Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Design, fabrication and control of origami robots

Abstract

Origami robots are created using folding processes, which provide a simple approach to fabricating a wide range of robot morphologies. Inspired by biological systems, engineers have started to explore origami folding in combination with smart material actuators to enable intrinsic actuation as a means to decouple design from fabrication complexity. The built-in crease structure of origami bodies has the potential to yield compliance and exhibit many soft body properties. Conventional fabrication of robots is generally a bottom-up assembly process with multiple low-level steps for creating subsystems that include manual operations and often multiple iterations. By contrast, natural systems achieve elegant designs and complex functionalities using top-down parallel transformation approaches such as folding. Folding in nature creates a wide spectrum of complex morpho-functional structures such as proteins and intestines and enables the development of structures such as flowers, leaves and insect wings. Inspired by nature, engineers have started to explore folding powered by embedded smart material actuators to create origami robots. The design and fabrication of origami robots exploits top-down, parallel transformation approaches to achieve elegant designs and complex functionalities. In this Review, we first introduce the concept of origami robotics and then highlight advances in design principles, fabrication methods, actuation, smart materials and control algorithms. Applications of origami robots for a variety of devices are investigated, and future directions of the field are discussed, examining both challenges and opportunities.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Diversity of origami robots.
Fig. 2: Origami crease patterns for robotic components.
Fig. 3: Software tools for origami robot design.
Fig. 4: Applications of origami-inspired robots.

References

  1. Mahadevan, L. & Rica, S. Self-organized origami. Science 307, 1740–1740 (2005).

    Article  Google Scholar 

  2. Saito, K., Nomura, S., Yamamoto, S., Niyama, R. & Okabe, Y. Investigation of hindwing folding in ladybird beetles by artificial elytron transplantation and microcomputed tomography. Proc. Natl Acad. Sci. USA 114, 5624–5628 (2017).

    Article  Google Scholar 

  3. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  Google Scholar 

  4. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467 (2015).

    Article  Google Scholar 

  5. Gollnick, P. S., Magleby, S. P. & Howell, L. L. An introduction to multilayer lamina emergent mechanisms. J. Mechan. Design 133, 081006 (2011).

    Article  Google Scholar 

  6. Lee, D.-Y., Kim, S.-R., Kim, J.-S., Park, J.-J. & Cho, K.-J. Origami wheel transformer: a variable-diameter wheel drive robot using an origami structure. Soft Robotics 4, 163–180 (2017).

  7. Lang, R. J. in Proceedings of the 12th Annual ACM Symposium on Computational Geometry 98–105 (Philadelphia, PA, USA, 1996).

  8. Turner, N., Goodwine, B. & Sen, M. A review of origami applications in mechanical engineering. Proc. Inst. Mech. Eng. C 230, 2345–2362 (2016).

    Article  Google Scholar 

  9. Demaine, E. & Demaine, M. in Origami 3: Proceedings of the 3rd International Meeting of Origami Science, Math, and Education (ed. Hull, T.) 3–16 (Monterey, CA, USA, 2001).

  10. O.Rourke, J. How to Fold It: The Mathematics of Linkages, Origami, and Polyhedra (Cambridge Univ. Press, 2011).

  11. Lang, R. J. Twists, Tilings, and Tesselations; Mathematical Methods for Geometric Origami (CRC Press, 2017).

  12. Demaine, E., Demaine, M. & Mitchell, J. in 15th Anuual ACM Symposium on Computational Geometry 105–114 (Miami Beach, FL, USA, 1999).

  13. Demaine, E. & O’Rourke, J. Geometric Folding Algorithms: Linkages, Origami, Polyhedra (Cambridge Univ. Press, 2007).

  14. Demaine, E., Devadoss, S., Mitchell, J. & O’Rourke, J. in Proceedings of the 16th Canadian Conference on Computational Geometry 64–67 (Montreal, Quebec, Canada, 2004).

  15. Cantarella, J., Demaine, E., Iben, H. & O’Brien, J. in Proceedings of the 20th Annual ACM Symposium on Computational Geometry 134–143 (Brooklyn, NY, USA, 2004).

  16. Benbernou, N., Demaine, E., Demaine, M. & Ovadya, A. A universal crease pattern for folding orthogonal shapes. Preprint at ArXiv, 0909.5388 (2009).

  17. Lang, R. J. & Demaine, E. D. in Origami 4: Proceedings of the 4th International Meeting of Origami Science, Mathematics, and Education (ed. Lang, R. J.) 189–206 (Pasadena, CA, USA, 2006).

  18. Demaine, E. D., Fekete, S. P. & Lang, R. J. in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education (eds Wang-Iverson, P., Lang, R. J. & Yim, M.) 609–626 (Singapore, 2010).

  19. Demaine, E., Demaine, M. & Mitchell, J. Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami. Comput. Geom. 16, 3–21 (2000).

    Article  Google Scholar 

  20. Tachi, T. Software: origamizer. TSG http://www.tsg.ne.jp/TT/software/ (2008).

  21. Tachi, T. in Origami 4: Proceedings of the 4th International Meeting of Origami Science, Mathematics, and Education (ed. Lang, R. J.) 175–187 (Pasadena, CA, USA, 2006).

  22. Tachi, T. Origamizing polyhedral surfaces. IEEE Trans. Vis. Comput. Graph. 16, 298–311 (2010).

    Article  Google Scholar 

  23. Fuchi, K. & Diaz, A. R. Origami design by topology optimization. J. Mechan. Design 135, 111003 (2013).

    Article  Google Scholar 

  24. Aukes, D. M., Goldberg, B., Cutkosky, M. R. & Wood, R. J. An analytic framework for developing inherently-manufacturable pop-up laminate devices. Smart Mater. Struct. 23, 094013 (2014).

    Article  Google Scholar 

  25. Aukes, D. M. & Wood, R. J. in Proceedings of SPIE Vol. 9467 https://doi.org/10.1117/12.2177576 (Baltimore, MD, USA, 2015).

  26. Mehta, A., DelPreto, J. & Rus, D. Integrated codesign of printable robots. J. Mech. Robotics 7, 021015 (2015).

    Article  Google Scholar 

  27. Schulz, A. et al. in SIGGRAPH 2015: Studio https://doi.org/10.1145/2785585.2792556(Los Angeles, CA, USA, 2015).

  28. Liu, K. & Paulino, G. Nonlinear mechanics of non-rigid origami: an efficient computational approach. Proc. Royal Soc. A 473, 20170348 (2017).

    Article  Google Scholar 

  29. Ou, J. et al. in Proceedings of the 29th Annual Symposium on User Interface Software and Technology 121–132 (Tokyo, Japan, 2016).

  30. Mehta, A. M., DelPreto, J., Shaya, B. & Rus, D. in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) 2892–2897 (Chicago, IL, USA, 2014).

  31. Schulz, A. et al. Interactive robogami: an end-to-end system for design of robots with ground locomotion. Int. J. Robotics Res. 36, 1131–1147 (2017).

    Article  Google Scholar 

  32. Mulgaonkar, Y. et al. in 2016 IEEE International Conference on Robotics and Automation (ICRA) 4672–4679 (Stockholm, Sweden, 2016).

  33. Suzuki, K., Shimoyama, I. & Miura, H. Insect-model based microrobot with elastic hinges. J. Microelectromechan. Syst. 3, 4–9 (1994).

    Article  Google Scholar 

  34. Yasuda, T., Shimoyama, I. & Miura, H. Microrobot actuated by a vibration energy field. Sensors Actuators A Phys. 43, 366–370 (1994).

    Article  Google Scholar 

  35. Yeh, R., Kruglick, E. J. J. & Pister, K. S. J. Surface-micromachined components for articulated microrobots. J. Microelectromechan. Syst. 5, 10–17 (1996).

    Article  Google Scholar 

  36. Bezzo, N., Mehta, A., Onal, C. D. & Tolley, M. T. Robot makers: the future of digital rapid design and fabrication of robots. IEEE Robotics Autom. Mag. 22, 27–36 (2015).

    Article  Google Scholar 

  37. Lipson, H. & Kurman, M. Fabricated: The New World of 3D Printing (John Wiley & Sons, 2013).

  38. Leigh, S. J., Bradley, R. J., Purssell, C. P., Billson, D. R. & Hutchins, D. A. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLOS ONE 7, e49365 (2012).

    Article  Google Scholar 

  39. Symes, M. D. et al. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 4, 349–354 (2012).

    Article  Google Scholar 

  40. Muth, J. T. et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26, 6307–6312 (2014).

    Article  Google Scholar 

  41. Rossiter, J., Walters, P. & Stoimenov, B. in Proceedings of SPIE Vol. 7287 https://doi.org/10.1117/12.815746 (San Diego, CA, USA, 2009).

  42. Mao, Y. et al. 3D printed reversible shape changing components with stimuli responsive materials. Sci. Rep. 6, 24761 (2016).

    Article  Google Scholar 

  43. Zhu, W. et al. 3D-printed artificial microfish. Adv. Mater. 27, 4411–4417 (2015).

    Article  Google Scholar 

  44. Ma, R. R., Odhner, L. U. & Dollar, A. M. in 2013 IEEE International Conference on Robotics and Automation 2737–2743 (Karlsruhe, Germany, 2013).

  45. Bartlett, N. W. et al. A 3D-printed, functionally graded soft robot powered by combustion. Science 349, 161–165 (2015).

    Article  Google Scholar 

  46. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article  Google Scholar 

  47. Tibbits, S. 4D printing: multi-material shape change. Architectural Design 84, 116–121 (2014).

    Article  Google Scholar 

  48. Ge, Q., Dunn, C. K., Qi, H. J. & Dunn, M. L. Active origami by 4D printing. Smart Mater. Struct. 23, 094007 (2014).

    Article  Google Scholar 

  49. Bakarich, S. E. et al. 4D printing with mechanically robust, thermally actuating hydrogels. Macromol. Rapid Commun. 36, 1211–1217 (2015).

    Article  Google Scholar 

  50. Zarek, M. et al. 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 28, 4449–4454 (2016).

    Article  Google Scholar 

  51. Khoo, Z. X. et al. 3D printing of smart materials: a review on recent progresses in 4d printing. Virtual Phys. Prototyp. 10, 103–122 (2015).

    Article  Google Scholar 

  52. Choi, J., Kwon, O.-C., Jo, W., Lee, H. J. & Moon, M.-W. 4D printing technology: a review. 3D Print. Addit. Manuf. 2, 159–167 (2015).

    Article  Google Scholar 

  53. Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

    Article  Google Scholar 

  54. Yim, S., Miyashita, S., Sung, C. R., Rus, D. & Kim, S. Animatronic soft robots by additive folding. Int. J. Robotics Res. (in the press).

  55. Wood, R. J., Avadhanula, S., Sahai, R., Steltz, E. & Fearing, R. S. Microrobot design using fiber reinforced composites. J. Mechan. Design 130, 052304 (2008).

    Article  Google Scholar 

  56. Hoover, A. M., Steltz, E. & Fearing, R. S. in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems 26–33 (Nice, France, 2008).

  57. Pullin, A. O., Kohut, N. J., Zarrouk, D. & Fearing, R. S. in 2012 IEEE International Conference on Robotics and Automation 5086–5093 (Saint Paul, MN, USA, 2012).

  58. Birkmeyer, P. & Fearing, R. S. in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems 418–419 (St. Louis, MO, USA, 2009).

  59. Wood, R. J. The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans Robotics 24, 341–347 (2008).

    Article  Google Scholar 

  60. Ma, K. Y., Chirarattananon, P., Fuller, S. B. & Wood, R. J. Controlled flight of a biologically inspired, insect-scale robot. Science 340, 603–607 (2013).

    Article  Google Scholar 

  61. Sreetharan, P. S., Whitney, J. P., Strauss, M. D. & Wood, R. J. Monolithic fabrication of millimeter-scale machines. J. Micromechan. Microeng. 22, 055027 (2012).

    Article  Google Scholar 

  62. Whitney, J. P., Sreetharan, P. S., Ma, K. Y. & Wood, R. J. Pop-up book mems. J. Micromechan. Microeng. 21, 115021 (2011).

    Article  Google Scholar 

  63. Pagano, A., Yan, T., Chien, B., Wissa, A. & Tawfick, S. A crawling robot driven by multi- stable origami. Smart Mater. Struct. 26, 094007 (2017).

    Article  Google Scholar 

  64. Kohut, N. J., Pullin, A. O., Haldane, D. W., Zarrouk, D. & Fearing, R. S. in 2013 IEEE International Conference on Robotics and Automation 3299–3306 (Karlsruhe, Germany, 2013).

  65. Haldane, D. W., Peterson, K. C., Bermudez, F. L. G. & Fearing, R. S. in 2013 IEEE International Conference on Robotics and Automation 3279–3286 (Karlsruhe, Germany, 2013).

  66. Vander Hoff, E., Jeong, D. & Lee, K. in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems 1421–1426 (Chicago, IL, USA, 2014).

  67. Onal, C. D., Tolley, M. T., Wood, R. J. & Rus, D. Origami-inspired printed robots. IEEE/ASME Trans Mechatron. 20, 2214–2221 (2015).

    Article  Google Scholar 

  68. Mehta, A. M. & Rus, D. in 2014 IEEE International Conference on Robotics and Automation (ICRA) 1460–1465 (Hong Kong, China, 2014).

  69. Faal, S. G. et al. Hierarchical kinematic design of foldable hexapedal locomotion platforms. J. Mech. Robotics 8, 011005 (2016).

    Article  Google Scholar 

  70. Felton, S., Tolley, M., Demaine, E., Rus, D. & Wood, R. A method for building self-folding machines. Science 345, 644–646 (2014).

    Article  Google Scholar 

  71. Nisser, M. E., Felton, S. M., Tolley, M. T., Rubenstein, M. & Wood, R. J. in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1254–1261 (Daejeon, South Korea, 2016).

  72. Weston-Dawkes, W. P., Ong, A. C., Abdul Majit, M. R., Joseph, F. & Tolley, M. T. in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 4312–4318 (Vancouver, BC, Canada, 2017).

  73. Miyashita, S., Guitron, S., Li, S. & Rus, D. Robotic metamorphosis by origami exoskeletons. Sci. Robotics 2, eaao4369 (2017).

    Article  Google Scholar 

  74. Niiyama, R. et al. Pouch motors: printable soft actuators integrated with computational design. Soft Robotics 2, 59–70 (2015).

    Article  Google Scholar 

  75. Sun, X., Felton, S. M., Niiyama, R., Wood, R. J. & Kim, S. in 2015 IEEE International Conference on Robotics and Automation (ICRA) 3160–3165 (Seattle, WA, USA, 2015).

  76. Overvelde, J. T. et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom. Nat. Commun. 7, 10929 (2016).

    Article  Google Scholar 

  77. Martinez, R. V., Fish, C. R., Chen, X. & Whitesides, G. M. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22, 1376–1384 (2012).

    Article  Google Scholar 

  78. Li, S., Vogt, D. M., Rus, D. & Wood, R. J. Fluid-driven origami-inspired artificial muscles. Proc. Natl Acad. Sci. USA 114, 13132–13137 (2017).

    Article  Google Scholar 

  79. Miura, K. Method of Packaging and Deployment of Large Membranes in Space (Institute of Space and Astronautical Science, 1985).

  80. Gandhi, M. V. & Thompson, B. Smart Materials and Structures (Springer Science & Business Media, 1992).

  81. Xu, L., Shyu, T. & Kotov, N. Origami and kirigami nanocomposites. ACS Nano 11, 7587–7599 (2017).

    Article  Google Scholar 

  82. Wood, R., Nagpal, R. & Wei, G.-Y. Flight of the robobees. Sci. Am. 308, 60–65 (2013).

    Article  Google Scholar 

  83. Baisch, A. T., Ozcan, O., Goldberg, B., Ithier, D. & Wood, R. J. High speed locomotion for a quadrupedal microrobot. Int. J. Robotics Res. 33, 1063–1082 (2014).

    Article  Google Scholar 

  84. Hoffman, K. L. & Wood, R. J. Myriapod-like ambulation of a segmented microrobot. Auton. Robots 31, 103–114 (2011).

    Article  Google Scholar 

  85. Otsuka, K. & Wayman, C. M. Shape Memory Materials (Cambridge Univ. Press, 1999).

  86. Hawkes, E. et al. Programmable matter by folding. Proc. Natl Acad. Sci. USA 107, 12441–12445 (2010).

    Article  Google Scholar 

  87. Firouzeh, A. & Paik, J. Robogami: a fully integrated low-profile robotic origami. J. Mech. Robotics 7, 021009 (2015).

    Article  Google Scholar 

  88. Kim, J., Lee, D.-Y., Kim, S.-R. & Cho, K.-J. in 2015 IEEE International Conference on Robotics and Automation (ICRA) 3166–3171 (Seattle, WA, USA, 2015).

  89. Onal, C. D., Wood, R. J. & Rus, D. An origami-inspired approach to worm robots. IEEE/ASME Trans Mechatron. 18, 430–438 (2013).

    Article  Google Scholar 

  90. Koh, J.-S. & Cho, K.-J. Omega-shaped inchworm-inspired crawling robot with large-index-and-pitch (LIP) SMA spring actuators. IEEE/ASME Trans Mechatron. 18, 419–429 (2013).

    Article  Google Scholar 

  91. Felton, S. M. et al. Self-folding with shape memory composites. Soft Matter 9, 7688–7694 (2013).

    Article  Google Scholar 

  92. Tolley, M. T. et al. Self-folding origami: shape memory composites activated by uniform heating. Smart Mater. Struct. 23, 094006 (2014).

    Article  Google Scholar 

  93. Miyashita, S., Meeker, L., Tolley, M. T., Wood, R. J. & Rus, D. Self-folding miniature elastic electric devices. Smart Mater. Struct. 23, 094005 (2014).

    Article  Google Scholar 

  94. Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C. R. & Rus, D. in 2015 IEEE International Conference on Robotics and Automation (ICRA) 1490–1496 (Seattle, WA, USA, 2015).

  95. Minori, A., Jadhav, S., He, Q., Cai, S. & Tolley, M. T. in ASME 2017 Conference on SmartMaterials, Adaptive Structures and Intelligent Systems https://doi.org/10.1115/SMASIS2017-3986 (Snowbird, UT, USA, 2017).

  96. Ahmed, S. et al. in ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference https://doi.org/10.1115/DETC2013-12405 (Portland, OR, USA, 2013).

  97. McGough, K., Ahmed, S., Frecker, M. & Ounaies, Z. Finite element analysis and validation of dielectric elastomer actuators used for active origami. Smart Mater. Struct. 23, 094002 (2014).

    Article  Google Scholar 

  98. Shim, T. S., Kim, S.-H., Heo, C.-J., Jeon, H. C. & Yang, S.-M. Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers. Angew. Chem. Int. Ed. 51, 1420–1423 (2012).

    Article  Google Scholar 

  99. Jamal, M. et al. Bio-origami hydrogel scaffolds composed of photocrosslinked peg bilayers. Adv. Healthc. Mater. 2, 1142–1150 (2013).

    Article  Google Scholar 

  100. Na, J.-H. et al. Programming reversibly self-folding origami with micropatterned photo-crosslinkable polymer trilayers. Adv. Mater. 27, 79–85 (2015).

    Article  Google Scholar 

  101. Okuzaki, H., Saido, T., Suzuki, H., Hara, Y. & Yan, H. A biomorphic origami actuator fabricated by folding a conducting paper. J. Phys. Conf. Ser. 127, 012001 (2008).

    Article  Google Scholar 

  102. Okuzaki, H., Kuwabara, T., Funasaka, K. & Saido, T. Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv. Funct. Mater. 23, 4400–4407 (2013).

    Article  Google Scholar 

  103. Bowen, L. et al. Development and validation of a dynamic model of magneto-active elastomer actuation of the origami waterbomb base. J. Mech. Robotics 7, 011010 (2015).

    Article  Google Scholar 

  104. Liu, Y., Boyles, J. K., Genzer, J. & Dickey, M. D. Self-folding of polymer sheets using local light absorption. Soft Matter 8, 1764–1769 (2012).

    Article  Google Scholar 

  105. Ryu, J. et al. Photo-origamibending and folding polymers with light. Appl. Phys. Lett. 100, 161908 (2012).

    Article  Google Scholar 

  106. Wei, Z., Sandstroro¨m, R. & Miyazaki, S. Shape-memory materials and hybrid composites for smart systems: part I shape-memory materials. J. Mater. Sci. 33, 3743–3762 (1998).

    Article  Google Scholar 

  107. Peraza-Hernandez, E. A., Hartl, D. J., Malak, R. J. Jr & Lagoudas, D. C. Origami-inspired active structures: a synthesis and review. Smart Mater. Struct. 23, 094001 (2014).

    Article  Google Scholar 

  108. Paik, J. K., Kramer, R. K. & Wood, R. J. in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems 414–420 (San Francisco, CA, USA, 2011).

  109. Haldane, D. W. et al. Integrated manufacture of exoskeletons and sensing structures for folded millirobots. J. Mech. Robotics 7, 021011 (2015).

    Article  Google Scholar 

  110. Takei, K. et al. Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proc. Natl Acad. Sci. USA 111, 1703–1707 (2014).

    Article  Google Scholar 

  111. Shin, B., Felton, S. M., Tolley, M. T. & Wood, R. J. in 2014 IEEE International Conference on Robotics and Automation (ICRA) 4417–4422 (Hong Kong, China, 2014).

  112. Smith, R. C. Smart Material Systems: Model Development (SIAM, 2005).

  113. Tan, X. & Baras, J. S. Adaptive identification and control of hysteresis in smart materials. IEEE Trans. Auto. Control 50, 827–839 (2005).

    Article  Google Scholar 

  114. Balkcom, D. J. & Mason, M. T. in 2004 IEEE International Conference on Robotics and Automation (ICRA) 3245–3250 (New Orleans, LA, USA, 2004).

  115. Lu, L. & Akella, S. Folding cartons with fixtures: a motion planning approach. IEEE Trans Robotics Autom. 16, 346–356 (2000).

    Article  Google Scholar 

  116. Laflin, K. E., Morris, C. J., Muqeem, T. & Gracias, D. H. Laser triggered sequential folding of microstructures. Appl. Phys. Lett. 101, 131901 (2012).

    Article  Google Scholar 

  117. Nagpal, R. Programmable Self-Assembly: Constructing Global Shape Using Biologically-Inspired Local Interactions and Origami Mathematics Thesis, Massachusetts Institute of Technology (2001).

  118. Pandey, S. et al. Algorithmic design of self-folding polyhedral. Proc. Natl Acad. Sci. USA 108, 19885–19890 (2011).

    Article  Google Scholar 

  119. An, B., Benbernou, N., Demaine, E. D. & Rus, D. Planning to fold multiple objects from a single self-folding sheet. Robotica 29, 87–102 (2011).

    Article  Google Scholar 

  120. Miyashita, S., Onal, C. D. & Rus, D. Multi-crease self-folding by global heating. Artif. Life 21, 398–411 (2015).

    Article  Google Scholar 

  121. Syms, R., Yeatman, E., Bright, V. & Whitesides, G. Surface tension-powered self-assembly of microstructures-the state-of-the-art. J. Microelectromechan. Syst. 12, 387–417 (2003).

    Article  Google Scholar 

  122. Rogers, J., Huang, Y., Schmidt, O. & Gracias, D. Origami MEMS and NEMS. MRS Bull. 41, 123–129 (2016).

    Article  Google Scholar 

  123. Sung, C. & Rus, D. Foldable joints for foldable robots. J. Mech. Robotics 7, 021012 (2015).

    Article  Google Scholar 

  124. Fang, H., Zhang, Y. & Wang, K. W. Origami-based earthworm-like locomotion robots. Bioinspir. Biomim. 12, 065003 (2017).

    Article  Google Scholar 

  125. Felton, S. M., Tolley, M. T., Onal, C. D., Rus, D. & Wood, R. J. in 2013 IEEE International Conference on Robotics and Automation (ICRA) 277–282 (Karlsruhe, Germany, 2013).

  126. Zhang, K., Qiu, C. & Dai, J. Helical kirigami-enabled centimeter-scale worm robot with shape memory alloy linear actuators. J. Mech. Robotics 7, 021014 (2015).

    Article  Google Scholar 

  127. Sung, C. et al. in 2017 IEEE International Conference on Robotics and Automation (ICRA) 580–587 (Singapore, 2017).

  128. Rossiter, J. & Sareh, S. in Proceedings of SPIE https://doi.org/10.1117/12.2045165 (San Diego, CA, USA, 2014).

  129. National Aeronautics and Space Administration. Space Technology Game Changing Development PUFFER: Pop-Up Flat Folding Explorer Robots (2016).

  130. Miyashita, S. et al. in 2016 IEEE International Conference on Robotics and Automation (ICRA) 909–916 (Stockholm, Sweden, 2016).

  131. Gultepe, E. et al. Biopsy with thermally-responsive untethered microtools. Adv. Mater. 25, 514–519 (2013).

    Article  Google Scholar 

  132. Ghosh, A. et al. Stimuli-responsive soft untethered grippers for drug delivery and robotic surgery. Front. Mechan. Eng. 3, 7 (2017).

    Article  Google Scholar 

  133. NASA. Space Technology Game Changing Development PUFFER: pop-up flat folding explorer robots. NASA https://gameon.nasa.gov/projects/puffer/ (2017).

  134. Russo, S., Ranzani, T., Walsh, C. J. & Wood, R. J. An additive millimeter-scale fabrication method for soft biocompatible actuators and sensors. Adv. Mater. Technol. 2, 1700135 (2017).

    Article  Google Scholar 

  135. Boyvat, M., Koh, J.-S. & Wood, R. J. Addressable wireless actuation for multijoint folding robots and devices. Sci. Robotics 2, eaan1544 (2017).

    Article  Google Scholar 

  136. Karras, J. T. et al. in 2017 IEEE International Conference on Robotics and Automation (ICRA) 5459–5466 (Singapore, 2017).

  137. Lamoureux, A., Lee, K., Shlian, M., Forrest, S. R. & Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 6, 8092 (2015).

    Article  Google Scholar 

  138. Fuchi, K., Diaz, A. R., Rothwell, E. J., Ouedraogo, R. O. & Tang, J. An origami tunable metamaterial. J. Appl. Phys. 111, 084905 (2012).

    Article  Google Scholar 

  139. Schenk, M. & Guest, S. D. Geometry of miura-folded metamaterials. Proc. Natl Acad. Sci. USA 110, 3276–3281 (2013).

    Article  Google Scholar 

  140. Jeong, D. & Lee, K. Design and analysis of an origami-based three-finger manipulator. Robotica 36, 261–274 (2018).

    Article  Google Scholar 

  141. Zhakypov, Z., Falahi, M., Shah, M. & Paik, J. in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 4349–4355 (Hamburg, Germany, 2015).

  142. Lee, J.-Y. et al. Development of a multi-functional soft robot (snumax) and performance in robosoft grand challenge. Front. Robotics AI 3, 63 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation grants 1138967, 1644558 and 1240383. The authors are grateful to the anonymous reviewers and editors for valuable feedback.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Daniela Rus.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

RELATED LINKS

Betakit: https://betakit.com/toronto-native-helps-dash-robotics-make-worlds-first-foldable-origami-robot/

École polytechnique fédérale de Lausanne: http://sti.epfl.ch/page-125425-en.html

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rus, D., Tolley, M.T. Design, fabrication and control of origami robots. Nat Rev Mater 3, 101–112 (2018). https://doi.org/10.1038/s41578-018-0009-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-018-0009-8

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing