Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bioinspired microrobots


Microorganisms can move in complex media, respond to the environment and self-organize. The field of microrobotics strives to achieve these functions in mobile robotic systems of sub-millimetre size. However, miniaturization of traditional robots and their control systems to the microscale is not a viable approach. A promising alternative strategy in developing microrobots is to implement sensing, actuation and control directly in the materials, thereby mimicking biological matter. In this Review, we discuss design principles and materials for the implementation of robotic functionalities in microrobots. We examine different biological locomotion strategies, and we discuss how they can be artificially recreated in magnetic microrobots and how soft materials improve control and performance. We show that smart, stimuli-responsive materials can act as on-board sensors and actuators and that ‘active matter’ enables autonomous motion, navigation and collective behaviours. Finally, we provide a critical outlook for the field of microrobotics and highlight the challenges that need to be overcome to realize sophisticated microrobots, which one day might rival biological machines.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Propulsion of helical microstructures.
Fig. 2: Propulsion of flexible microstructures.
Fig. 3: Responsive polymers as actuators in microrobotics.
Fig. 4: Bioinspired locomotion by stimuli-responsive soft materials.
Fig. 5: Bioinspired autonomy.


  1. 1.

    Dusenbery, D. B. Minimum size limit for useful locomotion by free-swimming microbes. Proc. Natl Acad. Sci. USA 94, 10949–10954 (1997).

    Article  CAS  Google Scholar 

  2. 2.

    Feynman, R. P. There’s plenty of room at the bottom. Engineer. Sci. 23, 22–36 (1960).

    Google Scholar 

  3. 3.

    Nelson, B. J., Kaliakatsos, I. K. & Abbott, J. J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).

    Article  CAS  Google Scholar 

  4. 4.

    Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L. & Wang, J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2, eaam6431 (2017).

    Article  Google Scholar 

  5. 5.

    Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).

    Article  Google Scholar 

  6. 6.

    Palagi, S., Walker, D., Qiu, T. & Fischer, P. in Microbiorobotics 2nd edn (eds Kim, M., Julius, A. A. & Cheang, U. K.) 133–162 (Elsevier, 2017).

  7. 7.

    Qiu, T. et al. Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 5, 5119 (2014).

    Article  CAS  Google Scholar 

  8. 8.

    Venugopalan, P. L. et al. Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Lett. 14, 1968–1975 (2014).

    Article  CAS  Google Scholar 

  9. 9.

    Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 96601 (2009).

    Article  Google Scholar 

  10. 10.

    Behkam, B. & Sitti, M. Design methodology for biomimetic propulsion of miniature swimming robots. J. Dynam. Syst. Meas. Control 128, 36–43 (2006).

    Article  Google Scholar 

  11. 11.

    Fischer, P. & Ghosh, A. Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control. Nanoscale 3, 557–563 (2011).

    Article  CAS  Google Scholar 

  12. 12.

    Jarrell, K. F. & McBride, M. J. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6, 466–476 (2008).

    Article  CAS  Google Scholar 

  13. 13.

    Bray, D. Cell Movements: From Molecules to Motility. 2nd edn (Garland Science, 2001).

  14. 14.

    Walker, D., Kübler, M., Morozov, K. I., Fischer, P. & Leshansky, A. M. Optimal length of low Reynolds number nanopropellers. Nano Lett. 15, 4412–4416 (2015).

    Article  CAS  Google Scholar 

  15. 15.

    Zhang, L. et al. Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94, 64103–64107 (2009).

    Article  CAS  Google Scholar 

  16. 16.

    Ghosh, A. & Fischer, P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9, 2243–2245 (2009).

    Article  CAS  Google Scholar 

  17. 17.

    Schamel, D. et al. Nanopropellers and their actuation in complex viscoelastic media. ACS Nano 8, 8794–8801 (2014).

    Article  CAS  Google Scholar 

  18. 18.

    Li, J. et al. Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale 6, 9415–9420 (2014).

    Article  CAS  Google Scholar 

  19. 19.

    Tottori, S. et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012).

    Article  CAS  Google Scholar 

  20. 20.

    Gao, W. et al. Bioinspired helical microswimmers based on vascular plants. Nano Lett. 14, 305–310 (2014).

    Article  CAS  Google Scholar 

  21. 21.

    Yan, X. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, eaaq1155 (2017).

    Article  Google Scholar 

  22. 22.

    Walker, D., Käsdorf, B. T., Jeong, H.-H., Lieleg, O. & Fischer, P. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 1, e1500501 (2015).

    Article  CAS  Google Scholar 

  23. 23.

    Huang, H. W., Chao, Q., Sakar, M. S. & Nelson, B. J. Optimization of tail geometry for the propulsion of soft microrobots. IEEE Robot. Autom. Lett. 2, 727–732 (2017).

    Article  Google Scholar 

  24. 24.

    Maier, A. M. et al. Magnetic propulsion of microswimmers with DNA-based flagellar bundles. Nano Lett. 16, 906–910 (2016).

    Article  CAS  Google Scholar 

  25. 25.

    Ishijima, S. Mechanical constraint converts planar waves into helices on tunicate and sea urchin sperm flagella. Cell Struct. Funct. 37, 13–19 (2012).

    Article  CAS  Google Scholar 

  26. 26.

    Abbott, J. J. et al. How should microrobots swim? Int. J. Robot. Res. 28, 1434–1447 (2009).

    Article  Google Scholar 

  27. 27.

    Lagomarsino, M. C., Capuani, F. & Lowe, C. P. A simulation study of the dynamics of a driven filament in an Aristotelian fluid. J. Theor. Biol. 224, 215–224 (2003).

    Article  CAS  Google Scholar 

  28. 28.

    Pak, O. S., Gao, W., Wang, J. & Lauga, E. High-speed propulsion of flexible nanowire motors: theory and experiments. Soft Matter 7, 8169–8181 (2011).

    Article  CAS  Google Scholar 

  29. 29.

    Khalil, I. S. M., Tabak, A. F., Klingner, A. & Sitti, M. Magnetic propulsion of robotic sperms at low-Reynolds number. Appl. Phys. Lett. 109, 033701 (2016).

    Article  CAS  Google Scholar 

  30. 30.

    Williams, B. J., Anand, S. V., Rajagopalan, J. & Saif, M. T. A. A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5, 3081 (2014).

    Article  CAS  Google Scholar 

  31. 31.

    Dreyfus, R. et al. Microscopic artificial swimmers. Nature 437, 862–865 (2005).

    Article  CAS  Google Scholar 

  32. 32.

    Roper, M. et al. Do magnetic micro-swimmers move like eukaryotic cells? Proc. R. Soc. A Math. Phys. Engineer. Sci. 464, 877–904 (2008).

    Article  Google Scholar 

  33. 33.

    Li, T. et al. Magnetically propelled fish-like nanoswimmers. Small 12, 6098–6105 (2016).

    Article  CAS  Google Scholar 

  34. 34.

    Diller, E., Zhuang, J., Zhan Lum, G., Edwards, M. R. & Sitti, M. Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming. Appl. Phys. Lett. 104, 174101 (2014).

    Article  CAS  Google Scholar 

  35. 35.

    Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81 (2018).

    Article  CAS  Google Scholar 

  36. 36.

    Evans, B. A. et al. Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett. 7, 1428–1434 (2007).

    Article  CAS  Google Scholar 

  37. 37.

    Shields, A. R. et al. Biomimetic cilia arrays generate simultaneous pumping and mixing regimes. Proc. Natl Acad. Sci. USA 107, 15670–15675 (2010).

    Article  Google Scholar 

  38. 38.

    Elgeti, J. & Gompper, G. Emergence of metachronal waves in cilia arrays. Proc. Natl Acad. Sci. USA 110, 4470–4475 (2013).

    Article  Google Scholar 

  39. 39.

    Yan, X., Wang, F., Zheng, B. & Huang, F. Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 41, 6042–6065 (2012).

    Article  CAS  Google Scholar 

  40. 40.

    Zeng, H., Wasylczyk, P., Wiersma, D. S. & Priimagi, A. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. Adv. Mater. (2017).

  41. 41.

    Ohm, C., Brehmer, M. & Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387 (2010).

    Article  CAS  Google Scholar 

  42. 42.

    Palagi, S. et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15, 647–653 (2016).

    Article  CAS  Google Scholar 

  43. 43.

    Huang, H.-W., Sakar, M. S., Petruska, A. J., Pane, S. & Nelson, B. J. Soft micromachines with programmable motility and morphology. Nat. Commun. 7, 12263 (2016).

    Article  CAS  Google Scholar 

  44. 44.

    Wang, W. et al. Thermo-driven microcrawlers fabricated via a microfluidic approach. J. Phys. D Appl. Phys. 46, 114007 (2013).

    Article  CAS  Google Scholar 

  45. 45.

    Mourran, A., Zhang, H., Vinokur, R. & Möller, M. Soft microrobots employing nonequilibrium actuation via plasmonic heating. Adv. Mater. 29, 1604825 (2017).

    Article  CAS  Google Scholar 

  46. 46.

    Govorov, A. O. & Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007).

    Article  Google Scholar 

  47. 47.

    Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P. & Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 3, 307–310 (2004).

    Article  CAS  Google Scholar 

  48. 48.

    Zeng, H. et al. Light-fueled microscopic walkers. Adv. Mater. 27, 3883–3887 (2015).

    Article  CAS  Google Scholar 

  49. 49.

    Palima, D. & Glückstad, J. Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces. Laser Photon. Rev. 7, 478–494 (2013).

    Article  CAS  Google Scholar 

  50. 50.

    Blake, J. R. A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46, 199–208 (1971).

    Article  Google Scholar 

  51. 51.

    Childress, S. Mechanics of Swimming and Flying. Vol. 2 (Cambridge Univ. Press, 1981).

  52. 52.

    Palagi, S., Jager, E. W. H., Mazzolai, B. & Beccai, L. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications. Bioinspir. Biomimet. 8, 46004 (2013).

    Article  Google Scholar 

  53. 53.

    Palagi, S. et al. in 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) (Paris, France, 2016).

  54. 54.

    Palagi, S. et al. in 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) (Montreal, Canada, 2017).

  55. 55.

    Magdanz, V., Guix, M., Hebenstreit, F. & Schmidt, O. G. Dynamic polymeric microtubes for the remote-controlled capture, guidance, and release of sperm cells. Adv. Mater. 28, 4084–4089 (2016).

    Article  CAS  Google Scholar 

  56. 56.

    Breger, J. C. et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl. Mater. Interfaces 7, 3398–3405 (2015).

    Article  CAS  Google Scholar 

  57. 57.

    Iacovacci, V. et al. Untethered magnetic millirobot for targeted drug delivery. Biomed. Microdevices 17, 1–12 (2015).

    Article  CAS  Google Scholar 

  58. 58.

    Tabatabaei, S. N., Lapointe, J. & Martel, S. Shrinkable hydrogel-based magnetic microrobots for interventions in the vascular network. Adv. Robot. 25, 1049–1067 (2011).

    Article  Google Scholar 

  59. 59.

    Fusco, S. et al. Shape-switching microrobots for medical applications: the influence of shape in drug delivery and locomotion. ACS Appl. Mater. Interfaces 7, 6803–6811 (2015).

    Article  CAS  Google Scholar 

  60. 60.

    Fusco, S. et al. Chitosan electrodeposition for microrobotic drug delivery. Adv. Healthc. Mater. 2, 1037–1044 (2013).

    Article  CAS  Google Scholar 

  61. 61.

    Li, H., Go, G., Ko, S. Y., Park, J.-O. & Park, S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater. Struct. 25, 027001 (2016).

    Article  CAS  Google Scholar 

  62. 62.

    Yoshida, R. Self-oscillating polymer gel as novel biomimetic materials exhibiting spatiotemporal structure. Colloid. Polym. Sci. 289, 475–487 (2011).

    Article  CAS  Google Scholar 

  63. 63.

    Maeda, S., Hara, Y., Sakai, T., Yoshida, R. & Hashimoto, S. Self-walking gel. Adv. Mater. 19, 3480–3484 (2007).

    Article  CAS  Google Scholar 

  64. 64.

    Piovanelli, M., Fujie, T., Mazzolai, B. & Beccai, L. in 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) 612–616 (Rome, Italy, 2012).

  65. 65.

    Lämmermann, T. & Sixt, M. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 21, 636–644 (2009).

    Article  CAS  Google Scholar 

  66. 66.

    Onoda, M., Ueki, T., Tamate, R., Shibayama, M. & Yoshida, R. Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition. Nat. Commun. 8, 15862 (2017).

    Article  CAS  Google Scholar 

  67. 67.

    Yi, J., Schmidt, J., Chien, A. & Montemagno, C. D. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization. Nanotechnology 20, 085101 (2009).

    Article  CAS  Google Scholar 

  68. 68.

    Sato, Y., Hiratsuka, Y., Kawamata, I., Murata, S. & Nomura, S.-i.M. Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci. Robot. 2, eaal3735 (2017).

    Article  Google Scholar 

  69. 69.

    Terentjev, E. M. & Weitz, D. A. The Oxford Handbook of Soft Condensed Matter. (Oxford Univ. Press, 2015).

  70. 70.

    Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143 (2013).

    Article  CAS  Google Scholar 

  71. 71.

    Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).

    Article  CAS  Google Scholar 

  72. 72.

    Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1, 323–345 (2010).

    Article  Google Scholar 

  73. 73.

    Illien, P., Golestanian, R. & Sen, A. ‘Fuelled’ motion: phoretic motility and collective behaviour of active colloids. Chem. Soc. Rev. 46, 5508–5518 (2017).

    Article  CAS  Google Scholar 

  74. 74.

    Anderson, J. L. Colloid transport by interfacial forces. Annu. Rev. Fluid Mechan. 21, 61–99 (1989).

    Article  Google Scholar 

  75. 75.

    Moran, J. L. & Posner, J. D. Phoretic self-propulsion. Annu. Rev. Fluid Mechan. 49, 511–540 (2017).

    Article  Google Scholar 

  76. 76.

    Bechinger, C. et al. Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).

    Article  Google Scholar 

  77. 77.

    Jiang, H.-R., Yoshinaga, N. & Sano, M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105, 268302 (2010).

    Article  CAS  Google Scholar 

  78. 78.

    Ning, H., Buitenhuis, J., Dhont, J. K. G. & Wiegand, S. Thermal diffusion behavior of hard-sphere suspensions. J. Chem. Phys. 125, 204911 (2006).

    Article  CAS  Google Scholar 

  79. 79.

    Paxton, W. F., Sundararajan, S., Mallouk, T. E. & Sen, A. Chemical locomotion. Angew. Chem. Int. Ed. 45, 5420–5429 (2006).

    Article  CAS  Google Scholar 

  80. 80.

    Sánchez, S., Soler, L. & Katuri, J. Chemically powered micro- and nanomotors. Angew. Chem. Int. Ed. 54, 1414–1444 (2015).

    Article  CAS  Google Scholar 

  81. 81.

    Kapral, R. Perspective: Nanomotors without moving parts that propel themselves in solution. J. Chem. Phys. 138, 020901 (2013).

    Article  CAS  Google Scholar 

  82. 82.

    Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

    Article  CAS  Google Scholar 

  83. 83.

    Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007).

    Article  CAS  Google Scholar 

  84. 84.

    Solovev, A. A., Mei, Y., Bermúdez Ureña, E., Huang, G. & Schmidt, O. G. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5, 1688–1692 (2009).

    Article  CAS  Google Scholar 

  85. 85.

    Golestanian, R., Liverpool, T. B. & Ajdari, A. Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94, 220801 (2005).

    Article  CAS  Google Scholar 

  86. 86.

    Popescu, M. N., Uspal, W. E. & Dietrich, S. Self-diffusiophoresis of chemically active colloids. Eur. Phys. J. Special Top. 225, 2189–2206 (2016).

    Article  CAS  Google Scholar 

  87. 87.

    Uspal, W. E., Popescu, M. N., Dietrich, S. & Tasinkevych, M. Guiding catalytically active particles with chemically patterned surfaces. Phys. Rev. Lett. 117, 048002 (2016).

    Article  CAS  Google Scholar 

  88. 88.

    Brown, A. & Poon, W. Ionic effects in self-propelled Pt-coated Janus swimmers. Soft Matter 10, 4016–4027 (2014).

    Article  CAS  Google Scholar 

  89. 89.

    Paxton, W. F., Sen, A. & Mallouk, T. E. Motility of catalytic nanoparticles through self-generated forces. Chem. Eur. J. 11, 6462–6470 (2005).

    Article  CAS  Google Scholar 

  90. 90.

    Chen, K. et al. “Z”-shaped rotational Au/Pt micro-nanorobot. Micromachines 8, 183 (2017).

    Article  Google Scholar 

  91. 91.

    Wang, Y. et al. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22, 10451–10456 (2006).

    Article  CAS  Google Scholar 

  92. 92.

    Wang, S. & Wu, N. Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis. Langmuir 30, 3477–3486 (2014).

    Article  CAS  Google Scholar 

  93. 93.

    Fomin, V. M. et al. Propulsion mechanism of catalytic microjet engines. IEEE Trans. Robot. 30, 40–48 (2014).

    Article  Google Scholar 

  94. 94.

    Abdelmohsen, L. K. E. A., Peng, F., Tu, Y. & Wilson, D. A. Micro- and nano-motors for biomedical applications. J. Mater. Chem. B 2, 2395–2408 (2014).

    Article  CAS  Google Scholar 

  95. 95.

    Abdelmohsen, L. K. E. A. et al. Dynamic loading and unloading of proteins in polymeric stomatocytes: formation of an enzyme-loaded supramolecular nanomotor. ACS Nano 10, 2652–2660 (2016).

    Article  CAS  Google Scholar 

  96. 96.

    Gao, W. et al. Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9, 117–123 (2015).

    Article  CAS  Google Scholar 

  97. 97.

    Dong, R., Zhang, Q., Gao, W., Pei, A. & Ren, B. Highly efficient light-driven TiO2–Au Janus micromotors. ACS Nano 10, 839–844 (2016).

    Article  CAS  Google Scholar 

  98. 98.

    Dong, R. et al. Visible-light-driven BiOI-based Janus micromotor in pure water. J. Am. Chem. Soc. 139, 1722–1725 (2017).

    Article  CAS  Google Scholar 

  99. 99.

    Pohl, O. & Stark, H. Dynamic clustering and chemotactic collapse of self-phoretic active particles. Phys. Rev. Lett. 112, 238303 (2014).

    Article  CAS  Google Scholar 

  100. 100.

    Berg, H. C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54 (2003).

    Article  CAS  Google Scholar 

  101. 101.

    Dusenbery, D. B. Living at Micro Scale: The Unexpected Physics of Being Small. (Harvard Univ. Press, 2009).

  102. 102.

    Palacci, J. et al. Artificial rheotaxis. Sci. Adv. 1, e1400214 (2015).

    Article  Google Scholar 

  103. 103.

    Dai, B. et al. Programmable artificial phototactic microswimmer. Nat. Nanotechnol 11, 1087–1092 (2016).

    Article  CAS  Google Scholar 

  104. 104.

    Lozano, C., ten Hagen, B., Löwen, H. & Bechinger, C. Phototaxis of synthetic microswimmers in optical landscapes. Nat. Commun. 7, 12828 (2016).

    Article  CAS  Google Scholar 

  105. 105.

    Zhuang, J. & Sitti, M. Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers. Sci. Rep. 6, 32135 (2016).

    Article  CAS  Google Scholar 

  106. 106.

    Felfoul, O. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016).

    Article  CAS  Google Scholar 

  107. 107.

    Wang, W., Duan, W., Sen, A. & Mallouk, T. E. Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. Proc. Natl Acad. Sci. USA 110, 17744–17749 (2013).

    Article  Google Scholar 

  108. 108.

    Nourhani, A., Brown, D., Pletzer, N. & Gibbs, J. G. Engineering contactless particle–particle interactions in active microswimmers. Adv. Mater. 29, 1703910 (2017).

    Article  CAS  Google Scholar 

  109. 109.

    Buttinoni, I. et al. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110, 238301 (2013).

    Article  CAS  Google Scholar 

  110. 110.

    Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).

    Article  CAS  Google Scholar 

  111. 111.

    Singh, D. P., Choudhury, U., Fischer, P. & Mark, A. G. Non-equilibrium assembly of light-activated colloidal mixtures. Adv. Mater. 29, 1701328 (2017).

    Article  CAS  Google Scholar 

  112. 112.

    Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O. & Bartolo, D. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013).

    Article  CAS  Google Scholar 

  113. 113.

    Yan, J. et al. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1095 (2016).

    Article  CAS  Google Scholar 

  114. 114.

    Brooks, R. A. Intelligence without representation. Artif. Intell. 47, 139–159 (1991).

    Article  Google Scholar 

  115. 115.

    Braitenberg, V. Vehicles: Experiments in Synthetic Psychology (MIT Press, 1986).

  116. 116.

    Brooks, R. A. Cambrian Intelligence: The Early History of the New AI (MIT Press, 1999).

  117. 117.

    Brooks, R. A. & Connell, J. H. in Proceedings of SPIE (1987).

  118. 118.

    Murphy, R. Introduction to AI Robotics (MIT Press, 2000).

Download references


The authors acknowledge helpful discussions with D. Singh and M. Popescu.

Author information




All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Stefano Palagi or Peer Fischer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palagi, S., Fischer, P. Bioinspired microrobots. Nat Rev Mater 3, 113–124 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing