, 140–148 (2014).

    Article  Google Scholar 

  85. Kao, W. J., Zhao, Q. H., Hiltner, A. & Anderson, J. M. Theoretical analysis of in vivo macrophage adhesion and foreign body giant cell formation on polydimethylsiloxane, low density polyethylene, and polyetherurethanes. J. Biomed. Mater. Res. 28, 73–79 (1994).

    Article  CAS  Google Scholar 

  86. Klinge, U., Klosterhalfen, B., Muller, M. & Schumpelick, V. Foreign body reaction to meshes used for the repair of abdominal wall hernias. Eur. J. Surg. 165, 665–673 (1999).

    Article  CAS  Google Scholar 

  87. Luttikhuizen, D. T., Harmsen, M. C. & Van Luyn, M. J. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng. 12, 1955–1970 (2006).

    Article  CAS  Google Scholar 

  88. Brown, B. N. et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8, 978–987 (2012).

    Article  CAS  Google Scholar 

  89. Allman, A. J. et al. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation 71, 1631–1640 (2001).

    Article  CAS  Google Scholar 

  90. Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178 (2003).

    Article  CAS  Google Scholar 

  91. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    Article  CAS  Google Scholar 

  92. Halstenberg, S., Panitch, A., Rizzi, S., Hall, H. & Hubbell, J. A. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3, 710–723 (2002).

    Article  CAS  Google Scholar 

  93. Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).

    Article  CAS  Google Scholar 

  94. Mahoney, M. J. & Saltzman, W. M. Transplantation of brain cells assembled around a programmable synthetic microenvironment. Nat. Biotechnol. 19, 934–939 (2001).

    Article  CAS  Google Scholar 

  95. Liu, C. Y., Apuzzo, M. L. & Tirrell, D. A. Engineering of the extracellular matrix: working toward neural stem cell programming and neurorestoration — concept and progress report. Neurosurgery 52, 1154–1165 (2003).

    Google Scholar 

  96. Anderson, D. G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat. Biotechnol. 22, 863–866 (2004).

    Article  CAS  Google Scholar 

  97. Lutolf, M. P. et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol. 21, 513–518 (2003).

    Article  CAS  Google Scholar 

  98. Zisch, A. H. et al. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 17, 2260–2262 (2003).

    Article  CAS  Google Scholar 

  99. Meran, L., Baulies, A. & Li, V. S. W. Intestinal stem cell niche: the extracellular matrix and cellular components. Stem Cells Int. 2017, 7970385 (2017).

    Article  Google Scholar 

  100. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    Article  CAS  Google Scholar 

  101. Cruz-Acuna, R. et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat. Cell Biol. 19, 1326–1335 (2017).

    Article  CAS  Google Scholar 

  102. Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).

    Article  CAS  Google Scholar 

  103. Drinnan, C. T., Zhang, G., Alexander, M. A., Pulido, A. S. & Suggs, L. J. Multimodal release of transforming growth factor-beta1 and the BB isoform of platelet derived growth factor from PEGylated fibrin gels. J. Control. Release 147, 180–186 (2010).

    Article  CAS  Google Scholar 

  104. Baker, B. M. & Chen, C. S. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).

    Article  CAS  Google Scholar 

  105. O’Neill, C., Jordan, P. & Ireland, G. Evidence for two distinct mechanisms of anchorage stimulation in freshly explanted and 3T3 Swiss mouse fibroblasts. Cell 44, 489–496 (1986).

    Article  Google Scholar 

  106. Kane, R. S., Takayama, S., Ostuni, E., Ingber, D. E. & Whitesides, G. M. in The Biomaterials: Silver Jubilee Compendium (Williams, D. F.) 161–174 (Elsevier, 2006).

  107. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    Article  CAS  Google Scholar 

  108. Di Cio, S., Boggild, T. M. L., Connelly, J., Sutherland, D. S. & Gautrot, J. E. Differential integrin expression regulates cell sensing of the matrix nanoscale geometry. Acta Biomater. 50, 280–292 (2017).

    Article  CAS  Google Scholar 

  109. McWhorter, F. Y., Wang, T., Nguyen, P., Chung, T. & Liu, W. F. Modulation of macrophage phenotype by cell shape. Proc. Natl Acad. Sci. USA 110, 17253–17258 (2013).

    Article  Google Scholar 

  110. Patel, N. R. et al. Cell elasticity determines macrophage function. PLoS ONE 7, e41024 (2012).

    Article  CAS  Google Scholar 

  111. Hudlicka, O. What makes blood vessels grow? J. Physiol. 444, 1–24 (1991).

    Article  CAS  Google Scholar 

  112. Chen, S., Kawazoe, N. & Chen, G. Biomimetic assembly of vascular endothelial cells and muscle cells in microgrooved collagen porous scaffolds. Tissue Eng. Part C Methods 23, 367–376 (2017).

    Article  CAS  Google Scholar 

  113. Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology 47, 1394–1400 (2008).

    Article  CAS  Google Scholar 

  114. Xie, S. A. et al. Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: role of DNA methyltransferase 1. Biomaterials 155, 203–216 (2018).

    Article  CAS  Google Scholar 

  115. Qiu, Y. et al. A role for matrix stiffness in the regulation of cardiac side population cell function. Am. J. Physiol. Heart Circ. Physiol. 308, H990–997 (2015).

    Article  CAS  Google Scholar 

  116. Kural, M. H. & Billiar, K. L. Regulating tension in three-dimensional culture environments. Exp. Cell Res. 319, 2447–2459 (2013).

    Article  CAS  Google Scholar 

  117. Boudreau, N., Werb, Z. & Bissell, M. J. Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle. Proc. Natl Acad. Sci. USA 93, 3509–3513 (1996).

    Article  CAS  Google Scholar 

  118. Emerman, J. T., Burwen, S. J. & Pitelka, D. R. Substrate properties influencing ultrastructural differentiation of mammary epithelial cells in culture. Tissue Cell 11, 109–119 (1979).

    Article  CAS  Google Scholar 

  119. Farmer, S. R., Ben-Ze’av, A., Benecke, B. J. & Penman, S. Altered translatability of messenger RNA from suspended anchorage-dependent fibroblasts: reversal upon cell attachment to a surface. Cell 15, 627–637 (1978).

    Article  CAS  Google Scholar 

  120. Roskelley, C. D., Desprez, P. Y. & Bissell, M. J. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc. Natl Acad. Sci. USA 91, 12378–12382 (1994).

    Article  CAS  Google Scholar 

  121. Seeman, N. C. & Belcher, A. M. Emulating biology: building nanostructures from the bottom up. Proc. Natl Acad. Sci. USA 99 (Suppl. 2), 6451–6455 (2002).

    Article  CAS  Google Scholar 

  122. Djalali, R., Chen, Y. F. & Matsui, H. Au nanowire fabrication from sequenced histidine-rich peptide. J. Am. Chem. Soc. 124, 13660–13661 (2002).

    Article  CAS  Google Scholar 

  123. Hamad-Schifferli, K., Schwartz, J. J., Santos, A. T., Zhang, S. & Jacobson, J. M. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415, 152–155 (2002).

    Article  Google Scholar 

  124. Mao, C. et al. Viral assembly of oriented quantum dot nanowires. Proc. Natl Acad. Sci. USA 100, 6946–6951 (2003).

    Article  CAS  Google Scholar 

  125. Aggeli, A. et al. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers. Proc. Natl Acad. Sci. USA 98, 11857–11862 (2001).

    Article  CAS  Google Scholar 

  126. Vaquette, C. & Cooper-White, J. A simple method for fabricating 3D multilayered composite scaffolds. Acta Biomater. 9, 4599–4608 (2013).

    Article  CAS  Google Scholar 

  127. Sill, T. J. & von Recum, H. A. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29, 1989–2006 (2008).

    Article  CAS  Google Scholar 

  128. Nam, J., Huang, Y., Agarwal, S. & Lannutti, J. Materials selection and residual solvent retention in biodegradable electrospun fibers. J. Appl. Polym. Sci. 107, 1547–1554 (2008).

    Article  CAS  Google Scholar 

  129. Khorshidi, S. et al. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J. Tissue Eng. Regen. Med. 10, 715–738 (2016).

    Article  CAS  Google Scholar 

  130. Du, J. et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater. 55, 296–309 (2017).

    Article  CAS  Google Scholar 

  131. Fleischer, S., Shapira, A., Feiner, R. & Dvir, T. Modular assembly of thick multifunctional cardiac patches. Proc. Natl Acad. Sci. USA 114, 1898–1903 (2017).

    Article  CAS  Google Scholar 

  132. Thakkar, S., Fernandes, H. & Moroni, L. Decellularized extracellular matrix scaffolds for cartilage regeneration. Methods Mol. Biol. 1340, 133–151 (2015).

    Article  CAS  Google Scholar 

  133. Bridge, J. C. et al. Adapting the electrospinning process to provide three unique environments for a tri-layered in vitro model of the airway wall. J. Vis. Exp. 101, e52986 (2015).

    Google Scholar 

  134. Jang, J., Park, J. Y., Gao, G. & Cho, D. W. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials 156, 88–106 (2018).

    Article  CAS  Google Scholar 

  135. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    Article  CAS  Google Scholar 

  136. Ji, S. & Guvendiren, M. Recent advances in bioink design for 3D bioprinting of tissues and organs. Front. Bioeng. Biotechnol. 5, 23 (2017).

    Article  Google Scholar 

  137. Shah, A. M., Jung, H. & Skirboll, S. Materials used in cranioplasty: a history and analysis. Neurosurg. Focus 36, E19 (2014).

    Article  Google Scholar 

  138. Zopf, D. A., Hollister, S. J., Nelson, M. E., Ohye, R. G. & Green, G. E. Bioresorbable airway splint created with a three-dimensional printer. N. Engl. J. Med. 368, 2043–2045 (2013).

    Article  CAS  Google Scholar 

  139. Yi, H. G., Lee, H. & Cho, D. W. 3D printing of organs-on-chips. Bioengineering 4, 10 (2017).

    Article  CAS  Google Scholar 

  140. Pati, F. et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5, 3935 (2014).

    Article  CAS  Google Scholar 

  141. Hinton, T. J. et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1, e1500758 (2015).

    Article  CAS  Google Scholar 

  142. Jang, J. et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112, 264–274 (2017).

    Article  CAS  Google Scholar 

  143. Lee, J. S. et al. Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules 15, 206–218 (2014).

    Article  CAS  Google Scholar 

  144. Drury, J. L. & Mooney, D. J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337–4351 (2003).

    Article  CAS  Google Scholar 

  145. Kumar, A. C. & Erothu, H. in Biomedical Applications of Polymeric Materials and Composites (Francis, R. & Kumar, D. S.) 141–162 (Wiley-VCH, 2016).

  146. Geckil, H., Xu, F., Zhang, X., Moon, S. & Demirci, U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine 5, 469–484 (2010).

    Article  CAS  Google Scholar 

  147. Vega, S. L., Kwon, M. Y. & Burdick, J. A. Recent advances in hydrogels for cartilage tissue engineering. Eur. Cell. Mater. 33, 59–75 (2017).

    Article  CAS  Google Scholar 

  148. Snyder, T. N., Madhavan, K., Intrator, M., Dregalla, R. C. & Park, D. A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. J. Biol. Eng. 8, 10 (2014).

    Article  CAS  Google Scholar 

  149. Brigham, M. D. et al. Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng. Part A 15, 1645–1653 (2009).

    Article  CAS  Google Scholar 

  150. Guo, Y. et al. Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. J. Mater. Sci. Mater. Med. 23, 2267–2279 (2012).

    Article  CAS  Google Scholar 

  151. Kleinman, H. K. & Martin, G. R. Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15, 378–386 (2005).

    Article  CAS  Google Scholar 

  152. Freytes, D. O., Martin, J., Velankar, S. S., Lee, A. S. & Badylak, S. F. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 29, 1630–1637 (2008).

    Article  CAS  Google Scholar 

  153. Voytik-Harbin, S. L., Brightman, A. O., Waisner, B. Z., Robinson, J. P. & Lamar, C. H. Small intestinal submucosa: a tissue-derived extracellular matrix that promotes tissue-specific growth and differentiation of cells in vitro. Tissue Engineer. 4, 157–174 (1998).

    Article  Google Scholar 

  154. Keane, T. J. et al. Restoring mucosal barrier function and modifying macrophage phenotype with an extracellular matrix hydrogel: potential therapy for ulcerative colitis. J. Crohns Colitis 11, 360–368 (2017).

    Google Scholar 

  155. Wu, Y. et al. Implantation of brain-derived extracellular matrix enhances neurological recovery after traumatic brain injury. Cell Transplant. 26, 1224–1234 (2017).

    Article  Google Scholar 

  156. Ghuman, H. et al. Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume. Acta Biomater. 63, 50–63 (2017).

    Article  CAS  Google Scholar 

  157. Massensini, A. R. et al. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity. Acta Biomater. 27, 116–130 (2015).

    Article  CAS  Google Scholar 

  158. Keane, T. J. et al. Tissue-specific effects of esophageal extracellular matrix. Tissue Eng. Part A 21, 2293–2300 (2015).

    Article  CAS  Google Scholar 

  159. Lindberg, K. & Badylak, S. F. Porcine small intestinal submucosa (SIS): a bioscaffold supporting in vitro primary human epidermal cell differentiation and synthesis of basement membrane proteins. Burns 27, 254–266 (2001).

    Article  CAS  Google Scholar 

  160. Faulk, D. M. et al. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials 35, 8585–8595 (2014).

    Article  CAS  Google Scholar 

  161. Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J. & Badylak, S. F. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomater. 49, 1–15 (2017).

    Article  CAS  Google Scholar 

  162. Tibbitt, M. W. & Anseth, K. S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009).

    Article  CAS  Google Scholar 

  163. Ruedinger, F., Lavrentieva, A., Blume, C., Pepelanova, I. & Scheper, T. Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice. Appl. Microbiol. Biotechnol. 99, 623–636 (2015).

    Article  CAS  Google Scholar 

  164. Wolf, M. T. et al. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 33, 7028–7038 (2012).

    Article  CAS  Google Scholar 

  165. Medberry, C. J. et al. Hydrogels derived from central nervous system extracellular matrix. Biomaterials 34, 1033–1040 (2013).

    Article  CAS  Google Scholar 

  166. Ungerleider, J. L. et al. Extracellular matrix hydrogel promotes tissue remodeling, arteriogenesis, and perfusion in a rat hindlimb ischemia model. JACC Bas. Transl Sci. 1, 32–44 (2016).

    Article  Google Scholar 

  167. Fu, Y. et al. Decellularization of porcine skeletal muscle extracellular matrix for the formulation of a matrix hydrogel: a preliminary study. J. Cell. Mol. Med. 20, 740–749 (2016).

    Article  CAS  Google Scholar 

  168. Wu, J. et al. An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater. 16, 49–59 (2015).

    Article  CAS  Google Scholar 

  169. Keane, T. J. et al. Preparation and characterization of a biologic scaffold and hydrogel derived from colonic mucosa. J. Biomed. Mater. Res. B Appl. Biomater. 105, 291–306 (2017).

    Article  CAS  Google Scholar 

  170. Uriel, S. et al. Extraction and assembly of tissue-derived gels for cell culture and tissue engineering. Tissue Eng. Part C Methods 15, 309–321 (2009).

    Article  CAS  Google Scholar 

  171. Paduano, F., Marrelli, M., White, L. J., Shakesheff, K. M. & Tatullo, M. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS ONE 11, e0148225 (2016).

    Article  CAS  Google Scholar 

  172. Uriel, S. et al. The role of adipose protein derived hydrogels in adipogenesis. Biomaterials 29, 3712–3719 (2008).

    Article  CAS  Google Scholar 

  173. Ungerleider, J. L. & Christman, K. L. Concise review: injectable biomaterials for the treatment of myocardial infarction and peripheral artery disease: translational challenges and progress. Stem Cells Transl Med. 3, 1090–1099 (2014).

    Article  CAS  Google Scholar 

  174. Hernandez, M. J. & Christman, K. L. Designing acellular injectable biomaterial therapeutics for treating myocardial infarction and peripheral artery disease. JACC Bas. Transl Sci. 2, 212–226 (2017).

    Article  Google Scholar 

  175. Wassenaar, J. W. et al. Evidence for mechanisms underlying the functional benefits of a myocardial matrix hydrogel for post-MI treatment. J. Am. Coll. Cardiol. 67, 1074–1086 (2016).

    Article  Google Scholar 

  176. Poel, W. E. Preparation of acellular homogenates from muscle samples. Science 108, 390–391 (1948).

    Article  CAS  Google Scholar 

  177. Meezan, E., Hjelle, J. T., Brendel, K. & Carlson, E. C. A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci. 17, 1721–1732 (1975).

    Article  CAS  Google Scholar 

  178. Rojkind, M. et al. Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal rat hepatocytes. J. Cell Biol. 87, 255–263 (1980).

    Article  CAS  Google Scholar 

  179. Badylak, S. F. et al. The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J. Biomed. Mater. Res. 29, 977–985 (1995).

    Article  CAS  Google Scholar 

  180. Wainwright, D. J. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21, 243–248 (1995).

    Article  CAS  Google Scholar 

  181. Ott, H. C. et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14, 213–221 (2008).

    Article  CAS  Google Scholar 

  182. Scarritt, M. E., Pashos, N. C. & Bunnell, B. A. A review of cellularization strategies for tissue engineering of whole organs. Front. Bioeng. Biotechnol. 3, 43 (2015).

    Article  Google Scholar 

  183. Keane, T. J., Swinehart, I. T. & Badylak, S. F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 84, 25–34 (2015).

    Article  CAS  Google Scholar 

  184. Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233–3243 (2011).

    Article  CAS  Google Scholar 

  185. Dearth, C. L. et al. The effect of terminal sterilization on the material properties and in vivo remodeling of a porcine dermal biologic scaffold. Acta Biomater. 33, 78–87 (2016).

    Article  CAS  Google Scholar 

  186. Wong, M. L. & Griffiths, L. G. Immunogenicity in xenogeneic scaffold generation: antigen removal versus decellularization. Acta Biomater. 10, 1806–1816 (2014).

    Article  CAS  Google Scholar 

  187. Wong, M. L., Wong, J. L., Vapniarsky, N. & Griffiths, L. G. In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation. Biomaterials 92, 1–12 (2016).

    Article  CAS  Google Scholar 

  188. Cissell, D. D., Hu, J. C., Griffiths, L. G. & Athanasiou, K. A. Antigen removal for the production of biomechanically functional, xenogeneic tissue grafts. J. Biomechan. 47, 1987–1996 (2014).

    Article  Google Scholar 

  189. Matuska, A. M. & McFetridge, P. S. The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesion. J. Biomed. Mater. Res. B Appl. Biomater. 103, 397–406 (2015).

    Article  CAS  Google Scholar 

  190. Keane, T. J. & Badylak, S. F. The host response to allogeneic and xenogeneic biological scaffold materials. J. Tissue Eng. Regen. Med. 9, 504–511 (2015).

    Article  CAS  Google Scholar 

  191. Freytes, D. O., Tullius, R. S. & Badylak, S. F. Effect of storage upon material properties of lyophilized porcine extracellular matrix derived from the urinary bladder. J. Biomed. Mater. Res. B Appl. Biomater. 78, 327–333 (2006).

    Article  CAS  Google Scholar 

  192. Freytes, D. O., Tullius, R. S., Valentin, J. E., Stewart-Akers, A. M. & Badylak, S. F. Hydrated versus lyophilized forms of porcine extracellular matrix derived from the urinary bladder. J. Biomed. Mater. Res. A 87, 862–872 (2008).

    Article  CAS  Google Scholar 

  193. Burk, J. et al. Freeze-thaw cycles enhance decellularization of large tendons. Tissue Eng. Part C Methods 20, 276–284 (2014).

    Article  CAS  Google Scholar 

  194. Sasaki, S. et al. In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Mol. Vis. 15, 2022–2028 (2009).

    CAS  Google Scholar 

  195. Funamoto, S. et al. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 31, 3590–3595 (2010).

    Article  CAS  Google Scholar 

  196. Badylak, S. F., Lantz, G. C., Coffey, A. & Geddes, L. A. Small intestinal submucosa as a large diameter vascular graft in the dog. J. Surg. Res. 47, 74–80 (1989).

    Article  CAS  Google Scholar 

  197. Gilbert, T. W. et al. Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials 29, 4775–4782 (2008).

    Article  CAS  Google Scholar 

  198. Hodde, J. et al. Effects of sterilization on an extracellular matrix scaffold: part I. Composition and matrix architecture. J. Mater. Sci. Mater. Med. 18, 537–543 (2007).

    Article  CAS  Google Scholar 

  199. Reing, J. E. et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials 31, 8626–8633 (2010).

    Article  CAS  Google Scholar 

  200. Cox, B. & Emili, A. Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nat. Protoc. 1, 1872–1878 (2006).

    Article  CAS  Google Scholar 

  201. Xu, C. C., Chan, R. W. & Tirunagari, N. A biodegradable, acellular xenogeneic scaffold for regeneration of the vocal fold lamina propria. Tissue Eng. 13, 551–566 (2007).

    Article  CAS  Google Scholar 

  202. Flynn, L. E. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials 31, 4715–4724 (2010).

    Article  CAS  Google Scholar 

  203. Montoya, C. V. & McFetridge, P. S. Preparation of ex vivo-based biomaterials using convective flow decellularization. Tissue Eng. Part C Methods 15, 191–200 (2009).

    Article  CAS  Google Scholar 

  204. Bolland, F. et al. Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials 28, 1061–1070 (2007).

    Article  CAS  Google Scholar 

  205. Petersen, T. H. et al. Tissue-engineered lungs for in vivo implantation. Science 329, 538–541 (2010).

    Article  CAS  Google Scholar 

  206. Faulk, D. M., Wildemann, J. D. & Badylak, S. F. Decellularization and cell seeding of whole liver biologic scaffolds composed of extracellular matrix. J. Clin. Exp. Hepatol. 5, 69–80 (2015).

    Article  Google Scholar 

  207. Sullivan, D. C. et al. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33, 7756–7764 (2012).

    Article  CAS  Google Scholar 

  208. Sawada, K., Terada, D., Yamaoka, T., Kitamura, S. & Fujisato, T. Cell removal with supercritical carbon dioxide for acellular artificial tissue. J. Chem. Technol. Biot 83, 943–949 (2008).

    Article  CAS  Google Scholar 

  209. Phillips, M., Maor, E. & Rubinsky, B. Nonthermal irreversible electroporation for tissue decellularization. J. Biomech. Eng. 132, 091003 (2010).

    Article  Google Scholar 

  210. Sano, M. B. et al. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed. Eng. Online 9, 83 (2010).

    Article  Google Scholar 

  211. White, L. J. et al. The impact of detergents on the tissue decellularization process: a ToF-SIMS study. Acta Biomater. 50, 207–219 (2017).

    Article  CAS  Google Scholar 

  212. Keane, T. J., Londono, R., Turner, N. J. & Badylak, S. F. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33, 1771–1781 (2012).

    Article  CAS  Google Scholar 

  213. Costa, A. et al. Mechanical strength versus degradation of a biologically-derived surgical mesh over time in a rodent full thickness abdominal wall defect. Biomaterials 108, 81–90 (2016).

    Article  CAS  Google Scholar 

  214. Daly, K. A. et al. Damage associated molecular patterns within xenogeneic biologic scaffolds and their effects on host remodeling. Biomaterials 33, 91–101 (2012).

    Article  CAS  Google Scholar 

  215. Badylak, S. F. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann. Biomed. Engineer. 42, 1517–1527 (2014).

    Article  Google Scholar 

  216. Londono, R. & Badylak, S. F. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann. Biomed. Engineer. 43, 577–592 (2015).

    Article  Google Scholar 

  217. Parmaksiz, M., Dogan, A., Odabas, S., Elcin, A. E. & Elcin, Y. M. Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed. Mater. 11, 022003 (2016).

    Article  CAS  Google Scholar 

  218. Alicuben, E. T. & DeMeester, S. R. Onlay ventral hernia repairs using porcine non-cross-linked dermal biologic mesh. Hernia 18, 705–712 (2014).

    Article  CAS  Google Scholar 

  219. Mase, V. J. Jr. et al. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics 33, 511 (2010).

    Google Scholar 

  220. Badylak, S. F. et al. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng. Part A 17, 1643–1650 (2011).

    Article  CAS  Google Scholar 

  221. Bejjani, G. K., Zabramski, J. & Durasis Study, G. Safety and efficacy of the porcine small intestinal submucosa dural substitute: results of a prospective multicenter study and literature review. J. Neurosurg. 106, 1028–1033 (2007).

    Article  Google Scholar 

  222. Salzberg, C. A. Nonexpansive immediate breast reconstruction using human acellular tissue matrix graft (AlloDerm). Ann. Plast. Surg. 57, 1–5 (2006).

    Article  CAS  Google Scholar 

  223. Moroni, F. & Mirabella, T. Decellularized matrices for cardiovascular tissue engineering. Am. J. Stem Cells 3, 1–20 (2014).

    CAS  Google Scholar 

  224. Badylak, S. F. The extracellular matrix as a biologic scaffold material. Biomaterials 28, 3587–3593 (2007).

    Article  CAS  Google Scholar 

  225. Badylak, S. F., Freytes, D. O. & Gilbert, T. W. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 5, 1–13 (2009).

    Article  CAS  Google Scholar 

  226. Sicari, B. M. et al. The effect of source animal age upon the in vivo remodeling characteristics of an extracellular matrix scaffold. Biomaterials 33, 5524–5533 (2012).

    Article  CAS  Google Scholar 

  227. Swinehart, I. T. & Badylak, S. F. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev. Dynam. 245, 351–360 (2016).

    Article  CAS  Google Scholar 

  228. Turner, N. J., Badylak, J. S., Weber, D. J. & Badylak, S. F. Biologic scaffold remodeling in a dog model of complex musculoskeletal injury. J. Surg. Res. 176, 490–502 (2012).

    Article  CAS  Google Scholar 

  229. Sicari, B. M. et al. A murine model of volumetric muscle loss and a regenerative medicine approach for tissue replacement. Tissue Eng. Part A 18, 1941–1948 (2012).

    Article  CAS  Google Scholar 

  230. Agrawal, V. et al. Epimorphic regeneration approach to tissue replacement in adult mammals. Proc. Natl Acad. Sci. USA 107, 3351–3355 (2010).

    Article  Google Scholar 

  231. Beattie, A. J., Gilbert, T. W., Guyot, J. P., Yates, A. J. & Badylak, S. F. Chemoattraction of progenitor cells by remodeling extracellular matrix scaffolds. Tissue Eng. Part A 15, 1119–1125 (2009).

    Article  CAS  Google Scholar 

  232. Sarikaya, A. et al. Antimicrobial activity associated with extracellular matrices. Tissue Eng. 8, 63–71 (2002).

    Article  Google Scholar 

  233. Brown, B. N., Ratner, B. D., Goodman, S. B., Amar, S. & Badylak, S. F. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33, 3792–3802 (2012).

    Article  CAS  Google Scholar 

  234. Brown, B. N., Valentin, J. E., Stewart-Akers, A. M., McCabe, G. P. & Badylak, S. F. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30, 1482–1491 (2009).

    Article  CAS  Google Scholar 

  235. Badylak, S. F., Valentin, J. E., Ravindra, A. K., McCabe, G. P. & Stewart-Akers, A. M. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 14, 1835–1842 (2008).

    Article  CAS  Google Scholar 

  236. Dziki, J. L., Huleihel, L., Scarritt, M. E. & Badylak, S. F. Extracellular matrix bioscaffolds as immunomodulatory biomaterials. Tissue Eng. Part A 23, 1152–1159 (2017).

    Article  CAS  Google Scholar 

  237. Aamodt, J. M. & Grainger, D. W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 86, 68–82 (2016).

    Article  CAS  Google Scholar 

  238. Sadtler, K. et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 352, 366–370 (2016).

    Article  CAS  Google Scholar 

  239. Agmon, G. & Christman, K. L. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr. Opin. Solid State Mater. Sci. 20, 193–201 (2016).

    Article  CAS  Google Scholar 

  240. Plunkett, N. & O’Brien, F. J. Bioreactors in tissue engineering. Technol. Health Care 19, 55–69 (2011).

    Google Scholar 

  241. Badylak, S. F., Taylor, D. & Uygun, K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13, 27–53 (2011).

    Article  CAS  Google Scholar 

  242. Allen, R. A. et al. Adrenal extracellular matrix scaffolds support adrenocortical cell proliferation and function in vitro. Tissue Eng. Part A 16, 3363–3374 (2010).

    Article  CAS  Google Scholar 

  243. Sellaro, T. L. et al. Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels. Tissue Eng. Part A 16, 1075–1082 (2010).

    Article  CAS  Google Scholar 

  244. Brennan, E. P., Tang, X. H., Stewart-Akers, A. M., Gudas, L. J. & Badylak, S. F. Chemoattractant activity of degradation products of fetal and adult skin extracellular matrix for keratinocyte progenitor cells. J. Tissue Eng. Regen. Med. 2, 491–498 (2008).

    Article  CAS  Google Scholar 

  245. Crapo, P. M. et al. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 33, 3539–3547 (2012).

    Article  CAS  Google Scholar 

  246. Zhang, Y. et al. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 30, 4021–4028 (2009).

    Article  CAS  Google Scholar 

  247. Cortiella, J. et al. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng. Part A 16, 2565–2580 (2010).

    Article  CAS  Google Scholar 

  248. Shojaie, S. et al. Acellular lung scaffolds direct differentiation of endoderm to functional airway epithelial cells: requirement of matrix-bound HS proteoglycans. Stem Cell Rep. 4, 419–430 (2015).

    Article  CAS  Google Scholar 

  249. Schweinlin, M. et al. Development of an advanced primary human in vitro model of the small intestine. Tissue Eng. Part C Methods 22, 873–883 (2016).

    Article  CAS  Google Scholar 

  250. Robertson, M. J., Soibam, B., O’Leary, J. G., Sampaio, L. C. & Taylor, D. A. Recellularization of rat liver: an in vitro model for assessing human drug metabolism and liver biology. PLoS ONE 13, e0191892 (2018).

    Article  CAS  Google Scholar 

  251. Genovese, L. et al. Cellular localization, invasion, and turnover are differently influenced by healthy and tumor-derived extracellular matrix. Tissue Eng. Part A 20, 2005–2018 (2014).

    Article  CAS  Google Scholar 

  252. Chen, H. J. et al. A recellularized human colon model identifies cancer driver genes. Nat. Biotechnol. 34, 845–851 (2016).

    Article  CAS  Google Scholar 

  253. Lu, W. D. et al. Development of an acellular tumor extracellular matrix as a three-dimensional scaffold for tumor engineering. PLoS ONE 9, e103672 (2014).

    Article  CAS  Google Scholar 

  254. Nietzer, S. et al. Mimicking metastases including tumor stroma: a new technique to generate a three-dimensional colorectal cancer model based on a biological decellularized intestinal scaffold. Tissue Eng. Part C Methods 22, 621–635 (2016).

    Article  CAS  Google Scholar 

  255. Hussein, K. H., Park, K. M., Ghim, J. H., Yang, S. R. & Woo, H. M. Three dimensional culture of HepG2 liver cells on a rat decellularized liver matrix for pharmacological studies. J. Biomed. Mater. Res. B Appl. Biomater. 104, 263–273 (2016).

    Article  CAS  Google Scholar 

  256. Fitzpatrick, L. E. & McDevitt, T. C. Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater. Sci. 3, 12–24 (2015).

    Article  CAS  Google Scholar 

  257. Lu, H. et al. Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials 32, 9658–9666 (2011).

    Article  CAS  Google Scholar 

  258. Pei, M. et al. Modulation of in vitro microenvironment facilitates synovium-derived stem cell-based nucleus pulposus tissue regeneration. Spine 37, 1538–1547 (2012).

    Article  Google Scholar 

  259. Syedain, Z. H., Meier, L. A., Bjork, J. W., Lee, A. & Tranquillo, R. T. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32, 714–722 (2011).

    Article  CAS  Google Scholar 

  260. Lu, H., Hoshiba, T., Kawazoe, N. & Chen, G. Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials 32, 2489–2499 (2011).

    Article  CAS  Google Scholar 

  261. Lu, H., Hoshiba, T., Kawazoe, N. & Chen, G. Comparison of decellularization techniques for preparation of extracellular matrix scaffolds derived from three-dimensional cell culture. J. Biomed. Mater. Res. A 100, 2507–2516 (2012).

    Google Scholar 

  262. Ruff, S. M. et al. clickECM: Development of a cell-derived extracellular matrix with azide functionalities. Acta Biomater. 52, 159–170 (2017).

    Article  CAS  Google Scholar 

  263. Marinkovic, M. et al. One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior. Matrix Biol. 52–54, 426–441 (2016).

    Article  CAS  Google Scholar 

  264. Prewitz, M. C. et al. Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nat. Methods 10, 788–794 (2013).

    Article  CAS  Google Scholar 

  265. Xiao, W. et al. Brain-mimetic 3D culture platforms allow investigation of cooperative effects of extracellular matrix features on therapeutic resistance in glioblastoma. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-17-2429 (2017).

    Article  Google Scholar 

  266. Devarasetty, M., Skardal, A., Cowdrick, K., Marini, F. & Soker, S. Bioengineered submucosal organoids for in vitro modeling of colorectal cancer. Tissue Eng. Part A 23, 1026–1041 (2017).

    Article  CAS  Google Scholar 

  267. Syedain, Z. H., Meier, L. A., Lahti, M. T., Johnson, S. L. & Tranquillo, R. T. Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng. Part A 20, 1726–1734 (2014).

    Article  CAS  Google Scholar 

  268. Quint, C. et al. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc. Natl Acad. Sci. USA 108, 9214–9219 (2011).

    Article  Google Scholar 

  269. Weber, B. et al. Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials 34, 7269–7280 (2013).

    Article  CAS  Google Scholar 

  270. McAllister, T. N. et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373, 1440–1446 (2009).

    Article  Google Scholar 

  271. Wystrychowski, W. et al. Case study: first implantation of a frozen, devitalized tissue-engineered vascular graft for urgent hemodialysis access. J. Vasc. Access 12, 67–70 (2011).

    Article  Google Scholar 

  272. L’Heureux, N., McAllister, T. N. & de la Fuente, L. M. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med. 357, 1451–1453 (2007).

    Article  Google Scholar 

  273. Zhang, W. et al. Cell-derived extracellular matrix: basic characteristics and current applications in orthopedic tissue engineering. Tissue Eng. Part B Rev. 22, 193–207 (2016).

    Article  Google Scholar 

  274. Wainwright, D. et al. Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns. J. Burn Care Rehabil. 17, 124–136 (1996).

    Article  CAS  Google Scholar 

  275. Vlodavsky, I. Preparation of extracellular matrices produced by cultured corneal endothelial and PF-HR9 endodermal cells. Curr. Protoc. Cell Biol. 1, 10.4.1–10.4.14 (2001).

    Google Scholar 

  276. Elkins, R. C., Dawson, P. E., Goldstein, S., Walsh, S. P. & Black, K. S. Decellularized human valve allografts. Ann. Thorac. Surg. 71, S428–S432 (2001).

    Article  CAS  Google Scholar 

  277. Zeltinger, J., Landeen, L. K., Alexander, H. G., Kidd, I. D. & Sibanda, B. Development and characterization of tissue-engineered aortic valves. Tissue Eng. 7, 9–22 (2001).

    Article  CAS  Google Scholar 

  278. Hudson, T. W., Liu, S. Y. & Schmidt, C. E. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng. 10, 1346–1358 (2004).

    Article  CAS  Google Scholar 

  279. Goncalves, A. C., Griffiths, L. G., Anthony, R. V. & Orton, E. C. Decellularization of bovine pericardium for tissue-engineering by targeted removal of xenoantigens. J. Heart Valve Dis. 14, 212–217 (2005).

    Google Scholar 

  280. Flynn, L., Semple, J. L. & Woodhouse, K. A. Decellularized placental matrices for adipose tissue engineering. J. Biomed. Mater. Res. A 79, 359–369 (2006).

    Article  CAS  Google Scholar 

  281. Chen, X. D., Dusevich, V., Feng, J. Q., Manolagas, S. C. & Jilka, R. L. Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J. Bone Miner. Res. 22, 1943–1956 (2007).

    Article  CAS  Google Scholar 

  282. Whitlock, P. W., Smith, T. L., Poehling, G. G., Shilt, J. S. & Van Dyke, M. A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration. Biomaterials 28, 4321–4329 (2007).

    Article  CAS  Google Scholar 

  283. Stankus, J. J., Freytes, D. O., Badylak, S. F. & Wagner, W. R. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J. Biomater. Sci. Polym. Ed 19, 635–652 (2008).

    Article  CAS  Google Scholar 

  284. Jungebluth, P. et al. Structural and morphologic evaluation of a novel detergent-enzymatic tissue-engineered tracheal tubular matrix. J. Thorac Cardiovasc. Surg. 138, 586–593 (2009).

    Article  CAS  Google Scholar 

  285. Uygun, B. E. et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16, 814–820 (2010).

    Article  CAS  Google Scholar 

  286. Hashimoto, Y. et al. Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials 31, 3941–3948 (2010).

    Article  CAS  Google Scholar 

  287. Nichols, J. E. et al. Giving new life to old lungs: methods to produce and assess whole human paediatric bioengineered lungs. J. Tissue Eng. Regen. Med. 11, 2136–2152 (2017).

    Article  CAS  Google Scholar 

  288. Dejardin, L. M., Arnoczky, S. P., Ewers, B. J., Haut, R. C. & Clarke, R. B. Tissue-engineered rotator cuff tendon using porcine small intestine submucosa: histologic and mechanical evaluation in dogs. Am. J. Sports Med. 29, 175–184 (2001).

    Article  CAS  Google Scholar 

  289. Dopirak, R., Bond, J. L. & Snyder, S. J. Arthroscopic total rotator cuff replacement with an acellular human dermal allograft matrix. Int. J. Shoulder Surg. 1, 7 (2007).

    Article  Google Scholar 

  290. Dziki, J. et al. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. NPJ Regen.Med. 1, 16008 (2016).

    Article  Google Scholar 

  291. Knoll, L. D. Use of small intestinal submucosa graft for the surgical management of Peyronie’s disease. J. Urol. 178, 2474–2478 (2007).

    Article  Google Scholar 

  292. Leventhal, D. D. & Pribitkin, E. A. Static facial suspension with Surgisis ES (Enhanced Strength) sling. Laryngoscope 118, 20–23 (2008).

    Article  Google Scholar 

  293. Gholami, G. A., Saberi, A., Kadkhodazadeh, M., Amid, R. & Karami, D. Comparison of the clinical outcomes of connective tissue and acellular dermal matrix in combination with double papillary flap for root coverage: a 6-month trial. Dental Res. J. 10, 506 (2013).

    Google Scholar 

  294. Butterfield, J. L. 440 Consecutive immediate, implant-based, single-surgeon breast reconstructions in 281 patients: a comparison of early outcomes and costs between SurgiMend fetal bovine and AlloDerm human cadaveric acellular dermal matrices. Plast. Reconstr. Surg. 131, 940–951 (2013).

    Article  CAS  Google Scholar 

  295. Gerdisch, M. W., Shea, R. J. & Barron, M. D. Clinical experience with CorMatrix extracellular matrix in the surgical treatment of mitral valve disease. J. Thorac. Cardiovasc. Surg. 148, 1370–1378 (2014).

    Article  Google Scholar 

  296. Brown, J. W., Ruzmetov, M., Eltayeb, O., Rodefeld, M. D. & Turrentine, M. W. Performance of SynerGraft decellularized pulmonary homograft in patients undergoing a Ross procedure. Ann. Thorac. Surg. 91, 416–423 (2011).

    Article  Google Scholar 

  297. Scholl, F. G., Boucek, M. M., Chan, K.-C., Valdes-Cruz, L. & Perryman, R. Preliminary experience with cardiac reconstruction using decellularized porcine extracellular matrix scaffold: human applications in congenital heart disease. World J. Pediatr. Congenital Heart Surg. 1, 132–136 (2010).

    Article  Google Scholar 

  298. Dharmapuram, A., Ramadoss, N., Verma, S., Gouthami, V. & Rao, I. Preliminary experience with the use of an extracellular matrix to augment the native pulmonary valve during repair of tetralogy of fallot. World J. Pediatr. Congenital Heart Surg. 8, 174–181 (2017).

    Article  Google Scholar 

  299. Roth, J., Brathwaite, C., Hacker, K., Fisher, K. & King, J. Complex ventral hernia repair with a human acellular dermal matrix. Hernia 19, 247–252 (2015).

    Article  CAS  Google Scholar 

  300. Ladowski, J. M. & Ladowski, J. S. Retrospective analysis of bovine pericardium (Vascu-Guard) for patch closure in carotid endarterectomies. Ann. Vascular Surg. 25, 646–650 (2011).

    Article  Google Scholar 

  301. Lecheminant, J. & Field, C. Porcine urinary bladder matrix: a retrospective study and establishment of protocol. J. Wound Care 21, 476–482 (2012).

    Article  CAS  Google Scholar 

  302. O’Connor, L. et al. Efficacy of anal fistula plug in closure of Crohn’s anorectal fistulas. Dis. Colon Rectum 49, 1569–1573 (2006).

    Article  Google Scholar 

  303. Wen, H. et al. Randomized controlled trial of minimally invasive surgery using acellular dermal matrix for complex anorectal fistula. World J. Gastroenterol. 16, 3279 (2010).

    Article  CAS  Google Scholar 

  304. Barret, J. P., Dziewulski, P., McCauley, R. L., Herndon, D. N. & Desai, M. H. Dural reconstruction of a class IV calvarial burn with decellularized human dermis. Burns 25, 459–462 (1999).

    Article  CAS  Google Scholar 

  305. Juhasz, I. et al. Long-term followup of dermal substitution with acellular dermal implant in burns and postburn scar corrections. Dermatol. Res. Pract. 2010, 210150 (2010).

    Article  CAS  Google Scholar 

  306. Mostow, E. N., Haraway, G. D., Dalsing, M., Hodde, J. P. & King, D. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J. Vasc. Surg. 41, 837–843 (2005).

    Article  Google Scholar 

  307. Arunkalaivanan, A. & Barrington, J. Randomized trial of porcine dermal sling (Pelvicol™ implant) versus tension-free vaginal tape (TVT) in the surgical treatment of stress incontinence: a questionnaire-based study. Int. Urogynecol. J. 14, 17–23 (2003).

    Article  CAS  Google Scholar 

  308. Armitage, S., Seman, E. I. & Keirse, M. J. Use of Surgisis for treatment of anterior and posterior vaginal prolapse. Obstet. Gynecol. Int. 2012, 376251 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.S.H., J.L.D. and S.F.B. researched data for the article and made substantial contributions to discussion of content. G.S.H., J.L.D. and S.F.B. wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Stephen F. Badylak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussey, G.S., Dziki, J.L. & Badylak, S.F. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 3, 159–173 (2018). https://doi.org/10.1038/s41578-018-0023-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-018-0023-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research