Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunological factors linked to geographical variation in vaccine responses

Abstract

Vaccination is one of medicine’s greatest achievements; however, its full potential is hampered by considerable variation in efficacy across populations and geographical regions. For example, attenuated malaria vaccines in high-income countries confer almost 100% protection, whereas in low-income regions these same vaccines achieve only 20–50% protection. This trend is also observed for other vaccines, such as bacillus Calmette–Guérin (BCG), rotavirus and yellow fever vaccines, in terms of either immunogenicity or efficacy. Multiple environmental factors affect vaccine responses, including pathogen exposure, microbiota composition and dietary nutrients. However, there has been variable success with interventions that target these individual factors, highlighting the need for a better understanding of their downstream immunological mechanisms to develop new ways of modulating vaccine responses. Here, we review the immunological factors that underlie geographical variation in vaccine responses. Through the identification of causal pathways that link environmental influences to vaccine responsiveness, it might become possible to devise modulatory compounds that can complement vaccines for better outcomes in regions where they are needed most.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Variations in vaccine immunogenicity or efficacy across populations.
Fig. 2: Factors and immunological mechanisms driving vaccine efficacy variation between populations.

Similar content being viewed by others

References

  1. Li, X., Mukandavire, C. & Cucunuba, Z. M. Estimating the health impact of vaccination against ten pathogens in 98 low-income and middle-income countries from 2000 to 2030: a modelling study. Lancet 397, 398–408 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fine, P. E. M. Variation in protection by BCG-implications of and for heterologous immunity. Lancet 346, 1339–1345 (1995). This publication is the first to address the impact of environmental factors on variation in BCG vaccine efficacy.

    Article  CAS  PubMed  Google Scholar 

  3. Vesikari, T. et al. Efficacy of human rotavirus vaccine against rotavirus gastroenteritis during the first 2 years of life in European infants: randomised, double-blind controlled study. Lancet 370, 1757–1763 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Madhi, S. A. et al. Effect of human rotavirus vaccine on severe diarrhea in African infants. N. Engl. J. Med. 362, 289–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Clark, A. et al. Efficacy of live oral rotavirus vaccines by duration of follow-up: a meta-regression of randomised controlled trials. Lancet Infect. Dis. 19, 717–727 (2019). This publication is a meta-analysis of trials across the world showing that rotavirus vaccine efficacy and durability are lowest in countries with highest child mortality.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang, V., Jiang, B., Tate, J., Parashar, U. D. & Patel, M. M. Performance of rotavirus vaccines in developed and developing countries. Hum. Vaccin. 6, 532–542 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Seder, R. A. et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341, 1359–1365 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Epstein, J. E. et al. Protection against Plasmodium falciparum malaria by PfSPZ vaccine. J. Clin. Invest. Insight 2, e89154 (2017).

    Google Scholar 

  9. Sissoko, M. S. et al. Safety and efficacy of PfSPZ vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial. Lancet Infect. Dis. 17, 498–509 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sissoko, M. S. et al. Safety and efficacy of a three-dose regimen of Plasmodium falciparum sporozoite vaccine in adults during an intense malaria transmission season in Mali: a randomised, controlled phase 1 trial. Lancet Infect. Dis. 22, 377–389 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Jongo, S. A. et al. Safety, immunogenicity, and protective efficacy against controlled human malaria infection of Plasmodium falciparum sporozoite vaccine in Tanzanian adults. Am. J. Trop. Med. Hyg. 99, 338–349 (2018). This publication shows that the PfSPZ vaccine when tested in Tanzania results in low (20%) protection against controlled human malaria infection, whereas when tested in the USA, in an identical manner, it is highly protective (92.3%).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jongo, S. A. et al. Immunogenicity and protective efficacy of radiation-attenuated and chemo-attenuated PfSPZ vaccines in EquatoGuinean adults. Am. J. Trop. Med. Hyg. 104, 283–293 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Mordmuller, B. et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature 542, 445–449 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Coulibaly, D. et al. PfSPZ-CVac malaria vaccine demonstrates safety among malaria-experienced adults: a randomized, controlled phase 1 trial. EClinicalMedicine 52, 101579 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Muyanja, E. et al. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine. J. Clin. Invest. 124, 3147–3158 (2014). This publication shows that the immunogenicity of the yellow fever vaccine is lower in Uganda than in Switzerland and links this to the higher pre-vaccination immune activation status in Uganda.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bowyer, G. et al. Reduced Ebola vaccine responses in CMV+ young adults is associated with expansion of CD57+KLRG1+ T cells. J. Exp. Med. 217, e20200004 (2020). This publication shows that immunogenicity of the Ebola vaccine is lower in Senegal than in the UK and links it to the expression of CD57 and KLRG1 on T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kabagenyi, J. et al. Urban–rural differences in immune responses to mycobacterial and tetanus vaccine antigens in a tropical setting: a role for helminths? Parasitol. Int. 78, 102132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Riet, E. et al. Cellular and humoral responses to influenza in gabonese children living in rural and semi-urban areas. J. Infect. Dis. 196, 1671–1678 (2007).

    Article  PubMed  Google Scholar 

  19. Grassly, N. C., Kang, G. & Kampmann, B. Biological challenges to effective vaccines in the developing world. Phil. Trans. R. Soc. B 370, 20140138 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mentzer, A. J., O’Connor, D., Pollard, A. J. & Hill, A. V. Searching for the human genetic factors standing in the way of universally effective vaccines. Phil. Trans. R. Soc. B 370, 20140341 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liston, A., Humblet-Baron, S., Duffy, D. & Goris, A. Human immune diversity: from evolution to modernity. Nat. Immunol. 22, 1479–1489 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 160, 37–47 (2015). This publication shows that the variation in immune response of twins to vaccination or an infection is largely determined by exposure to environmental factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Drakesmith, H. et al. Vaccine efficacy and iron deficiency: an intertwined pair? Lancet Haematol. 8, e666–e669 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lynn, D. J., Benson, S. C., Lynn, M. A. & Pulendran, B. Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nat. Rev. Immunol. 22, 33–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Shah, J. A., Lindestam Arlehamn, C. S., Horne, D. J., Sette, A. & Hawn, T. R. Nontuberculous mycobacteria and heterologous immunity to tuberculosis. J. Infect. Dis. 220, 1091–1098 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Clarke, E. & Desselberger, U. Correlates of protection against human rotavirus disease and the factors influencing protection in low-income settings. Mucosal Immunol. 8, 1–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Parker, E. P. et al. Causes of impaired oral vaccine efficacy in developing countries. Future Microbiol. 13, 97–118 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Morter, R. et al. Impact of exposure to malaria and nutritional status on responses to the experimental malaria vaccine ChAd63 MVA ME-TRAP in 5-17 month-old children in Burkina Faso. Front. Immunol. 13, 1058227 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lazarus, R. P. et al. The effect of probiotics and zinc supplementation on the immune response to oral rotavirus vaccine: a randomized, factorial design, placebo-controlled study among Indian infants. Vaccine 36, 273–279 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Bruckner, S. et al. Effect of antihelminthic treatment on vaccine immunogenicity to a seasonal influenza vaccine in primary school children in gabon: a randomized placebo-controlled trial. PLoS Negl. Trop. Dis. 9, e0003768 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tweyongyere, R. et al. Effect of Schistosoma mansoni infection and its treatment on antibody responses to measles catch-up immunisation in pre-school children: a randomised trial. PLoS Negl. Trop. Dis. 13, e0007157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Connor, D. The omics strategy: the use of systems vaccinology to characterize immune responses to childhood immunization. Expert Rev. Vaccines 21, 1205–1214 (2022).

    Article  PubMed  Google Scholar 

  33. Wimmers, F. et al. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell 184, 3915–3935 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Andersen, P. & Doherty, T. M. The success and failure of BCG — implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 3, 656–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Barreto, M. L. et al. Causes of variation in BCG vaccine efficacy: examining evidence from the BCG REVAC cluster randomized trial to explore the masking and the blocking hypotheses. Vaccine 32, 3759–3764 (2014). This publication shows data that support the hypothesis that blocking is the most likely explanation for the way in which exposure to environmental mycobacteria decreases BCG vaccine efficacy.

    Article  CAS  PubMed  Google Scholar 

  36. Parker, E. P. K. et al. Impact of maternal antibodies and microbiota development on the immunogenicity of oral rotavirus vaccine in African, Indian, and European infants. Nat. Commun. 12, 7288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chilengi, R. et al. Association of maternal immunity with rotavirus vaccine immunogenicity in Zambian infants. PLoS ONE 11, e0150100 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Moon, S. S. et al. Prevaccination rotavirus serum IgG and IgA are associated with lower immunogenicity of live, oral human rotavirus vaccine in South African infants. Clin. Infect. Dis. 62, 157–165 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Dobano, C. et al. Concentration and avidity of antibodies to different circumsporozoite epitopes correlate with RTS,S/ASO1E malaria vaccine efficacy. Nat. Commun. 10, 2174 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nielsen, C. M. et al. Delayed boosting improves human antigen-specific Ig and B cell responses to the RH5.1/AS01B malaria vaccine. JCI Insight 8, e163856 (2023).

    Article  Google Scholar 

  41. McNamara, H. A. et al. Antibody feedback limits the expansion of B cell responses to malaria vaccination but drives diversification of the humoral response. Cell Host Microbe 28, 572–585.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Liehl, P. et al. Innate immunity induced by Plasmodium liver infection inhibits malaria reinfections. Infect. Immun. 83, 1172–1180 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liehl, P. et al. Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nat. Med. 20, 47–53 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Idoko, O. T. et al. Antibody responses to yellow fever vaccine in 9 to 11-month-old Malian and Ghanaian children. Expert Rev. Vaccines 18, 867–875 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Roukens, A. H. & Visser, L. G. Yellow fever vaccine: past, present and future. Expert Opin. Biol. Ther. 8, 1787–1795 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Roukens, A. H. et al. Elderly subjects have a delayed antibody response and prolonged viraemia following yellow fever vaccination: a prospective controlled cohort study. PLoS ONE 6, e27753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goodwin, K., Viboud, C. & Simonsen, L. Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 24, 1159–1169 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Fourati, S. et al. Pre-vaccination inflammation and B-cell signalling predict age-related hyporesponse to hepatitis B vaccination. Nat. Commun. 7, 10369 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fali, T. et al. Elderly human hematopoietic progenitor cells express cellular senescence markers and are more susceptible to pyroptosis. JCI Insight 3, e95319 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. de Jong, S. E. et al. Systems analysis and controlled malaria infection in Europeans and Africans elucidate naturally acquired immunity. Nat. Immunol. 22, 654–665 (2021).

    Article  PubMed  Google Scholar 

  51. de Ruiter, K. et al. Helminth infections drive heterogeneity in human type 2 and regulatory cells. Sci. Transl Med. 12, eaaw3703 (2020). This publication shows that the immune profiles of Dutch and Indonesian individuals living in Jakarta are more similar than the immune profiles of Indonesians living in Jakarta and a rural village.

    Article  PubMed  Google Scholar 

  52. Mbow, M. et al. Changes in immunological profile as a function of urbanization and lifestyle. Immunology 143, 569–577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wagar, L. E. et al. Increased T cell differentiation and cytolytic function in Bangladeshi compared to American children. Front. Immunol. 10, 2239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ben-Smith, A. et al. Differences between naive and memory T cell phenotype in Malawian and UK adolescents: a role for cytomegalovirus? BMC Infect. Dis. 8, 139 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Messele, T. et al. Reduced naive and increased activated CD4 and CD8 cells in healthy adult Ethiopians compared with their Dutch counterparts. Clin. Exp. Immunol. 115, 443–450 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cicin-Sain, L. et al. Loss of naive T cells and repertoire constriction predict poor response to vaccination in old primates. J. Immunol. 184, 6739–6745 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Bach, F. A. et al. A systematic analysis of the human immune response to Plasmodium vivax. J. Clin. Invest. 133, e152463 (2023).

  59. Rogawski, E. T. et al. quantifying the impact of natural immunity on rotavirus vaccine efficacy estimates: a clinical trial in Dhaka, Bangladesh (PROVIDE) and a simulation study. J. Infect. Dis. 217, 861–868 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Qadri, F. et al. Efficacy of a single-dose, inactivated oral cholera vaccine in Bangladesh. N. Engl. J. Med. 374, 1723–1732 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Hill, D. L. et al. Immune system development varies according to age, location, and anemia in African children. Sci. Transl Med. 12, eaaw9522 (2020). This publication shows how that the trajectory of immune activation can vary considerably in infants between different geographical locations and this can impact vaccine responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Frasca, D., Diaz, A., Romero, M. & Blomberg, B. B. Metformin enhances B cell function and antibody responses of elderly individuals with type-2 diabetes mellitus. Front. Aging 2, 715981 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ridker, P. M. et al. Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation 126, 2739–2748 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Wildner, N. H. et al. Transcriptional pattern analysis of virus-specific CD8+ T cells in hepatitis C infection: increased expression of TOX and eomesodermin during and after persistent antigen recognition. Front. Immunol. 13, 886646 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Beltra, J. C. et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity 52, 825–841.e8 (2020). By using transcriptional and epigenetic analysis, this publication identifies dedicated molecular signatures that define the heterogeneity of exhausted CD8+ T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wammes, L. J. et al. Community deworming alleviates geohelminth-induced immune hyporesponsiveness. Proc. Natl Acad. Sci. USA 113, 12526–12531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Labuda, L. A. et al. A praziquantel treatment study of immune and transcriptome profiles in Schistosoma haematobium-infected Gabonese schoolchildren. J. Infect. Dis. 222, 2103–2113 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Jayaraman, P. et al. TIM3 mediates T cell exhaustion during Mycobacterium tuberculosis infection. PLoS Pathog. 12, e1005490 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Barili, V. et al. Unraveling the multifaceted nature of CD8 T cell exhaustion provides the molecular basis for therapeutic T cell reconstitution in chronic hepatitis B and C. Cells 10, 2563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hotchkiss, R. S. & Moldawer, L. L. Parallels between cancer and infectious disease. N. Engl. J. Med. 371, 380–383 (2014).

    Article  PubMed  Google Scholar 

  73. Moorman, J. P. et al. Impaired hepatitis B vaccine responses during chronic hepatitis C infection: involvement of the PD-1 pathway in regulating CD4+ T cell responses. Vaccine 29, 3169–3176 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, J. M. et al. Tim-3 alters the balance of IL-12/IL-23 and drives TH17 cells: role in hepatitis B vaccine failure during hepatitis C infection. Vaccine 31, 2238–2245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guha, R. et al. Plasmodium falciparum malaria drives epigenetic reprogramming of human monocytes toward a regulatory phenotype. PLoS Pathog. 17, e1009430 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Illingworth, J. et al. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. J. Immunol. 190, 1038–1047 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Bengsch, B., Martin, B. & Thimme, R. Restoration of HBV-specific CD8+ T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation. J. Hepatol. 61, 1212–1219 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Edwards, C. L. et al. Early changes in CD4+ T-cell activation during blood-stage Plasmodium falciparum infection. J. Infect. Dis. 218, 1119–1129 (2018).

    Article  PubMed  Google Scholar 

  79. Kotraiah, V. et al. Novel peptide-based PD1 immunomodulators demonstrate efficacy in infectious disease vaccines and therapeutics. Front. Immunol. 11, 264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Phares, T. W. et al. A peptide-based PD1 antagonist enhances T-cell priming and efficacy of a prophylactic malaria vaccine and promotes survival in a lethal malaria model. Front. Immunol. 11, 1377 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Batista-Duharte, A., Hassouneh, F., Alvarez-Heredia, P., Pera, A. & Solana, R. Immune checkpoint inhibitors for vaccine improvements: current status and new approaches. Pharmaceutics 14, 1721 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Herati, R. S. et al. PD-1 directed immunotherapy alters Tfh and humoral immune responses to seasonal influenza vaccine. Nat. Immunol. 23, 1183–1192 (2022). This publication shows that anti-PD1 therapy might be useful for boosting non-cancer immune responses as it resulted in improved T folicular helper cell responses following influenza vaccination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lindemann, M. et al. Humoral and cellular responses to a single dose of fendrix in renal transplant recipients with non-response to previous hepatitis B vaccination. Scand. J. Immunol. 85, 51–57 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Janssen, R. S. et al. Immunogenicity and safety of an investigational hepatitis B vaccine with a toll-like receptor 9 agonist adjuvant (HBsAg-1018) compared with a licensed hepatitis B vaccine in patients with chronic kidney disease. Vaccine 31, 5306–5313 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, J. D. Y., Deng, J. C. & Goldstein, D. R. How aging impacts vaccine efficacy: known molecular and cellular mechanisms and future directions. Trends Mol. Med. 28, 1100–1111 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Akbar, A. N. & Henson, S. M. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat. Rev. Immunol. 11, 289–295 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Bengsch, B. et al. Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog. 6, e1000947 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Venkatraman, N. et al. Safety and immunogenicity of a heterologous prime-boost Ebola virus vaccine regimen in healthy adults in the United Kingdom and Senegal. J. Infect. Dis. 219, 1187–1197 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Frimpong, A. et al. Phenotypic evidence of T cell exhaustion and senescence during symptomatic Plasmodium falciparum malaria. Front. Immunol. 10, 1345 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 19, 573–583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nagpal, N. et al. Small-molecule PAPD5 inhibitors restore telomerase activity in patient stem cells. Cell Stem Cell 26, 896–909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vukmanovic-Stejic, M. et al. Enhancement of cutaneous immunity during aging by blocking p38 mitogen-activated protein (MAP) kinase-induced inflammation. J. Allergy Clin. Immunol. 142, 844–856 (2018). This publication shows that the cutaneous response to varicella zoster virus is enhanced by treating elderly subjects with the oral p38 MAPK inhibitor losmapimod.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Walters, H. E., Deneka-Hannemann, S. & Cox, L. S. Reversal of phenotypes of cellular senescence by pan-mTOR inhibition. Aging 8, 231–244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mannick, J. B. et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci. Transl Med. 10, eaaq1564 (2018).

    Article  PubMed  Google Scholar 

  97. Finlay, C. M., Walsh, K. P. & Mills, K. H. Induction of regulatory cells by helminth parasites: exploitation for the treatment of inflammatory diseases. Immunol. Rev. 259, 206–230 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Maizels, R. M. & McSorley, H. J. Regulation of the host immune system by helminth parasites. J. Allergy Clin. Immunol. 138, 666–675 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607–612 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Austermann, J., Roth, J. & Barczyk-Kahlert, K. The good and the bad: monocytes’ and macrophages’ diverse functions in inflammation. Cells 11, 1979 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maizels, R. M. & Yazdanbakhsh, M. Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat. Rev. Immunol. 3, 733–744 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Nguyen, D. X. & Ehrenstein, M. R. Anti-TNF drives regulatory T cell expansion by paradoxically promoting membrane TNF-TNF-RII binding in rheumatoid arthritis. J. Exp. Med. 213, 1241–1253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Salgame, P., Yap, G. S. & Gause, W. C. Effect of helminth-induced immunity on infections with microbial pathogens. Nat. Immunol. 14, 1118–1126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kumar, N. P. et al. Strongyloides stercoralis coinfection is associated with greater disease severity, higher bacterial burden, and elevated plasma matrix metalloproteinases in pulmonary tuberculosis. J. Infect. Dis. 222, 1021–1026 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wammes, L. J. et al. Regulatory T cells in human geohelminth infection suppress immune responses to BCG and Plasmodium falciparum. Eur. J. Immunol. 40, 437–442 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Van Braeckel-Budimir, N., Kurup, S. P. & Harty, J. T. Regulatory issues in immunity to liver and blood-stage malaria. Curr. Opin. Immunol. 42, 91–97 (2016).

    Article  PubMed  Google Scholar 

  107. Walther, M. et al. Upregulation of TGF-beta, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity 23, 287–296 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Nouatin, O. et al. Effect of immune regulatory pathways after immunization with GMZ2 malaria vaccine candidate in healthy lifelong malaria-exposed adults. Vaccine 38, 4263–4272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wait, L. F., Dobson, A. P. & Graham, A. L. Do parasite infections interfere with immunisation? A review and meta-analysis. Vaccine 38, 5582–5590 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Moncunill, G. et al. Distinct helper T cell type 1 and 2 responses associated with malaria protection and risk in RTS,S/AS01E vaccinees. Clin. Infect. Dis. 65, 746–755 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nouatin, O. et al. Exploratory analysis of the effect of helminth infection on the immunogenicity and efficacy of the asexual blood-stage malaria vaccine candidate GMZ2. PLoS Negl. Trop. Dis. 15, e0009361 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cooper, P. J. et al. Albendazole treatment of children with ascariasis enhances the vibriocidal antibody response to the live attenuated oral cholera vaccine CVD 103-HgR. J. Infect. Dis. 182, 1199–1206 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Webb, E. L. et al. Effect of single-dose anthelmintic treatment during pregnancy on an infant’s response to immunisation and on susceptibility to infectious diseases in infancy: a randomised, double-blind, placebo-controlled trial. Lancet 377, 52–62 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Djuardi, Y., Wammes, L. J., Supali, T., Sartono, E. & Yazdanbakhsh, M. Immunological footprint: the development of a child’s immune system in environments rich in microorganisms and parasites. Parasitology 138, 1508–1518 (2011).

    Article  PubMed  Google Scholar 

  115. Mpairwe, H., Tweyongyere, R. & Elliott, A. Pregnancy and helminth infections. Parasite Immunol. 36, 328–337 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Maizels, R. M., McSorley, H. J. & Smyth, D. J. Helminths in the hygiene hypothesis: sooner or later? Clin. Exp. Immunol. 177, 38–46 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barnes, P. J. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 18, 454–466 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Dees, S., Ganesan, R., Singh, S. & Grewal, I. S. Regulatory T cell targeting in cancer: emerging strategies in immunotherapy. Eur. J. Immunol. 51, 280–291 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Turner, V. M. & Mabbott, N. A. Influence of ageing on the microarchitecture of the spleen and lymph nodes. Biogerontology 18, 723–738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kityo, C. et al. Lymphoid tissue fibrosis is associated with impaired vaccine responses. J. Clin. Invest. 128, 2763–2773 (2018). This publication shows that in yellow fever vaccinees in Uganda, the extent of LN fibrosis can be linked to yellow fever vaccine responses.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Schacker, T. W. et al. Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J. Clin. Invest. 110, 1133–1139 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ahmadi, O., McCall, J. L. & Stringer, M. D. Does senescence affect lymph node number and morphology? A systematic review. Anz. J. Surg. 83, 612–618 (2013).

    Article  PubMed  Google Scholar 

  123. Cakala-Jakimowicz, M., Kolodziej-Wojnar, P. & Puzianowska-Kuznicka, M. Aging-related cellular, structural and functional changes in the lymph nodes: a significant component of immunosenescence? An overview. Cells 10, 3148 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lazuardi, L. et al. Age-related loss of naive T cells and dysregulation of T-cell/B-cell interactions in human lymph nodes. Immunology 114, 37–43 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Denton, A. E. et al. Targeting TLR4 during vaccination boosts MAdCAM-1+ lymphoid stromal cell activation and promotes the aged germinal center response. Sci. Immunol. 7, eabk0018 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zou, Z., Lin, H., Li, M. & Lin, B. Tumor-associated macrophage polarization in the inflammatory tumor microenvironment. Front. Oncol. 13, 1103149 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zou, W. P. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5, 263–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Pauken, K. E. & Wherry, E. J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 36, 265–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chodisetti, S. B. et al. Triggering through Toll-like receptor 2 limits chronically stimulated T-helper type 1 cells from undergoing exhaustion. J. Infect. Dis. 211, 486–496 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Ouyang, Q. et al. Bazedoxifene suppresses intracellular Mycobacterium tuberculosis growth by enhancing autophagy. mSphere 5, e00124-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Brodin, P. Immune-microbe interactions early in life: a determinant of health and disease long term. Science 376, 945–950 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Veldhoen, M. & Ferreira, C. Influence of nutrient-derived metabolites on lymphocyte immunity. Nat. Med. 21, 709–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Temba, G. S. et al. Urban living in healthy Tanzanians is associated with an inflammatory status driven by dietary and metabolic changes. Nat. Immunol. 22, 287–300 (2021). This publication shows that the difference in inflammatory profiles of individuals living in rural and urban areas of Tanzania might be attributed to food-derived metabolites in the diet.

    Article  CAS  PubMed  Google Scholar 

  134. Divangahi, M. et al. Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nat. Immunol. 22, 2–6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dominguez-Andres, J. et al. The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab. 29, 211–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Franco, F., Jaccard, A., Romero, P., Yu, Y. R. & Ho, P. C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2, 1001–1012 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Callender, L. A. et al. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell 19, e13067 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. O’Carroll, S. M. & O’Neill, L. A. J. Targeting immunometabolism to treat COVID-19. Immunother. Adv. 1, ltab013 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Li, S. et al. Metabolic phenotypes of response to vaccination in humans. Cell 169, 862–877.e17 (2017). This publication identifies several pathways involved in inositol phosphate or cholesterol metabolism that are linked to T and B cell responses to shingles vaccine (Zostavax).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Luo, W. et al. SREBP signaling is essential for effective B cell responses. Nat. Immunol. 24, 337–348 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. DePeaux, K. & Delgoffe, G. M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol. 21, 785–797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Patel, C. H., Leone, R. D., Horton, M. R. & Powell, J. D. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat. Rev. Drug Discov. 18, 669–688 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl Med. 6, 268ra179 (2014).

    Article  PubMed  Google Scholar 

  144. Kastenschmidt, J. M. et al. Influenza vaccine format mediates distinct cellular and antibody responses in human immune organoids. Immunity 56, 1910–1926.e7 (2023). This study shows that tonsil organoids can be used to compare responses to inactivated versus live attenuated influenza vaccine and gain an in-depth understanding of the differential adaptive immune responses that are elicited.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Turner, J. S. et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 596, 109–113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Epstein, J. E. et al. Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. Science 334, 475–480 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Deroost, K. & Langhorne, J. Gamma/delta T cells and their role in protection against malaria. Front. Immunol. 9, 2973 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Black, G. F. et al. BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet 359, 1393–1401 (2002).

    Article  PubMed  Google Scholar 

  149. van Riet, E. et al. Cellular and humoral responses to tetanus vaccination in Gabonese children. Vaccine 26, 3690–3695 (2008).

    Article  PubMed  Google Scholar 

  150. Roestenberg, M., Hoogerwerf, M. A., Ferreira, D. M., Mordmuller, B. & Yazdanbakhsh, M. Experimental infection of human volunteers. Lancet Infect. Dis. 18, e312–e322 (2018).

    Article  PubMed  Google Scholar 

  151. Gordon, S. B. et al. A framework for controlled human infection model (CHIM) studies in Malawi: report of a Wellcome Trust workshop on CHIM in low income countries held in Blantyre, Malawi. Wellcome Open Res. 2, 70 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Elliott, A. M. et al. Ethical and scientific considerations on the establishment of a controlled human infection model for schistosomiasis in Uganda: report of a stakeholders’ meeting held in Entebbe, Uganda. AAS Open Res. 1, 2 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Chakaya, J. et al. Global Tuberculosis Report 2020 – reflections on the global TB burden, treatment and prevention efforts. Int. J. Infect. Dis. 113 (Suppl. 1), S7–S12 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zwerling, A. et al. The BCG World Atlas: a database of global BCG vaccination policies and practices. PLoS Med. 8, e1001012 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Dockrell, H. M. & Smith, S. G. What have we learnt about BCG vaccination in the last 20 years? Front. Immunol. 8, 1134 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Abubakar, I. et al. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette–Guerin vaccination against tuberculosis. Health Technol. Assess. 17, 1–372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. WHO. Rotavirus vaccines: WHO position paper – July 2021. Wkly Epidemiol. Rec. 28, 301–320 (2021).

    Google Scholar 

  158. Vetter, V., Gardner, R. C., Debrus, S., Benninghoff, B. & Pereira, P. Established and new rotavirus vaccines: a comprehensive review for healthcare professionals. Hum. Vaccin. Immunother. 18, 1870395 (2022).

    Article  PubMed  Google Scholar 

  159. Plotkin, S. A. Recent updates on correlates of vaccine-induced protection. Front. Immunol. 13, 1081107 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Patel, M. et al. Oral rotavirus vaccines: how well will they work where they are needed most? J. Infect. Dis. 200, S39–S48 (2009).

    Article  PubMed  Google Scholar 

  161. Burnett, E., Parashar, U. D. & Tate, J. E. Real-world effectiveness of rotavirus vaccines, 2006–19: a literature review and meta-analysis. Lancet Glob. Health 8, e1195–e1202 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Bines, J. E. et al. Human neonatal rotavirus vaccine (RV3-BB) to target rotavirus from birth. N. Engl. J. Med. 378, 719–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Witte, D. et al. Neonatal rotavirus vaccine (RV3-BB) immunogenicity and safety in a neonatal and infant administration schedule in Malawi: a randomised, double-blind, four-arm parallel group dose-ranging study. Lancet Infect. Dis. 22, 668–678 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cunliffe, N. A. et al. Efficacy of human rotavirus vaccine against severe gastroenteritis in Malawian children in the first two years of life: a randomized, double-blind, placebo controlled trial. Vaccine 30, A36–A43 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. WHO. Vaccines and vaccination against yellow fever: WHO Position Paper, June 2013 — Recommendations. Wkly Epidemiol. Rec. 88, 269–283 (2015).

    Google Scholar 

  166. Barrett, A. D. & Teuwen, D. E. Yellow fever vaccine – how does it work and why do rare cases of serious adverse events take place? Curr. Opin. Immunol. 21, 308–313 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Pulendran, B. Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat. Rev. Immunol. 9, 741–747 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Jean, K., Donnelly, C. A., Ferguson, N. M. & Garske, T. A meta-analysis of serological response associated with yellow fever vaccination. Am. J. Trop. Med. Hyg. 95, 1435–1439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. WHO. Malaria vaccine: WHO position paper, March 2022. Wkly Epidemiol. Rec. 97, 61–80 (2022).

    Google Scholar 

  170. Olotu, A. et al. Efficacy of RTS,S/AS01E malaria vaccine and exploratory analysis on anti-circumsporozoite antibody titres and protection in children aged 5–17 months in Kenya and Tanzania: a randomised controlled trial. Lancet Infect. Dis. 11, 102–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Stoute, J. A. et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. N. Engl. J. Med. 336, 86–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  172. RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386, 31–45 (2015).

    Article  Google Scholar 

  173. Richie, T. L. et al. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines. Vaccine 33, 7452–7461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Roestenberg, M. et al. Protection against a malaria challenge by sporozoite inoculation. N. Engl. J. Med. 361, 468–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Elias, D., Britton, S., Aseffa, A., Engers, H. & Akuffo, H. Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-β production. Vaccine 26, 3897–3902 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Nono, J. K., Kamdem, S. D., Musaigwa, F., Nnaji, C. A. & Brombacher, F. Influence of schistosomiasis on host vaccine responses. Trends Parasitol. 38, 67–79 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Hailegebriel, T. Undernutrition, intestinal parasitic infection and associated risk factors among selected primary school children in Bahir Dar, Ethiopia. BMC Infect. Dis. 18, 394 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Sweeny, A. R. et al. Supplemented nutrition decreases helminth burden and increases drug efficacy in a natural host-helminth system. Proc. Biol. Sci. 288, 20202722 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Martin, I. et al. The effect of gut microbiome composition on human immune responses: an exploration of interference by helminth infections. Front. Genet. 10, 1028 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Li, R. W. et al. The effect of helminth infection on the microbial composition and structure of the caprine abomasal microbiome. Sci. Rep. 6, 20606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Walson, J. L. & Berkley, J. A. The impact of malnutrition on childhood infections. Curr. Opin. Infect. Dis. 31, 231–236 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Colgate, E. R. et al. Delayed dosing of oral rotavirus vaccine demonstrates decreased risk of rotavirus gastroenteritis associated with serum zinc: a randomized controlled trial. Clin. Infect. Dis. 63, 634–641 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Amaruddin, A. I. et al. BCG scar, socioeconomic and nutritional status: a study of newborns in urban area of Makassar, Indonesia. Trop. Med. Int. Health 24, 736–746 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kim, A. H. et al. Enteric virome negatively affects seroconversion following oral rotavirus vaccination in a longitudinally sampled cohort of Ghanaian infants. Cell Host Microbe 30, 110–123.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hagan, T. et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 178, 1313–1328.e13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Allegretti, J. R., Mullish, B. H., Kelly, C. & Fischer, M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet 394, 420–431 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Li, S. et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat. Immunol. 15, 195–204 (2014).

    Article  PubMed  Google Scholar 

  188. Kazmin, D. et al. Systems analysis of protective immune responses to RTS,S malaria vaccination in humans. Proc. Natl Acad. Sci. USA 114, 2425–2430 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hagan, T. et al. Transcriptional atlas of the human immune response to 13 vaccines reveals a common predictor of vaccine-induced antibody responses. Nat. Immunol. 23, 1788–1798 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Tsang, J. S. et al. Improving vaccine-induced immunity: can baseline predict outcome? Trends Immunol. 41, 457–465 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Nakaya, H. I. et al. Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures. Immunity 43, 1186–1198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. HIPC-CHI Signatures Project Team & HIPC-I Consortium. Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses. Sci. Immunol. 2, eaal4656 (2017). By combining large data sets from influenza vaccine studies, this publication identifies a baseline predictive transcriptomic signature for influenza vaccine responses in young individuals, which did not apply to elderly individuals.

    Article  PubMed Central  Google Scholar 

  193. Kotliarov, Y. et al. Broad immune activation underlies shared set point signatures for vaccine responsiveness in healthy individuals and disease activity in patients with lupus. Nat. Med. 26, 618–629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Fourati, S. et al. Pan-vaccine analysis reveals innate immune endotypes predictive of antibody responses to vaccination. Nat. Immunol. 23, 1777–1787 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Aiello, A. et al. Immunosenescence and its hallmarks: how to oppose aging strategically? A review of potential options for therapeutic intervention. Front. Immunol. 10, 2247 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Moncunill, G. et al. Antigen-stimulated PBMC transcriptional protective signatures for malaria immunization. Sci. Transl Med. 12, eaay8924 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. Moncunill, G. et al. Transcriptional correlates of malaria in RTS,S/AS01-vaccinated African children: a matched case–control study. eLife 11, e70393 (2022). This publication shows that several baseline transcriptional signatures can associate with risk of malaria following vaccination with RTS,S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Tsang, J. S. et al. Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell 157, 499–513 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Dutch Research Organization (NWO) (Spinoza prize awarded to M.Y.), the European Research Council (ERC) (ERC advanced grant REVERSE awarded to M.Y.), National Institute of Health Grant (awarded to M.Y. and B.E.), Leiden University Medical Center (LUMC) (Excellent student PhD fellowship awarded to M.M.A.R.v.D.) and LUMC Global (PhD fellowship awarded to J.J.P.).

Author information

Authors and Affiliations

Authors

Contributions

M.M.A.R.v.D., J.J.P. and M.Y. researched the data for the article and contributed to the writing of the manuscript. G.N., V.I.K., B.E., H.H.S., P.C.W.H., S.P.J., A.M.E. and L.J.W. contributed to the writing of the manuscript and M.Y., S.P.J. and B.E. finalized the manuscript. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Maria Yazdanbakhsh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Bali Pulendran and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Plasmodium falciparum sporozoite (PfSPZ) vaccine

An experimental vaccine against malaria based on radiation-attenuated whole sporozoites of P. falciparum malaria parasite.

PfSPZ–chemoprophylaxis attenuated vaccine

(PfSPZ–CVac). An experimental vaccine against malaria Plasmodium falciparum sporozoites (PfSPZ) based on chemically attenuated whole sporozoites, by co-administering the whole sporozoites of P. falciparum together with an anti-malaria drug, often chloroquine.

RTS,S malaria subunit vaccine

A subunit vaccine against malaria adjuvanted with AS01, which is currently the only licensed malaria vaccine.

Seroconversion

Achievement of a quantifiable antibody level after vaccination, which is expected to correlate with protection.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Dorst, M.M.A.R., Pyuza, J.J., Nkurunungi, G. et al. Immunological factors linked to geographical variation in vaccine responses. Nat Rev Immunol 24, 250–263 (2024). https://doi.org/10.1038/s41577-023-00941-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00941-2

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology