Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges in developing personalized neoantigen cancer vaccines

Abstract

The recent success of cancer immunotherapies has highlighted the benefit of harnessing the immune system for cancer treatment. Vaccines have a long history of promoting immunity to pathogens and, consequently, vaccines targeting cancer neoantigens have been championed as a tool to direct and amplify immune responses against tumours while sparing healthy tissue. In recent years, extensive preclinical research and more than one hundred clinical trials have tested different strategies of neoantigen discovery and vaccine formulations. However, despite the enthusiasm for neoantigen vaccines, proof of unequivocal efficacy has remained beyond reach for the majority of clinical trials. In this Review, we focus on the key obstacles pertaining to vaccine design and tumour environment that remain to be overcome in order to unleash the true potential of neoantigen vaccines in cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current approaches in neoantigen discovery and vaccine design.
Fig. 2: Overview of neoantigen types and sources in the context of cancer vaccination.
Fig. 3: Schematic of post-vaccine obstacles that can limit the efficacy of neoantigen vaccines.

Similar content being viewed by others

References

  1. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Puig-Saus, C. et al. Neoantigen-targeted CD8+ T cell responses with PD-1 blockade therapy. Nature 615, 697–704 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khattak, A. et al. Abstract CT001: a personalized cancer vaccine, mRNA-4157, combined with pembrolizumab versus pembrolizumab in patients with resected high-risk melanoma: efficacy and safety results from the randomized, open-label phase 2 mRNA-4157-P201/Keynote-942 trial. Cancer Res. 83, CT001 (2023).

    Article  Google Scholar 

  6. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023). Together with Khattak et al., this paper presents preliminary evidence that neoantigen vaccines may provide clinical benefit in patients with cancer but further studies are needed to confirm efficacy because of caveats associated with these early results, and discussed in this review.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chun, Y. S., Pawlik, T. M. & Vauthey, J. N. 8th edition of the AJCC Cancer Staging Manual: pancreas and hepatobiliary cancers. Ann. Surg. Oncol. 25, 845–847 (2018).

    Article  PubMed  Google Scholar 

  8. Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ott, P. A. et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell 183, 347–362.e24 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Hu, Z. et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 27, 515–525 (2021). Together with Ott et al., this paper demonstrates that epitope spreading can occur in patients after neoantigen vaccination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Akondy, R. S. et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature 552, 362–367 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller, J. D. et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28, 710–722 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Akondy, R. S. et al. Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination. Proc. Natl Acad. Sci. USA 112, 3050–3055 (2015). Together with Akondy et al. and Miller et al., this paper shows the great magnitude of CTL immunity induced by live vaccines that provide life-long protection against pathogens.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosenberg, S. A. et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J. Immunol. 175, 6169–6176 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Hunder, N. N. et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358, 2698–2703 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Corthay, A. et al. Primary antitumor immune response mediated by CD4+ T cells. Immunity 22, 371–383 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Perez-Diez, A. et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 109, 5346–5354 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brightman, S. E., Naradikian, M. S., Miller, A. M. & Schoenberger, S. P. Harnessing neoantigen specific CD4 T cells for cancer immunotherapy. J. Leukoc. Biol. 107, 625–633 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Cenerenti, M., Saillard, M., Romero, P. & Jandus, C. The era of cytotoxic CD4 T cells. Front. Immunol. 13, 867189 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Verma, S. K. et al. New-age vaccine adjuvants, their development, and future perspective. Front. Immunol. 14, 1043109 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schreiber, S. et al. Metabolic interdependency of Th2 cell-mediated type 2 immunity and the tumor microenvironment. Front. Immunol. 12, 632581 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, J., Geng, X., Hou, J. & Wu, G. New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell Int. 21, 389 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stone, J. D., Harris, D. T. & Kranz, D. M. TCR affinity for p/MHC formed by tumor antigens that are self-proteins: impact on efficacy and toxicity. Curr. Opin. Immunol. 33, 16–22 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aleksic, M. et al. Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies. Eur. J. Immunol. 42, 3174–3179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheever, M. A. et al. The prioritization of cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research. Clin. Cancer Res. 15, 5323–5337 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stone, J. D., Chervin, A. S. & Kranz, D. M. T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology 126, 165–176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kotov, D. I. et al. TCR affinity biases Th cell differentiation by regulating CD25, Eef1e1, and Gbp2. J. Immunol. 202, 2535–2545 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Rogers, P. R. & Croft, M. Peptide dose, affinity, and time of differentiation can contribute to the Th1/Th2 cytokine balance. J. Immunol. 163, 1205–1213 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Temizoz, B., Kuroda, E. & Ishii, K. J. Combination and inducible adjuvants targeting nucleic acid sensors. Curr. Opin. Pharmacol. 41, 104–113 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Rasmussen, M. et al. Pan-specific prediction of peptide-MHC class I complex stability, a correlate of T cell immunogenicity. J. Immunol. 197, 1517–1524 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Bassani-Sternberg, M. et al. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput. Biol. 13, e1005725 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sarkizova, S. et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat. Biotechnol. 38, 199–209 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O’Donnell, T. J., Rubinsteyn, A. & Laserson, U. MHCflurry 2.0: improved pan-allele prediction of MHC class I-presented peptides by incorporating antigen processing. Cell Syst. 11, 42–48 e47 (2020).

    Article  PubMed  Google Scholar 

  38. Schmidt, J. et al. Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. Cell Rep. Med. 2, 100194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Veatch, J. R. et al. Endogenous CD4+ T cells recognize neoantigens in lung cancer patients, including recurrent oncogenic KRAS and ERBB2 (Her2) driver mutations. Cancer Immunol. Res. 7, 910–922 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peters, B., Bulik, S., Tampe, R., Van Endert, P. M. & Holzhütter, H. G. Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J. Immunol. 171, 1741–1749 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Nielsen, M., Lundegaard, C., Lund, O. & Keşmir, C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57, 33–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Wells, D. K. et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell 183, 818–834.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bjerregaard, A. M. et al. An analysis of natural T cell responses to predicted tumor neoepitopes. Front. Immunol. 8, 1566 (2017). Together with Wells et al., this paper highlights the limitations of the earlier bioinformatics prediction protocols that had a low success rate of predicting neopeptides that actually elicit T cell immunity.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gartner, J. J. et al. A machine learning model for ranking candidate HLA class I neoantigens based on known neoepitopes from multiple human tumor types. Nat. Cancer 2, 563–574 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muller, M., Gfeller, D., Coukos, G. & Bassani-Sternberg, M. ‘Hotspots’ of antigen presentation revealed by human leukocyte antigen ligandomics for neoantigen prioritization. Front. Immunol. 8, 1367 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vijh, S., Pilip, I. M. & Pamer, E. G. Effect of antigen-processing efficiency on in vivo T cell response magnitudes. J. Immunol. 160, 3971–3977 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Cochran, A. J. et al. Tumour-induced immune modulation of sentinel lymph nodes. Nat. Rev. Immunol. 6, 659–670 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. van Pul, K. M., Fransen, M. F., van de Ven, R. & de Gruijl, T. D. Immunotherapy goes local: the central role of lymph nodes in driving tumor infiltration and efficacy. Front. Immunol. 12, 643291 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sykulev, Y., Cohen, R. J. & Eisen, H. N. The law of mass action governs antigen-stimulated cytolytic activity of CD8+ cytotoxic T lymphocytes. Proc. Natl Acad. Sci. USA 92, 11990–11992 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sykulev, Y., Joo, M., Vturina, I., Tsomides, T. J. & Eisen, H. N. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4, 565–571 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Cruz, F. M., Colbert, J. D., Merino, E., Kriegsman, B. A. & Rock, K. L. The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC-I molecules. Annu. Rev. Immunol. 35, 149–176 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Donohue, K. B. et al. Cross-priming utilizes antigen not available to the direct presentation pathway. Immunology 119, 63–73 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schliehe, C., Bitzer, A., van den Broek, M. & Groettrup, M. Stable antigen is most effective for eliciting CD8+ T-cell responses after DNA vaccination and infection with recombinant vaccinia virus in vivo. J. Virol. 86, 9782–9793 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yewdell, J. W., Antón, L. C. & Bennink, J. R. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J. Immunol. 157, 1823–1826 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Dersh, D., Hollý, J. & Yewdell, J. W. A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat. Rev. Immunol. 21, 116–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Binder, R. J. & Srivastava, P. K. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat. Immunol. 6, 593–599 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Neijssen, J. et al. Cross-presentation by intercellular peptide transfer through gap junctions. Nature 434, 83–88 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Basu, S., Binder, R. J., Ramalingam, T. & Srivastava, P. K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14, 303–313 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Shen, L. & Rock, K. L. Cellular protein is the source of cross-priming antigen in vivo. Proc. Natl Acad. Sci. USA 101, 3035–3040 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Basta, S., Stoessel, R., Basler, M., van den Broek, M. & Groettrup, M. Cross-presentation of the long-lived lymphocytic choriomeningitis virus nucleoprotein does not require neosynthesis and is enhanced via heat shock proteins. J. Immunol. 175, 796–805 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Jaeger, A. M. et al. Deciphering the immunopeptidome in vivo reveals new tumour antigens. Nature 607, 149–155 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kraemer, A. I. et al. The immunopeptidome landscape associated with T cell infiltration, inflammation and immune editing in lung cancer. Nat. Cancer 4, 608–628 (2023). Together with Jaeger et al., this paper challenges current bioinformatics-based pipelines and demonstrate that neoantigen peptides discovered by immunopeptidomics and mass spectrometry on tumour surface MHC are not predicted reliably by current bioinformatics-based pipelines that use WES, RNAseq or RiboSeq.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yewdell, J. W., Dersh, D. & Fåhraeus, R. Peptide channeling: the key to MHC class I immunosurveillance? Trends Cell Biol. 29, 929–939 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Bassani-Sternberg, M. et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7, 13404 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bonté, P. E. et al. Single-cell RNA-seq-based proteogenomics identifies glioblastoma-specific transposable elements encoding HLA-I-presented peptides. Cell Rep. 39, 110916 (2022).

    Article  PubMed  Google Scholar 

  66. Newey, A. et al. Immunopeptidomics of colorectal cancer organoids reveals a sparse HLA class I neoantigen landscape and no increase in neoantigens with interferon or MEK-inhibitor treatment. J. Immunother. Cancer 7, 309 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Demmers, L. C. et al. Single-cell derived tumor organoids display diversity in HLA class I peptide presentation. Nat. Commun. 11, 5338 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bear, A. S. et al. Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nat. Commun. 12, 4365 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sim, M. J. W. & Sun, P. D. T cell recognition of tumor neoantigens and insights into T cell immunotherapy. Front. Immunol. 13, 833017 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Choi, J. et al. Systematic discovery and validation of T cell targets directed against oncogenic KRAS mutations. Cell Rep. Methods 1, 100084 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leidner, R. et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 386, 2112–2119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Malekzadeh, P. et al. Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J. Clin. Invest. 129, 1109–1114 (2019).

    Article  PubMed  Google Scholar 

  73. Wu, D., Gallagher, D. T., Gowthaman, R., Pierce, B. G. & Mariuzza, R. A. Structural basis for oligoclonal T cell recognition of a shared p53 cancer neoantigen. Nat. Commun. 11, 2908 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Platten, M. et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 592, 463–468 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chandran, S. S. et al. Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA. Nat. Med. 28, 946–957 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, F. et al. Neoantigen vaccination induces clinical and immunologic responses in non-small cell lung cancer patients harboring EGFR mutations. J. Immunother. Cancer 9, e002531 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pearlman, A. H. et al. Targeting public neoantigens for cancer immunotherapy. Nat. Cancer 2, 487–497 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cafri, G. et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J. Clin. Invest. 130, 5976–5988 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nam, A. S., Chaligne, R. & Landau, D. A. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat. Rev. Genet. 22, 3–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Black, J. R. M. & McGranahan, N. Genetic and non-genetic clonal diversity in cancer evolution. Nat. Rev. Cancer 21, 379–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. DuPage, M., Mazumdar, C., Schmidt, L. M., Cheung, A. F. & Jacks, T. Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482, 405–409 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Evans, R. A. et al. Lack of immunoediting in murine pancreatic cancer reversed with neoantigen. JCI Insight 1, e88328 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Starck, S. R. & Shastri, N. Nowhere to hide: unconventional translation yields cryptic peptides for immune surveillance. Immunol. Rev. 272, 8–16 (2016). This paper is a summary of pioneering work that revealed novel alternative protein products can arise from non-canonical or cryptic changes in transcription and translation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wright, B. W., Yi, Z., Weissman, J. S. & Chen, J. The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol. 32, 243–258 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Ruiz Cuevas, M. V. et al. Most non-canonical proteins uniquely populate the proteome or immunopeptidome. Cell Rep. 34, 108815 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Ouspenskaia, T. et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat. Biotechnol. 40, 209–217 (2022). Together with Ruiz Cuevas et al., this paper demonstrates the high frequency of cryptic peptide presentation by MHC class I on the surface of cancer cells.

    Article  CAS  PubMed  Google Scholar 

  90. Li, X., Yang, L. & Chen, L. L. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell 71, 428–442 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Malarkannan, S., Horng, T., Shih, P. P., Schwab, S. & Shastri, N. Presentation of out-of-frame peptide/MHC class I complexes by a novel translation initiation mechanism. Immunity 10, 681–690 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Schwab, S. R., Shugart, J. A., Horng, T., Malarkannan, S. & Shastri, N. Unanticipated antigens: translation initiation at CUG with leucine. PLoS Biol. 2, e366 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bullock, T. N. & Eisenlohr, L. C. Ribosomal scanning past the primary initiation codon as a mechanism for expression of CTL epitopes encoded in alternative reading frames. J. Exp. Med. 184, 1319–1329 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Saulquin, X. et al. +1 Frameshifting as a novel mechanism to generate a cryptic cytotoxic T lymphocyte epitope derived from human interleukin 10. J. Exp. Med. 195, 353–358 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zook, M. B., Howard, M. T., Sinnathamby, G., Atkins, J. F. & Eisenlohr, L. C. Epitopes derived by incidental translational frameshifting give rise to a protective CTL response. J. Immunol. 176, 6928–6934 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Goodenough, E. et al. Cryptic MHC class I-binding peptides are revealed by aminoglycoside-induced stop codon read-through into the 3′ UTR. Proc. Natl Acad. Sci. USA 111, 5670–5675 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ingolia, N. T. et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 8, 1365–1379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jackson, R. et al. The translation of non-canonical open reading frames controls mucosal immunity. Nature 564, 434–438 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012). This paper is a landmark study establishing ribosome profiling by deep sequencing of ribosome-protected mRNA fragments (RiboSeq).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ingolia, N. T. Ribosome profiling: new views of translation, from single codons to genome scale. Nat. Rev. Genet. 15, 205–213 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Zarling, A. L. et al. Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy. Proc. Natl Acad. Sci. USA 103, 14889–14894 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Malaker, S. A. et al. Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol. Res. 5, 376–384 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vigneron, N., Stroobant, V., Ferrari, V., Abi Habib, J. & Van den Eynde, B. J. Production of spliced peptides by the proteasome. Mol. Immunol. 113, 93–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Liepe, J., Ovaa, H. & Mishto, M. Why do proteases mess up with antigen presentation by re-shuffling antigen sequences? Curr. Opin. Immunol. 52, 81–86 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Admon, A. Are There indeed spliced peptides in the immunopeptidome? Mol. Cell. Proteomics 20, 100099 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mishto, M. Commentary: are there indeed spliced peptides in the immunopeptidome? Mol. Cell. Proteomics 20, 100158 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kloetzel, P. M. Neo-splicetopes in tumor therapy: a lost case? Front. Immunol. 13, 849863 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Aichele, P., Brduscha-Riem, K., Zinkernagel, R. M., Hengartner, H. & Pircher, H. T cell priming versus T cell tolerance induced by synthetic peptides. J. Exp. Med. 182, 261–266 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Bijker, M. S. et al. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur. J. Immunol. 38, 1033–1042 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Toes, R. E., Offringa, R., Blom, R. J., Melief, C. J. & Kast, W. M. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc. Natl Acad. Sci. USA 93, 7855–7860 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shi, S. et al. Vaccine adjuvants: understanding the structure and mechanism of adjuvanticity. Vaccine 37, 3167–3178 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Karikó, K., Ni, H., Capodici, J., Lamphier, M. & Weissman, D. mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 279, 12542–12550 (2004).

    Article  PubMed  Google Scholar 

  113. Kallen, K. J. et al. A novel, disruptive vaccination technology: self-adjuvanted RNActive(®) vaccines. Hum. Vaccin. Immunother. 9, 2263–2276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tatematsu, M., Funami, K., Seya, T. & Matsumoto, M. Extracellular RNA sensing by pattern recognition receptors. J. Innate Immun. 10, 398–406 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kobiyama, K. & Ishii, K. J. Making innate sense of mRNA vaccine adjuvanticity. Nat. Immunol. 23, 474–476 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Chen, X., Yang, J., Wang, L. & Liu, B. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives. Theranostics 10, 6011–6023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rosalia, R. A. et al. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur. J. Immunol. 43, 2554–2565 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Melief, C. J. & van der Burg, S. H. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat. Rev. Cancer 8, 351–360 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. He, X. et al. A potent cancer vaccine adjuvant system for particleization of short, synthetic CD8+ T cell epitopes. ACS Nano 15, 4357–4371 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Malonis, R. J., Lai, J. R. & Vergnolle, O. Peptide-based vaccines: current progress and future challenges. Chem. Rev. 120, 3210–3229 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Zom, G. G., Khan, S., Filippov, D. V. & Ossendorp, F. TLR ligand-peptide conjugate vaccines: toward clinical application. Adv. Immunol. 114, 177–201 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Daftarian, P. et al. Novel conjugates of epitope fusion peptides with CpG-ODN display enhanced immunogenicity and HIV recognition. Vaccine 23, 3453–3468 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Del Giudice, G., Rappuoli, R. & Didierlaurent, A. M. Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin. Immunol. 39, 14–21 (2018).

    Article  PubMed  Google Scholar 

  125. Pulendran, B., Arunachalam, P. S. & O’Hagan, D. T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 20, 454–475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nielsen, C. M. et al. Protein/AS01(B) vaccination elicits stronger, more Th2-skewed antigen-specific human T follicular helper cell responses than heterologous viral vectors. Cell Rep. Med. 2, 100207 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ong, G. H., Lian, B. S. X., Kawasaki, T. & Kawai, T. Exploration of pattern recognition receptor agonists as candidate adjuvants. Front. Cell. Infect. Microbiol. 11, 745016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl Acad. Sci. USA 98, 9237–9242 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kobiyama, K. et al. Nonagonistic dectin-1 ligand transforms CpG into a multitask nanoparticulate TLR9 agonist. Proc. Natl Acad. Sci. USA 111, 3086–3091 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gutjahr, A. et al. The STING ligand cGAMP potentiates the efficacy of vaccine-induced CD8+ T cells. JCI Insight 4, e125107 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Temizoz, B. et al. Anti-tumor immunity by transcriptional synergy between TLR9 and STING activation. Int. Immunol. 34, 353–364 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Temizoz, B. et al. TLR9 and STING agonists synergistically induce innate and adaptive type-II IFN. Eur. J. Immunol. 45, 1159–1169 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tsuji, T. et al. Effect of Montanide and poly-ICLC adjuvant on human self/tumor antigen-specific CD4+ T cells in phase I overlapping long peptide vaccine trial. Cancer Immunol. Res. 1, 340–350 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Schaefer, J. T. et al. Dynamic changes in cellular infiltrates with repeated cutaneous vaccination: a histologic and immunophenotypic analysis. J. Transl. Med. 8, 79 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Pittet, M. J. et al. Expansion and functional maturation of human tumor antigen-specific CD8+ T cells after vaccination with antigenic peptide. Clin. Cancer Res. 7, 796s–803s (2001).

    CAS  PubMed  Google Scholar 

  137. Melssen, M. M. et al. A multipeptide vaccine plus Toll-like receptor agonists LPS or polyICLC in combination with incomplete Freund’s adjuvant in melanoma patients. J. Immunother. Cancer 7, 163 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Pavlick, A. et al. Combined vaccination with NY-ESO-1 protein, poly-ICLC, and Montanide improves humoral and cellular immune responses in patients with high-risk melanoma. Cancer Immunol. Res. 8, 70–80 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Dhatchinamoorthy, K., Colbert, J. D. & Rock, K. L. Cancer immune evasion through loss of MHC class I antigen presentation. Front. Immunol. 12, 636568 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tay, R. E., Richardson, E. K. & Toh, H. C. Revisiting the role of CD4+ T cells in cancer immunotherapy — new insights into old paradigms. Cancer Gene Ther. 28, 5–17 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Cornel, A. M., Mimpen, I. L. & Nierkens, S. MHC class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy. Cancers 12, 1760 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Propper, D. J. et al. Low-dose IFN-gamma induces tumor MHC expression in metastatic malignant melanoma. Clin. Cancer Res. 9, 84–92 (2003).

    CAS  PubMed  Google Scholar 

  143. Zhang, S. et al. Systemic interferon-γ increases MHC class I expression and T-cell infiltration in cold tumors: results of a phase 0 clinical trial. Cancer Immunol. Res. 7, 1237–1243 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wan, S. et al. Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells. PLoS ONE 7, e32542 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Parikh, F. et al. Chemoradiotherapy-induced upregulation of PD-1 antagonizes immunity to HPV-related oropharyngeal cancer. Cancer Res. 74, 7205–7216 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Barker, H. E., Paget, J. T., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. van Meir, H. et al. Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology 6, e1267095 (2017).

    Article  PubMed  Google Scholar 

  148. Iwai, T. et al. Topoisomerase I inhibitor, irinotecan, depletes regulatory T cells and up-regulates MHC class I and PD-L1 expression, resulting in a supra-additive antitumor effect when combined with anti-PD-L1 antibodies. Oncotarget 9, 31411–31421 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Dersh, D. et al. Genome-wide screens identify lineage- and tumor-specific genes modulating MHC-I- and MHC-II-restricted immunosurveillance of human lymphomas. Immunity 54, 116–131.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Moser, S. C., Voerman, J. S. A., Buckley, D. L., Winter, G. E. & Schliehe, C. Acute pharmacologic degradation of a stable antigen enhances its direct presentation on MHC class I molecules. Front. Immunol. 8, 1920 (2017).

    Article  PubMed  Google Scholar 

  151. Jensen, S. M., Potts, G. K., Ready, D. B. & Patterson, M. J. Specific MHC-I peptides are induced using PROTACs. Front. Immunol. 9, 2697 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Motz, G. T. & Coukos, G. Deciphering and reversing tumor immune suppression. Immunity 39, 61–73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Labani-Motlagh, A., Ashja-Mahdavi, M. & Loskog, A. The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Front. Immunol. 11, 940 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gabai, Y., Assouline, B. & Ben-Porath, I. Senescent stromal cells: roles in the tumor microenvironment. Trends Cancer 9, 28–41 (2023).

    Article  PubMed  Google Scholar 

  155. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Saraiva, M., Vieira, P. & O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 217, e20190418 (2020).

    Article  PubMed  Google Scholar 

  158. Derynck, R., Turley, S. J. & Akhurst, R. J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).

    Article  PubMed  Google Scholar 

  159. Zhang, Y. & Brekken, R. A. Direct and indirect regulation of the tumor immune microenvironment by VEGF. J. Leukoc. Biol. 111, 1269–1286 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Munn, D. H. & Mellor, A. L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest. 117, 1147–1154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu, Y. & Yang, C. Oncometabolites in cancer: current understanding and challenges. Cancer Res. 81, 2820–2823 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Notarangelo, G. et al. Oncometabolite d-2HG alters T cell metabolism to impair CD8+ T cell function. Science 377, 1519–1529 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  163. Dudek, A. M., Martin, S., Garg, A. D. & Agostinis, P. Immature, semi-mature, and fully mature dendritic cells: toward a DC-cancer cells interface that augments anticancer immunity. Front. Immunol. 4, 438 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ruffell, B. et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 623–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gardner, A. & Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol. 37, 855–865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. McGill, J., Van Rooijen, N. & Legge, K. L. Protective influenza-specific CD8 T cell responses require interactions with dendritic cells in the lungs. J. Exp. Med. 205, 1635–1646 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dolfi, D. V. et al. Dendritic cells and CD28 costimulation are required to sustain virus-specific CD8+ T cell responses during the effector phase in vivo. J. Immunol. 186, 4599–4608 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Prokhnevska, N. et al. CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 56, 107–124.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Hauge, A. & Rofstad, E. K. Antifibrotic therapy to normalize the tumor microenvironment. J. Transl. Med. 18, 207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Erra Díaz, F., Dantas, E. & Geffner, J. Unravelling the interplay between extracellular acidosis and immune cells. Mediators Inflamm. 2018, 1218297 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Wang, B. et al. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy. J. Exp. Clin. Cancer Res. 40, 24 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Maley, C. C. et al. Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 17, 605–619 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Prager, B. C., Xie, Q., Bao, S. & Rich, J. N. Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell 24, 41–53 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Thomas, D. & Radhakrishnan, P. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol. Cancer 18, 14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Yamamoto, K. et al. Targeting the metabolic rewiring in pancreatic cancer and its tumor microenvironment. Cancers 14, 4351 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Dey, A., Varelas, X. & Guan, K. L. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat. Rev. Drug Discov. 19, 480–494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Peng, D., Fu, M., Wang, M., Wei, Y. & Wei, X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol. Cancer 21, 104 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lee, J. H. & Massagué, J. TGF-β in developmental and fibrogenic EMTs. Semin. Cancer Biol. 86, 136–145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Gonzalez, D. M. & Medici, D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal. 7, re8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Hingorani, S. R. et al. HALO 202: randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. J. Clin. Oncol. 36, 359–366 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Ramanathan, R. K. et al. Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J. Clin. Oncol. 37, 1062–1069 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 6, 583–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Lanitis, E., Irving, M. & Coukos, G. Targeting the tumor vasculature to enhance T cell activity. Curr. Opin. Immunol. 33, 55–63 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Klein, D. The tumor vascular endothelium as decision maker in cancer therapy. Front. Oncol. 8, 367 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  186. Furumoto, K., Soares, L., Engleman, E. G. & Merad, M. Induction of potent antitumor immunity by in situ targeting of intratumoral DCs. J. Clin. Invest. 113, 774–783 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kohli, K., Pillarisetty, V. G. & Kim, T. S. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. 29, 10–21 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Tang, H. et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell 29, 285–296 (2016). This report shows that enhancing intra-tumour T cell infiltration can improve immunotherapy even in tumours that are resistant, highlighting the potential of combination therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Bucks, C. M., Norton, J. A., Boesteanu, A. C., Mueller, Y. M. & Katsikis, P. D. Chronic antigen stimulation alone is sufficient to drive CD8+ T cell exhaustion. J. Immunol. 182, 6697–6708 (2009).

    Article  CAS  PubMed  Google Scholar 

  191. Utzschneider, D. T. et al. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival. J. Exp. Med. 213, 1819–1834 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhao, M. et al. Rapid in vitro generation of bona fide exhausted CD8+ T cells is accompanied by Tcf7 promotor methylation. PLoS Pathog. 16, e1008555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Cancer Society (KWF grant 12837 to P.D.K.), the International Joint Usage/Research Center, the Institute of Medical Science, the University of Tokyo (projects 2019-K3010 and K22-3063 to P.D.K. and K.J.I.) and the National Institutes of Health (NIH grant R21 CA274064 to C.S.). The funders had no role in the study design, data collection and interpretation or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Contributions

P.D.K., K.J.I. and C.S. wrote the article. All authors contributed to researching the article and to the review and editing of the manuscript.

Corresponding author

Correspondence to Peter D. Katsikis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks T. Marron and P. Robbins for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cross-presentation

MHC class I presentation of exogenous antigens sampled from the extracellular environment by professional antigen-presenting cells.

Defective ribosomal products

(DRiPs). Nascent, immature proteins or polypeptides that are rapidly degraded after synthesis.

Immunopeptidome

The entirety of all peptides presented by MHC molecules on the surface of cells.

K3 type of CpG ODNs

(K3 CpG-ODNs). Nuclease-resistant oligonucleotides of the K type (also known as B class) that contain unmethylated cytosine–guanine dinucleotide (CpG) motifs and activate Toll-like receptor 9 (TLR9).

Synthetic long peptides

(SLPs). Peptides, 15–50-amino acid long, that are chemically synthesized and used as antigens in peptide-based vaccine formulations.

Trunk mutations

Cancer-associated mutations that occur early during transformation and are, consequently, shared by all progeny cancer cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsikis, P.D., Ishii, K.J. & Schliehe, C. Challenges in developing personalized neoantigen cancer vaccines. Nat Rev Immunol 24, 213–227 (2024). https://doi.org/10.1038/s41577-023-00937-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00937-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer