Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The effect of physical exercise on anticancer immunity

Subjects

An Author Correction to this article was published on 01 February 2024

This article has been updated

Abstract

Regular physical activity is associated with lower cancer incidence and mortality, as well as with a lower rate of tumour recurrence. The epidemiological evidence is supported by preclinical studies in animal models showing that regular exercise delays the progression of cancer, including highly aggressive malignancies. Although the mechanisms underlying the antitumorigenic effects of exercise remain to be defined, an improvement in cancer immunosurveillance is likely important, with different immune cell subtypes stimulated by exercise to infiltrate tumours. There is also evidence that immune cells from blood collected after an exercise bout could be used as adoptive cell therapy for cancer. In this Perspective, we address the importance of muscular activity for maintaining a healthy immune system and discuss the effects of a single bout of exercise (that is, ‘acute’ exercise) and those of ‘regular’ exercise (that is, repeated bouts) on anticancer immunity, including tumour infiltrates. We also address the postulated mechanisms and the clinical implications of this emerging area of research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The biphasic immune cell response to dynamic (such as bicycling and running), acute exercise.
Fig. 2: The immune cell response to regular exercise (that is, accumulation of repeated exercise bouts).
Fig. 3: Regular exercise has the potential to ‘heat’ tumours.

Similar content being viewed by others

Change history

References

  1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. GBD 2019 Cancer Risk Factors Collaborators. The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 400, 563–591 (2022).

    Article  Google Scholar 

  3. Guthold, R., Stevens, G. A., Riley, L. M. & Bull, F. C. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 6, e1077–e1086 (2018).

    Article  PubMed  Google Scholar 

  4. Bull, F. C. et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54, 1451–1462 (2020).

    Article  PubMed  Google Scholar 

  5. Garcia-Hermoso, A. et al. Adherence to aerobic and muscle-strengthening activities guidelines: a systematic review and meta-analysis of 3.3 million participants across 32 countries. Br. J. Sports Med. 57, 225–229 (2023).

    Article  PubMed  Google Scholar 

  6. Moore, S. C. et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern. Med. 176, 816–825 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Matthews, C. E. et al. Amount and intensity of leisure-time physical activity and lower cancer risk. J. Clin. Oncol. 38, 686–697 (2020).

    Article  PubMed  Google Scholar 

  8. Ahmadi, M. N. et al. Vigorous physical activity, incident heart disease, and cancer: how little is enough? Eur. Heart J. 43, 4801–4814 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Morishita, S. et al. Effect of exercise on mortality and recurrence in patients with cancer: a systematic review and meta-analysis. Integr. Cancer Ther. 19, 1534735420917462 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Friedenreich, C. M., Stone, C. R., Cheung, W. Y. & Hayes, S. C. Physical activity and mortality in cancer survivors: a systematic review and meta-analysis. JNCI Cancer Spectr. 4, pkz080 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Arem, H. et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern. Med. 175, 959–967 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Larrabee, R. C. Leucocytosis after violent exercise. J. Med. Res. 7, 76–82 (1902).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nieman, D. C. & Wentz, L. M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 8, 201–217 (2019).

    Article  PubMed  Google Scholar 

  14. Simpson, R. J., Bigley, A. B., Agha, N., Hanley, P. J. & Bollard, C. M. Mobilizing immune cells with exercise for cancer immunotherapy. Exerc. Sport Sci. Rev. 45, 163–172 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Simpson, R. J. et al. Human cytomegalovirus infection and the immune response to exercise. Exerc. Immunol. Rev. 22, 8–27 (2016).

    PubMed  Google Scholar 

  16. Simpson, R. J., Kunz, H., Agha, N. & Graff, R. Exercise and the regulation of immune functions. Prog. Mol. Biol. Transl. Sci. 135, 355–380 (2015).

    Article  PubMed  Google Scholar 

  17. Anane, L. H. et al. Mobilization of gammadelta T lymphocytes in response to psychological stress, exercise, and beta-agonist infusion. Brain Behav. Immun. 23, 823–829 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Steppich, B. et al. Selective mobilization of CD14(+)CD16(+) monocytes by exercise. Am. J. Physiol. Cell Physiol. 279, C578–C586 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Peake, J. et al. Changes in neutrophil surface receptor expression, degranulation, and respiratory burst activity after moderate- and high-intensity exercise. J. Appl. Physiol. 97, 612–618 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Fiuza-Luces, C., Valenzuela, P. L., Castillo-García, A. & Lucia, A. Exercise benefits meet cancer immunosurveillance: implications for immunotherapy. Trends Cancer 7, 91–93 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Zuazo, M. et al. Functional systemic CD4 immunity is required for clinical responses to PD-L1/PD-1 blockade therapy. EMBO Mol. Med. 11, e10293 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Spitzer, M. H. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 168, 487–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gustafson, M. P. et al. Immune monitoring using the predictive power of immune profiles. J. Immunother. Cancer 1, 7 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chow, L. S. et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 18, 273–289 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gustafson, M. P. et al. Exercise and the immune system: taking steps to improve responses to cancer immunotherapy. J. Immunother. Cancer 9, e001872 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fischer, C. P. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc. Immunol. Rev. 12, 6–33 (2006).

    PubMed  Google Scholar 

  27. Steensberg, A., Fischer, C. P., Keller, C., Moller, K. & Pedersen, B. K. IL-6 enhances plasma IL-1RA, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 285, E433–E437 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Starkie, R., Ostrowski, S. R., Jauffred, S., Febbraio, M. & Pedersen, B. K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. FASEB J. 17, 884–886 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Pedersen, B. K. & Febbraio, M. A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 88, 1379–1406 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Bay, M. L. et al. Human immune cell mobilization during exercise: effect of IL-6 receptor blockade. Exp. Physiol. 105, 2086–2098 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Pedersen, L. et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab. 23, 554–562 (2016). This elegant, mechanistic study shows the involvement of two exerkines, epinephrine and IL-6, on NK-cell mobilization into several tumour types.

    Article  CAS  PubMed  Google Scholar 

  32. Quinn, L. S., Haugk, K. L. & Grabstein, K. H. Interleukin-15: a novel anabolic cytokine for skeletal muscle. Endocrinology 136, 3669–3672 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Haugen, F. et al. IL-7 is expressed and secreted by human skeletal muscle cells. Am. J. Physiol. Cell Physiol. 298, C807–C816 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Nielsen, A. R. et al. Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition. J. Physiol. 584, 305–312 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tamura, Y. et al. Upregulation of circulating IL-15 by treadmill running in healthy individuals: is IL-15 an endocrine mediator of the beneficial effects of endurance exercise? Endocr. J. 58, 211–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Capitini, C. M., Chisti, A. A. & Mackall, C. L. Modulating T-cell homeostasis with IL-7: preclinical and clinical studies. J. Intern. Med. 266, 141–153 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fry, T. J. & Mackall, C. L. The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J. Immunol. 174, 6571–6576 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Goldrath, A. W. et al. Cytokine requirements for acute and basal homeostatic proliferation of naïve and memory CD8+ T cells. J. Exp. Med. 195, 1515–1522 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, J. et al. Skeletal muscle antagonizes antiviral CD8+ T cell exhaustion. Sci. Adv. 6, eaba3458 (2020). This study provides a mechanistic link between two seemingly isolated events that are prevalent in the context of cancer — loss of muscle mass and T cell exhaustion — and shows the importance of skeletal muscle preservation to protect the proliferative potential of these cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wallace, D. L. et al. Prolonged exposure of naïve CD8+ T cells to interleukin-7 or interleukin-15 stimulates proliferation without differentiation or loss of telomere length. Immunology 119, 243–253 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cieri, N. et al. Il-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 121, 573–584 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Campbell, K. L. et al. Exercise guidelines for cancer survivors: consensus statement from international multidisciplinary roundtable. Med. Sci. Sports Exerc. 51, 2375–2390 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yao, J. et al. Human double negative T cells target lung cancer via ligand-dependent mechanisms that can be enhanced by IL-15. J. Immunother. Cancer 7, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Van Acker, H. H. et al. Interleukin-15 enhances the proliferation, stimulatory phenotype, and antitumor effector functions of human gamma delta T cells. J. Hematol. Oncol. 9, 101 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xu, Y. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123, 3750–3759 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kochenderfer, J. N. et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J. Clin. Oncol. 35, 1803–1813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kurz, E. et al. Exercise-induced engagement of the IL-15/IL-15Rα axis promotes anti-tumor immunity in pancreatic cancer. Cancer Cell 40, 720–737.e5 (2022). This mechanistic preclinical and clinical study highlights the therapeutic potential of regular exercise against one of the deadliest malignancies, pancreatic ductal adenocarcinoma, through IL-15-mediated activation of CD8+ T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nelke, C., Dziewas, R., Minnerup, J., Meuth, S. G. & Ruck, T. Skeletal muscle as potential central link between sarcopenia and immune senescence. eBioMedicine 49, 381–388 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. López-Otín, C., Pietrocola, F., Roiz-Valle, D., Galluzzi, L. & Kroemer, G. Meta-hallmarks of aging and cancer. Cell Metab. 35, 12–35 (2023).

    Article  PubMed  Google Scholar 

  50. Izquierdo, M., Morley, J. E. & Lucia, A. Exercise in people over 85. BMJ 368, m402 (2020).

    Article  PubMed  Google Scholar 

  51. Fiuza-Luces, C. et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 15, 731–743 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  54. Michels, N., van Aart, C., Morisse, J., Mullee, A. & Huybrechts, I. Chronic inflammation towards cancer incidence: a systematic review and meta-analysis of epidemiological studies. Crit. Rev. Oncol. Hematol. 157, 103177 (2021).

    Article  PubMed  Google Scholar 

  55. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer 20, 89–106 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Simpson, R. J. et al. Exercise and adrenergic regulation of immunity. Brain Behav. Immun. 97, 303–318 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Campbell, J. P. & Turner, J. E. Debunking the myth of exercise-induced immune suppression: redefining the impact of exercise on immunological health across the lifespan. Front. Immunol. 9, 648 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Campbell, J. P. et al. Acute exercise mobilises CD8+ T lymphocytes exhibiting an effector-memory phenotype. Brain Behav. Immun. 23, 767–775 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Bigley, A. B. et al. Acute exercise preferentially redeploys NK-cells with a highly differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav. Immun. 39, 160–171 (2014). This is a pioneering study showing that acute exercise may serve as a simple strategy to enrich the blood compartment of highly cytotoxic NK-cell subsets that can be harvested for clinical use (adoptive transfer immunotherapy).

    Article  CAS  PubMed  Google Scholar 

  61. Batatinha, H. et al. Human lymphocytes mobilized with exercise have an anti-tumor transcriptomic profile and exert enhanced graft-versus-leukemia effects in xenogeneic mice. Front. Immunol. 14, 1067369 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zúñiga, T. M. et al. Acute exercise mobilizes NKT-like cells with a cytotoxic transcriptomic profile but does not augment the potency of cytokine-induced killer (CIK) cells. Front. Immunol. 13, 938106 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Turner, J. E. et al. Exercise-induced B cell mobilisation: preliminary evidence for an influx of immature cells into the bloodstream. Physiol. Behav. 164, 376–382 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Shephard, R. J. Adhesion molecules, catecholamines and leucocyte redistribution during and following exercise. Sports Med. 33, 261–284 (2003).

    Article  PubMed  Google Scholar 

  65. Graff, R. M. et al. β2-Adrenergic receptor signaling mediates the preferential mobilization of differentiated subsets of CD8+ T-cells, NK-cells and non-classical monocytes in response to acute exercise in humans. Brain Behav. Immun. 74, 143–153 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Dimitrov, S., Lange, T. & Born, J. Selective mobilization of cytotoxic leukocytes by epinephrine. J. Immunol. 184, 503–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Rehman, J. et al. Dynamic exercise leads to an increase in circulating ICAM-1: further evidence for adrenergic modulation of cell adhesion. Brain Behav. Immun. 11, 343–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Goossens, G. H. et al. Short-term beta-adrenergic regulation of leptin, adiponectin and interleukin-6 secretion in vivo in lean and obese subjects. Diabetes Obes. Metab. 10, 1029–1038 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Kruger, K., Lechtermann, A., Fobker, M., Volker, K. & Mooren, F. C. Exercise-induced redistribution of T lymphocytes is regulated by adrenergic mechanisms. Brain Behav. Immun. 22, 324–338 (2008). This is a study in rodents that elegantly shows (using fluorescent cell tracking) a redistribution of T cells from the spleen to target organs (the lung, bone marrow and gut (Peyer’s patches)) in the 24 hours after an acute exercise bout.

    Article  CAS  PubMed  Google Scholar 

  70. Baker, F. L. et al. Systemic β-adrenergic receptor activation augments the ex vivo expansion and anti-tumor activity of Vγ9Vδ2 T-cells. Front. Immunol. 10, 3082 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kruger, K. & Mooren, F. C. T cell homing and exercise. Exerc. Immunol. Rev. 13, 37–54 (2007).

    CAS  PubMed  Google Scholar 

  72. Kruger, K. et al. Apoptosis of T-cell subsets after acute high-intensity interval exercise. Med. Sci. Sports Exerc. 48, 2021–2029 (2016).

    Article  PubMed  Google Scholar 

  73. Simpson, R. J. Aging, persistent viral infections, and immunosenescence: can exercise “make space”? Exerc. Sport Sci. Rev. 39, 23–33 (2011).

    Article  PubMed  Google Scholar 

  74. Schenk, A. et al. Distinct distribution patterns of exercise-induced natural killer cell mobilization into the circulation and tumor tissue of patients with prostate cancer. Am. J. Physiol. Cell Physiol. 323, C879–C884 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Schauer, T., Djurhuus, S. S., Simonsen, C., Brasso, K. & Christensen, J. F. The effects of acute exercise and inflammation on immune function in early-stage prostate cancer. Brain Behav. Immun. Health 25, 100508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Djurhuus, S. S. et al. Effects of acute exercise training on tumor outcomes in men with localized prostate cancer: a randomized controlled trial. Physiol. Rep. 10, e15408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Djurhuus, S. S. et al. Exercise training to increase tumour natural killer-cell infiltration in men with localised prostate cancer: a randomised controlled trial. BJU Int. 131, 116–124 (2023). This paper is a clinical trial showing that regular, intense exercise can increase NK cell infiltration in prostate tumours.

    Article  CAS  PubMed  Google Scholar 

  78. Thienger, P. & Rubin, M. A. Prostate cancer hijacks the microenvironment. Nat. Cell Biol. 23, 3–5 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Martori, C. et al. Macrophages as a therapeutic target in metastatic prostate cancer: a way to overcome immunotherapy resistance? Cancers 14, 440 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Clifford, B. K., Kaakoush, N. O., Tedla, N., Goldstein, D. & Simar, D. The effect of exercise intensity on the inflammatory profile of cancer survivors: a randomized crossover study. Eur. J. Clin. Invest. 53, e13984 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Valenzuela, P. L. et al. Exercise training and natural killer cells in cancer survivors: current evidence and research gaps based on a systematic review and meta-analysis. Sports Med. Open 8, 36 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Coletta, A. M. et al. The impact of high-intensity interval exercise training on NK-cell function and circulating myokines for breast cancer prevention among women at high risk for breast cancer. Breast Cancer Res. Treat. 187, 407–416 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Llavero, F. et al. Exercise training effects on natural killer cells: a preliminary proteomics and systems biology approach. Exerc. Immunol. Rev. 27, 125–141 (2021).

    PubMed  Google Scholar 

  84. MacDonald, G. et al. A pilot study of high-intensity interval training in older adults with treatment naïve chronic lymphocytic leukemia. Sci. Rep. 11, 3137 (2021).

    Article  Google Scholar 

  85. Toffoli, E. C. et al. Effects of physical exercise on natural killer cell activity during (neo)adjuvant chemotherapy: a randomized pilot study. Physiol. Rep. 9, e14919 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mace, E. M. Phosphoinositide-3-kinase signaling in human natural killer cells: new insights from primary immunodeficiency. Front. Immunol. 9, 445 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Takahashi, N. et al. Tumor marker nucleoporin 88 kDa regulates nucleocytoplasmic transport of NF-kappaB. Biochem. Biophys. Res. Commun. 374, 424–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Spielmann, G. et al. Aerobic fitness is associated with lower proportions of senescent blood T-cells in man. Brain Behav. Immun. 25, 1521–1529 (2011).

    Article  PubMed  Google Scholar 

  89. Himbert, C. et al. Differences in the gut microbiome by physical activity and BMI among colorectal cancer patients. Am. J. Cancer Res. 12, 4789–4801 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. O’Sullivan, O. et al. Exercise and the microbiota. Gut Microbes 6, 131–136 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Clarke, S. F. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63, 1913–1920 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679–689 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Routy, B. et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 15, 382–396 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Park, E. M. et al. Targeting the gut and tumor microbiota in cancer. Nat. Med. 28, 690–703 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, B. et al. Synergetic inhibition of daidzein and regular exercise on breast cancer in bearing-4T1 mice by regulating NK cells and apoptosis pathway. Life Sci. 245, 117387 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Dufresne, S. et al. Exercise training improves radiotherapy efficiency in a murine model of prostate cancer. FASEB J. 34, 4984–4996 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Laskowski, T. J., Biederstädt, A. & Rezvani, K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 22, 557–575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Di Vito, C. et al. NK cells to cure cancer. Semin. Immunol. 41, 101272 (2019).

    Article  PubMed  Google Scholar 

  101. Huntington, N. D., Cursons, J. & Rautela, J. The cancer–natural killer cell immunity cycle. Nat. Rev. Cancer 20, 437–454 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. López-Soto, A., Gonzalez, S., Smyth, M. J. & Galluzzi, L. Control of metastasis by NK cells. Cancer Cell 32, 135–154 (2017).

    Article  PubMed  Google Scholar 

  103. Li, B., Jiang, Y., Li, G., Fisher, G. A. & Li, R. Natural killer cell and stroma abundance are independently prognostic and predict gastric cancer chemotherapy benefit. JCI Insight 5, e136570 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lee, H. et al. Integrated molecular and immunophenotypic analysis of NK cells in anti-PD-1 treated metastatic melanoma patients. Oncoimmunology 8, e1537581 (2019).

    Article  PubMed  Google Scholar 

  105. Cursons, J. et al. A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol. Res. 7, 1162–1174 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Buss, L. A. et al. Effects of exercise and anti-PD-1 on the tumour microenvironment. Immunol. Lett. 239, 60–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Garritson, J. et al. Physical activity delays accumulation of immunosuppressive myeloid-derived suppressor cells. PLoS ONE 15, e0234548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wennerberg, E. et al. Exercise reduces immune suppression and breast cancer progression in a preclinical model. Oncotarget 11, 452–461 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Mengos, A. E., Gastineau, D. A. & Gustafson, M. P. The CD14+HLA-DRlo/neg monocyte: an immunosuppressive phenotype that restrains responses to cancer immunotherapy. Front. Immunol. 10, 1147 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim, I. S. et al. Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat. Cell Biol. 21, 1113–1126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Weber, R. et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front. Immunol. 9, 1310 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Martín-Ruiz, A. et al. Benefits of exercise and immunotherapy in a murine model of human non-small-cell lung carcinoma. Exerc. Immunol. Rev. 26, 100–115 (2020).

    PubMed  Google Scholar 

  113. Bay, M. L. et al. Voluntary wheel running can lead to modulation of immune checkpoint molecule expression. Acta Oncol. 59, 1447–1454 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Denton, N. L., Chen, C. Y., Scott, T. R. & Cripe, T. P. Tumor-associated macrophages in oncolytic virotherapy: friend or foe? Biomedicines 4, 13 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rolny, C. et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19, 31–44 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Ruffell, B., Affara, N. I. & Coussens, L. M. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33, 119–126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Goh, J. et al. Exercise training in transgenic mice is associated with attenuation of early breast cancer growth in a dose-dependent manner. PLoS ONE 8, e80123 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  118. McClellan, J. L. et al. Exercise effects on polyp burden and immune markers in the ApcMin/+ mouse model of intestinal tumorigenesis. Int. J. Oncol. 45, 861–868 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ge, Z., Wu, S., Qi, Z. & Ding, S. Exercise modulates polarization of TAMs and expression of related immune checkpoints in mice with lung cancer. J. Cancer 13, 3297–3307 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lamkin, D. M. et al. Physical activity modulates mononuclear phagocytes in mammary tissue and inhibits tumor growth in mice. PeerJ 9, e10725 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Castanedo-Rincón, C. et al. Combined exercise intervention in a mouse model of high-risk neuroblastoma: effects on physical, immune, tumor and clinical outcomes. Exerc. Immunol. Rev. 29, 86–110 (2023).

    Google Scholar 

  122. Singh, G. & Singh, S. M. Role of host’s antitumor immunity in exercise-dependent regression of murine T-cell lymphoma. Comp. Immunol. Microbiol. Infect. Dis. 28, 231–248 (2005).

    Article  PubMed  Google Scholar 

  123. Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ruffell, B. et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 623–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Layer, J. P. et al. Amplification of N-Myc is associated with a T-cell-poor microenvironment in metastatic neuroblastoma restraining interferon pathway activity and chemokine expression. Oncoimmunology 6, e1320626 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zafari, R., Razi, S. & Rezaei, N. The role of dendritic cells in neuroblastoma: implications for immunotherapy. Immunobiology 227, 152293 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Martín-Ruiz, A. et al. Effects of anti-PD-1 immunotherapy on tumor regression: insights from a patient-derived xenograft model. Sci. Rep. 10, 7078 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hagar, A. et al. Endurance training slows breast tumor growth in mice by suppressing Treg cells recruitment to tumors. BMC Cancer 9, 536 (2019).

    Article  Google Scholar 

  129. Gomes-Santos, I. L. et al. Exercise training improves tumor control by increasing CD8+ T-cell infiltration via CXCR3 signaling and sensitizes breast cancer to immune checkpoint blockade. Cancer Immunol. Res. 9, 765–778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rundqvist, H. et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. eLife 9, e59996 (2020). Together with Gomes-Santos et al., this paper provides preclinical support for an increase in the anticancer effector function of CD8+ T cells with regular exercise.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Feng, Q. et al. Lactate increases stemness of CD8+ T cells to augment anti-tumor immunity. Nat. Commun. 13, 4981 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kaymak, I. et al. Carbon source availability drives nutrient utilization in CD8+ T cells. Cell Metab. 34, 1298–1311.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Barbieri, L. et al. Lactate exposure shapes the metabolic and transcriptomic profile of CD8+ T cells. Front. Immunol. 14, 1101433 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Balachandran, V. P., Beatty, G. L. & Dougan, S. K. Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities. Gastroenterology 156, 2056–2072 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Bear, A. S., Vonderheide, R. H. & O’Hara, M. H. Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell 38, 788–802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gupta, P. et al. Comparison of three exercise interventions with and without gemcitabine treatment on pancreatic tumor growth in mice: no impact on tumor infiltrating lymphocytes. Front. Physiol. 13, 1039988 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Laumont, C. M. & Nelson, B. H. B cells in the tumor microenvironment: multi-faceted organizers, regulators, and effectors of anti-tumor immunity. Cancer Cell 41, 466–489 (2023).

    Article  CAS  PubMed  Google Scholar 

  138. Wieland, A. et al. Defining HPV-specific B cell responses in patients with head and neck cancer. Nature 597, 274–278 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Zitvogel, L., Tesniere, A. & Kroemer, G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat. Rev. Immunol. 10, 715–727 (2006).

    Article  Google Scholar 

  142. Rodríguez-Cañamero, S. et al. Impact of physical exercise in advanced-stage cancer patients: systematic review and meta-analysis. Cancer Med. 11, 3714–3727 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Schmitz, K. H. et al. Exercise is medicine in oncology: engaging clinicians to help patients move through cancer. CA Cancer J. Clin. 69, 468–484 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Siversten, I. & Dahlstrom, A. W. Relation of muscular activity to carcinoma: a preliminary report. J. Cancer Res. 6, 365–378 (1921).

    Google Scholar 

  145. Rusch, H. P. & Kline, B. E. The effect of exercise on the growth of a mouse tumor. Cancer Res. 4, 116–118 (1944).

    Google Scholar 

  146. Newton, G. Tumor susceptibility in rats: role of infantile manipulation and later exercise. Psychol. Rep. 16, 127–132 (1965).

    Article  CAS  PubMed  Google Scholar 

  147. Deuster, P. A., Morrison, S. D. & Ahrens, R. A. Endurance exercise modifies cachexia of tumor growth in rats. Med. Sci. Sports Exerc. 17, 385–392 (1985).

    Article  CAS  PubMed  Google Scholar 

  148. MacNeil, B. & Hoffman-Goetz, L. Exercise training and tumour metastasis in mice: influence of time of exercise onset. Anticancer Res. 13, 2085–2088 (1993).

    CAS  PubMed  Google Scholar 

  149. Virchow, R. Cellular pathology. As based upon physiological and pathological histology. Lecture XVI — atheromatous affection of arteries. 1858. Nutr. Rev. 47, 23–25 (1989).

    Article  CAS  PubMed  Google Scholar 

  150. Starnes, C. O. Coley’s toxins. Nature 360, 23 (1992).

    Article  CAS  PubMed  Google Scholar 

  151. Starnes, C. O. Coley’s toxins in perspective. Nature 357, 11–12 (1992).

    Article  CAS  PubMed  Google Scholar 

  152. MacNeil, B. & Hoffman-Goetz, L. Effect of exercise on natural cytotoxicity and pulmonary tumor metastases in mice. Med. Sci. Sports Exerc. 25, 922–928 (1993). This preclinical study investigates on whether regular exercise improves anticancer function (as assessed with splenic NK cell cytotoxic activity).

    Article  CAS  PubMed  Google Scholar 

  153. Hutt, D. Feasibility of leukapheresis for CAR T-cell production in heavily pre-treated pediatric patients. Transfus. Apher. Sci. 59, 102769 (2020).

    Article  PubMed  Google Scholar 

  154. Korell, F. et al. Current challenges in providing good leukapheresis products for manufacturing of CAR-T cells for patients with relapsed/refractory NHL or ALL. Cells 9, 1225 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tuazon, S. A. et al. Factors affecting lymphocyte collection efficiency for the manufacture of chimeric antigen receptor T cells in adults with B-cell malignancies. Transfusion 59, 1773–1780 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Allen, E. S. et al. Autologous lymphapheresis for the production of chimeric antigen receptor T cells. Transfusion 57, 1133–1141 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hont, A. B. et al. The generation and application of antigen-specific T cell therapies for cancer and viral-associated disease. Mol. Ther. 30, 2130–2152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. LaVoy, E. C. et al. A single bout of dynamic exercise enhances the expansion of MAGE-A4 and PRAME-specific cytotoxic T-cells from healthy adults. Exerc. Immunol. Rev. 21, 144–153 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to K. McCreath for helpful comments on the text. Research by A.L. and C.F.-L. in exercise and cancer is funded by the Wereld Kanker Onderzoek Fonds (WKOF), as part of the World Cancer Research Fund International grant programme (grant number IIG_FULL_2021_007), and the Spanish Ministry of Science and Innovation (Fondo de Investigaciones Sanitarias (FIS)) and Fondos FEDER (grant numbers PI18/00139 and PI20/00645), and European Union’s Horizon 2020 research and innovation programme under grant agreement number 945153. Research by C.F.-L. is funded by a Miguel Servet postdoctoral contract granted by Instituto de Salud Carlos III (CP18/00034). Research by P.L.V. is funded by a Sara Borrell postdoctoral contract granted by Instituto de Salud Carlos III (CD21/00138).

Author information

Authors and Affiliations

Authors

Contributions

A.L. wrote the first manuscript draft with the help of C.F.-L. All authors researched data for the article, contributed to the discussion of content, and also reviewed and edited the article in depth before submission. B.G.G. and C.F.-L. made the figures.

Corresponding authors

Correspondence to Carmen Fiuza-Luces, Alejandro López-Soto or Alejandro Lucia.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Peer review

Peer review information

Nature Reviews Immunology thanks Bente Klarlund Pedersen, Karsten Krueger and John P. Campbell for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Exercise (or ‘exercise training’)

A form of structured leisure-time physical activity with the purpose of improving or maintaining health — training for a 10-km running race, or resistance training (for example, weight lifting) to increase muscle mass. Although physical activity and exercise are often used interchangeably, the bulk of observational epidemiological evidence is based on physical activity data, whereas exercise is frequently used in intervention trials and preclinical studies.

Physical activity

Any bodily movement produced by skeletal muscles that requires energy expenditure and includes the domains of occupational, domestic, transportation and leisure time (such as walking to work or walking the dog).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiuza-Luces, C., Valenzuela, P.L., Gálvez, B.G. et al. The effect of physical exercise on anticancer immunity. Nat Rev Immunol 24, 282–293 (2024). https://doi.org/10.1038/s41577-023-00943-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00943-0

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer