Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell death by phagocytosis

Abstract

Cells can die as a consequence of being phagocytosed by other cells — a form of cell death that has been called phagotrophy, cell cannibalism, programmed cell removal and primary phagocytosis. However, these are all different manifestations of cell death by phagocytosis (termed ‘phagoptosis’ for short). The engulfed cells die as a result of cytotoxic oxidants, peptides and degradative enzymes within acidic phagolysosomes. Cell death by phagocytosis was discovered by Metchnikov in the 1880s, but was neglected until recently. It is now known to contribute to developmental cell death in nematodes, Drosophila and mammals, and is central to innate and adaptive immunity against pathogens. Cell death by phagocytosis mediates physiological turnover of erythrocytes and other leucocytes, making it the most abundant form of cell death in the mammalian body. Immunity against cancer is also partly mediated by macrophage phagocytosis of cancer cells, but cancer cells can also phagocytose host cells and other cancer cells in order to survive. Recent evidence indicates neurodegeneration and other neuropathologies can be mediated by microglial phagocytosis of stressed neurons. Thus, despite cell death by phagocytosis being poorly recognized, it is one of the oldest, commonest and most important forms of cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell death by phagocytosis.
Fig. 2: Eat-me signals, don’t-eat-me signals, opsonins and phagocytic receptors.
Fig. 3: Immunity by phagocytosis.
Fig. 4: Cell death by phagocytosis in cancer.
Fig. 5: Cell death by phagocytosis contributes to neurodegeneration.

Similar content being viewed by others

References

  1. Uribe-Querol, E. & Rosales, C. Phagocytosis: our current understanding of a universal biological process. Front. Immunol. 11, 1066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kay, M. M. Mechanism of removal of senescent cells by human macrophages in situ. Proc. Natl Acad. Sci. USA 72, 3521–3525 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khandelwal, S., van Rooijen, N. & Saxena, R. K. Reduced expression of CD47 during murine red blood cell (RBC) senescence and its role in RBC clearance from the circulation. Transfusion 47, 1725–1732 (2007).

    Article  PubMed  Google Scholar 

  4. Feng, M. et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 19, 568–586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jauslin, T. et al. How phagocytic cells kill different bacteria: a quantitative analysis using Dictyostelium discoideum. mBio 12, e03169-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Metchnikoff, E. in The Evolutionary Biology Papers of Elie Metchnikoff (eds Gourko, H. et al.) (Springer, 2000).

  7. Mills, D. B. The origin of phagocytosis in earth history interface focus. Interface Focus 10, 20200019 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sebé-Pedrós, A., Degnan, B. & Ruiz-Trillo, I. The origin of Metazoa: a unicellular perspective. Nat. Rev. Genet. 18, 498–512 (2017).

    Article  PubMed  Google Scholar 

  9. Xu, X., Pan, M. & Jin, T. How phagocytes acquired the capability of hunting and removing pathogens from a human body: lessons learned from chemotaxis and phagocytosis of Dictyostelium discoideum. Front. Cell Dev. Biol. 9, 724940 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Leander, B. S. Predatory protists. Curr. Biol. 30, R510–R516 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Jagus, R., Bachvaroff, T. R., Joshi, B. & Place, A. R. Diversity of eukaryotic translational initiation factor eIF4E in protists. Comp. Funct. Genomics 2012, 134839 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sherr, E. B. & Sherr, B. F. in Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective (eds Glibert P., Kana T.) (Springer, 2016).

  13. Serizier, S. B., Peterson, J. S. & McCall, K. Non-autonomous cell death induced by the Draper phagocytosis receptor requires signaling through the JNK and SRC pathways. J. Cell Sci. 135, jcs250134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Timmons, A. K. et al. Phagocytosis genes nonautonomously promote developmental cell death in the Drosophila ovary. Proc. Natl Acad. Sci. USA 113, E1246–E1255 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hakim-Mishnaevski, K., Flint-Brodsly, N., Shklyar, B., Levy-Adam, F. & Kurant, E. Glial phagocytic receptors promote neuronal loss in adult Drosophila brain. Cell Rep. 29, 1438–1448.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Zohar-Fux, M. et al. The phagocytic cyst cells in Drosophila testis eliminate germ cell progenitors via phagoptosis. Sci. Adv. 8, eabm4937 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reddien, P., Cameron, S. & Horvitz, H. R. Phagocytosis promotes programmed cell death in C. elegans. Nature 412, 198–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Hoeppner, D. J., Hengartner, M. O. & Schnabel, R. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 412, 202–206 (2001). Together with Reddien et al. (2001), this study shows that phagoptosis contributes to developmental cell death in C. elegans. Note that Horvitz was awarded the Nobel prize for elucidating apoptosis in C. elegans.

    Article  CAS  PubMed  Google Scholar 

  19. Johnsen, H. L. & Horvitz, H. R. Both the apoptotic suicide pathway and phagocytosis are required for a programmed cell death in Caenorhabditis elegans. BMC Biol. 14, 39 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Walker, C., Lesser, P. & Unuma, T. Sea urchin gametogenesis — structural, functional and molecular/genomic biology. Dev. Aquac. Fish. Sci. 38, 25–43 (2013).

    Article  Google Scholar 

  21. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brown, G. C., Vilalta, A. & Fricker, M. Phagoptosis — cell death by phagocytosis — plays central roles in physiology, host defense and pathology. Curr. Mol. Med. 15, 842–851 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Boada-Romero, E., Martinez, J., Heckmann, B. L. & Green, D. R. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol. 21, 398–414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neher, J. J. et al. Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J. Immunol. 186, 4973–4983 (2011). This study shows that microglial phagocytosis of neurons causes neuronal death in inflammatory conditions, and elucidates the signalling involved.

    Article  CAS  PubMed  Google Scholar 

  25. Neniskyte, U., Neher, J. J. & Brown, G. C. Neuronal death induced by nanomolar amyloid β is mediated by primary phagocytosis of neurons by microglia. J. Biol. Chem. 286, 39904–39913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966–979 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Chao, M. P., Majeti, R. & Weissman, I. L. Programmed cell removal: a new obstacle in the road to developing cancer. Nat. Rev. Cancer 12, 58–67 (2011).

    Article  PubMed  Google Scholar 

  28. Malorni, W., Matarrese, P., Tinari, A., Farrace, M. G. & Piacentini, M. Xeno-cannibalism: a survival “escamotage”. Autophagy 3, 75–77 (2007).

    Article  PubMed  Google Scholar 

  29. Lozupone, F. & Fais, S. Cancer cell cannibalism: a primeval option to survive. Curr. Mol. Med. 15, 836–841 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Cano, C. E. et al. Homotypic cell cannibalism, a cell-death process regulated by the nuclear protein 1, opposes to metastasis in pancreatic cancer. EMBO Mol. Med. 13, e14243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lugini, L. et al. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res. 66, 3629–3638 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Marín-Teva, J. L. et al. Microglia promote the death of developing Purkinje cells. Neuron 41, 535–547 (2004).

    Article  PubMed  Google Scholar 

  33. Wang, S. et al. Internalization of NK cells into tumor cells requires ezrin and leads to programmed cell-in-cell death. Cell Res. 19, 1350–1362 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Hornik, T. C., Vilalta, A. & Brown, G. C. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis. J. Cell Sci. 129, 65–79 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Taban, Q., Mumtaz, P. T., Masoodi, K. Z., Haq, E. & Ahmad, S. M. Scavenger receptors in host defense: from functional aspects to mode of action. Cell Commun. Signal. 20, 2 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cockram, T. O., Dundee, J. M., Popescu, A. S. & Brown, G. C. The phagocytic code regulating phagocytosis of mammalian cells. Front. Immunol. 12, 629979 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ogden, C. A. et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med. 194, 781–795 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martel, C. M. Conceptual bases for prey biorecognition and feeding selectivity in the microplanktonic marine phagotroph Oxyrrhis marina. Microb. Ecol. 57, 589–597 (2009).

    Article  PubMed  Google Scholar 

  39. Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Ishidome, T., Yoshida, T. & Hanayama, R. Induction of live cell phagocytosis by a specific combination of inflammatory stimuli. EBioMedicine 22, 89–99 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Elliott, J. I. et al. Membrane phosphatidylserine distribution as a nonapoptotic signaling mechanism in lymphocytes. Nat. Cell Biol. 7, 808–816 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Fischer, K. et al. Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells. Blood 108, 4094–4101 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Balasubramanian, K., Mirnikjoo, B. & Schroit, A. J. Regulated externalization of phosphatidylserine at the cell surface: implications for apoptosis. J. Biol. Chem. 282, 18357–64. (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Jitkaew, S., Witasp, E., Zhang, S., Kagan, V. E. & Fadeel, B. Induction of caspase- and reactive oxygen species-independent phosphatidylserine externalization in primary human neutrophils: role in macrophage recognition and engulfment. J. Leukoc. Biol. 85, 427–437 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Segawa, K. et al. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 344, 1164–1168 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Gardai, S. J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321–334 (2005). This study shows that translocation of calreticulin to the surface of live cells induces phagocytes to phagocytose such cells, particularly neutrophils.

    Article  CAS  PubMed  Google Scholar 

  47. Feng, M. et al. Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nat. Commun. 9, 3194 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fucikova, J., Spisek, R., Kroemer, G. & Galluzzi, L. Calreticulin and cancer. Cell Res. 31, 5–16 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Klaus, C., Liao, H., Allendorf, D. H., Brown, G. C. & Neumann, H. Sialylation acts as a checkpoint for innate immune responses in the central nervous system. Glia 69, 1619–1636 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bennett, M. R., Gibson, D. F., Schwartz, S. M. & Tait, J. F. Binding and phagocytosis of apoptotic vascular smooth muscle cells is mediated in part by exposure of phosphatidylserine. Circ. Res. 77, 1136–1142 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. He, M. et al. Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. EMBO Rep. 12, 358–364 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, G. et al. High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine. J. Immunol. 181, 4240–4246 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Law, A. L. et al. Cleavage of Mer tyrosine kinase (MerTK) from the cell surface contributes to the regulation of retinal phagocytosis. J. Biol. Chem. 290, 4941–4952 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Park, Y.-J. et al. PAI-1 inhibits neutrophil efferocytosis. Proc. Natl Acad. Sci. USA 105, 11784–11789 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nauta, A. J. et al. Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. Eur. J. Immunol. 33, 465–473 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Nakamura, K. et al. Targeting an adenosine-mediated “Don’t eat me signal” augments anti-lymphoma immunity by anti-CD20 monoclonal antibody. Leukemia 34, 2708–2721 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Koizumi, S. et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446, 1091–1095 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Segawa, K., Suzuki, J. & Nagata, S. Constitutive exposure of phosphatidylserine on viable cells. Proc. Natl Acad. Sci. USA 108, 19246–19251 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Riazanski, V., Sui, Z. & Nelson, D. J. Kinetic separation of oxidative and non-oxidative metabolism in single phagosomes from alveolar macrophages: impact on bacterial killing. iScience 23, 101759 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, S. E., Zhang, J., Jiang, E. & Overholtzer, M. Amino acids and mechanistic target of rapamycin regulate the fate of live engulfed cells. FASEB J. 35, e21909 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Cwiklik, L. & Jungwirth, P. Massive oxidation of phospholipid membranes leads to pore creation and bilayer disintegration. Chem. Phys. Lett. 486, 99–103 (2010).

    Article  CAS  Google Scholar 

  63. Winterbourn, C. C. & Kettle, A. J. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid. Redox Signal. 18, 642–660 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Dingjan, I. et al. Lipid peroxidation causes endosomal antigen release for cross-presentation. Sci. Rep. 6, 22064 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Canton, J. et al. The receptor DNGR-1 signals for phagosomal rupture to promote cross-presentation of dead-cell-associated antigens. Nat. Immunol. 22, 140–153 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Mayadas, T. N., Cullere, X. & Lowell, C. A. The multifaceted functions of neutrophils. Annu. Rev. Pathol. 9, 181–218 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Bagaitkar, J. et al. NADPH oxidase activation regulates apoptotic neutrophil clearance by murine macrophages. Blood 131, 2367–2378 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    Article  PubMed  Google Scholar 

  69. Cunningham, C. L., Martinez-Cerdeno, V. & Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luo, C., Koyama, R. & Ikegaya, Y. Microglia engulf viable newborn cells in the epileptic dentate gyrus. Glia 64, 1508–1517 (2016).

    Article  PubMed  Google Scholar 

  71. Nelson, L. H., Warden, S. & Lenz, K. M. Sex differences in microglial phagocytosis in the neonatal hippocampus. Brain Behav. Immun. 64, 11–22 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Anderson, S. R. et al. Complement targets newborn retinal ganglion cells for phagocytic elimination by microglia. J. Neurosci. 39, 2025–2040 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nemes-Baran, A. D., White, D. R. & DeSilva, T. M. Fractalkine-dependent microglial pruning of viable oligodendrocyte progenitor cells regulates myelination. Cell Rep. 32, 108047 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Irfan, M., Evonuk, K. S. & DeSilva, T. M. Microglia phagocytose oligodendrocyte progenitor cells and synapses during early postnatal development: implications for white versus gray matter maturation. FEBS J. 289, 2110–2127 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009). This study shows that stem cells and leukaemic cells overexpress CD47 to prevent themselves being phagocytosed alive. The Weissman laboratory subsequently showed that anti-CD47 antibodies can induce phagocytosis of cancer and other pathogenic cells, as reviewed by Majeti et al. (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kuriyama, T. et al. Engulfment of hematopoietic stem cells caused by down-regulation of CD47 is critical in the pathogenesis of hemophagocytic lymphohistiocytosis. Blood 120, 4058–4067 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Li, J. et al. Overexpression of CD47 is associated with brain overgrowth and 16p11.2 deletion syndrome. Proc. Natl Acad. Sci. USA 118, e2005483118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tarique, I. et al. In vivo cellular evidence of autophagic associated spermiophagy within the principal cells during sperm storage in epididymis of the turtle. Aging 12, 8987–8999 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Murakami, M., Sugita, A. & Hamasaki, M. Scanning electron microscopic observations of the vas deferens in man and monkey with special reference to spermiophagy in its ampullary region. Scan Electron. Microsc. 3, 1333–1339 (1982).

    Google Scholar 

  80. He, C. et al. The semenogelin I-derived peptide SgI-52 in seminal plasma participates in sperm selection and clearance by macrophages. Peptides 153, 170799 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Batra, V. et al. A higher abundance of O-linked glycans confers a selective advantage to high fertile buffalo spermatozoa for immune-evasion from neutrophils. Front. Immunol. 11, 1928 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Föller, M. & Lang, F. Ion transport in eryptosis, the suicidal death of erythrocytes. Front. Cell Dev. Biol. 8, 597 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Klei, T. R., Meinderts, S. M., van den Berg, T. K. & van Bruggen, R. From the cradle to the grave: the role of macrophages in erythropoiesis and erythrophagocytosis. Front. Immunol. 8, 73 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Burger, P., Hilarius-Stokman, P., de Korte, D., van den Berg, T. K. & van Bruggen, R. CD47 functions as a molecular switch for erythrocyte phagocytosis. Blood 119, 5512–5521 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Cao, H. et al. Red blood cell mannoses as phagocytic ligands mediating both sickle cell anaemia and malaria resistance. Nat. Commun. 12, 1792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Casanova-Acebes, M. et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153, 1025–1035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lagasse, E. & Weissman, I. L. bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J. Exp. Med. 179, 1047–1052 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Lovewell, R. R., Patankar, Y. R. & Berwin, B. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. Am. J. Physiol. Lung Cell Mol. Physiol. 306, L591–L603 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Alfaro, C. et al. Dendritic cells take up and present antigens from viable and apoptotic polymorphonuclear leukocytes. PLoS ONE 6, e29300 (2011). This study shows that dendritic cells avidly phagocytose live neutrophils, and present antigens from pathogens that the neutrophils have phagocytosed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Savina, A. & Amigorena, S. Phagocytosis and antigen presentation in dendritic cells. Immunol. Rev. 219, 143–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Feldman, M. B., Vyas, J. M. & Mansour, M. K. It takes a village: phagocytes play a central role in fungal immunity. Semin. Cell Dev. Biol. 89, 16–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Albacker, L. A. et al. TIM-4, a receptor for phosphatidylserine, controls adaptive immunity by regulating the removal of antigen-specific T cells. J. Immunol. 185, 6839–6849 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Kurd, N. S. et al. A role for phagocytosis in inducing cell death during thymocyte negative selection. eLife 8, e48097 (2019). This study shows that thymocyte death during negative selection is mediated by phagoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Birkle, T. & Brown, G. C. I’m infected, eat me! Innate immunity mediated by live, infected cells signaling to be phagocytosed. Infect. Immun. 89, e00476-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lemke, G. How macrophages deal with death. Nat. Rev. Immunol. 19, 539–549 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tufail, Y. et al. Phosphatidylserine exposure controls viral innate immune responses by microglia. Neuron 93, 574–586.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Torrez Dulgeroff, L. B. et al. CD47 blockade reduces the pathologic features of experimental cerebral malaria and promotes survival of hosts with Plasmodium infection. Proc. Natl Acad. Sci. USA 118, e1907653118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gül, N. et al. Macrophages eliminate circulating tumor cells after monoclonal antibody therapy. J. Clin. Invest. 124, 812–823 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Munn, D. H. & Cheung, N. K. Antibody-independent phagocytosis of tumor cells by human monocyte-derived macrophages cultured in recombinant macrophage colony-stimulating factor. Cancer Immunol. Immunother. 41, 46–52 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Xie, R. et al. Phagocytosis by macrophages and endothelial cells inhibits procoagulant and fibrinolytic activity of acute promyelocytic leukemia cells. Blood 119, 2325–2334 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Chao, M. P. et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl. Med. 2, 63ra94 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Métayer, L. E., Vilalta, A., Burke, G. A. A. & Brown, G. C. Anti-CD47 antibodies induce phagocytosis of live, malignant B cells by macrophages via the Fc domain, resulting in cell death by cell death by phagocytosis. Oncotarget 8, 60892–60903 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Majeti, R. et al. Clonal expansion of stem/progenitor cells in cancer, fibrotic diseases, and atherosclerosis, and CD47 protection of pathogenic cells. Annu. Rev. Med. 73, 307–320 (2022). This paper reviews the Weissman laboratory observation that anti-CD47 antibodies can induce phagocytosis of cancer and other pathogenic cells.

    Article  CAS  PubMed  Google Scholar 

  104. Fricker, M., Tolkovsky, A. M., Borutaite, V., Coleman, M. & Brown, G. C. Neuronal cell death. Physiol. Rev. 98, 813–880 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Butler, C. A. et al. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J. Neurochem. 158, 621–639 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Brown, G. C. Neuronal loss after stroke due to microglial phagocytosis of stressed neurons. Int. J. Mol. Sci. 22, 13442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tolkovsky, A. M. & Spillantini, M. G. Tau aggregation and its relation to selected forms of neuronal cell death. Essays Biochem. 65, 847–857 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yanuck, S. F. Microglial phagocytosis of neurons: diminishing neuronal loss in traumatic, infectious, inflammatory, and autoimmune CNS disorders. Front. Psychiatry 10, 712 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Neher, J. J., Neniskyte, U., Hornik, T. & Brown, G. C. Inhibition of UDP/P2Y6 purinergic signaling prevents phagocytosis of viable neurons by activated microglia in vitro and in vivo. Glia 62, 1463–1475 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Neniskyte, U. & Brown, G. C. Lactadherin/MFG-E8 is essential for microglia-mediated neuronal loss and cell death by phagocytosis induced by amyloid β. J. Neurochem. 126, 312–317 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Neniskyte, U., Fricker, M. & Brown, G. C. Amyloid β induces microglia to phagocytose neurons via activation of protein kinase Cs and NADPH oxidase. Int. J. Biochem. Cell Biol. 81, 346–355 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Brelstaff, J., Tolkovsky, A. M., Ghetti, B., Goedert, M. & Spillantini, M. G. Living neurons with Tau filaments aberrantly expose phosphatidylserine and are phagocytosed by microglia. Cell Rep. 24, 1939–1948.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pampuscenko, K. et al. Extracellular tau induces microglial phagocytosis of living neurons in cell cultures. J. Neurochem. 154, 316–329 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Puigdellívol, M. et al. The microglial P2Y6 receptor mediates neuronal loss and memory deficits in neurodegeneration. Cell Rep. 37, 110148 (2021). This study shows that microglial phagocytosis of neurons contributes to neurodegeneration induced by amyloid-β and tau, so that blocking phagocytosis prevents neurodegeneration.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Milde, S. et al. Inflammatory neuronal loss in the substantia nigra induced by systemic lipopolysaccharide is prevented by knockout of the P2Y6 receptor in mice. J. Neuroinflammation 18, 225 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dundee, J. M., Puigdellívol, M., Butler, R., Cockram, T. O. J. & Brown, G. C. P2Y6 receptor-dependent microglial phagocytosis of synapses mediates synaptic and memory loss in aging. Aging Cell 22, e13761 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Romero-Molina, C., Garretti, F., Andrews, S. J., Marcora, E. & Goate, A. M. Microglial efferocytosis: diving into the Alzheimer’s disease gene pool. Neuron 110, 3513–3533 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Popescu, A. S. et al. Alzheimer’s disease-associated R47H TREM2 increases, but wild-type TREM2 decreases, microglial phagocytosis of synaptosomes and neuronal loss. Glia 71, 974–990 (2023).

    Article  CAS  PubMed  Google Scholar 

  119. Linnartz-Gerlach, B. et al. TREM2 triggers microglial density and age-related neuronal loss. Glia 67, 539–550 (2019).

    Article  PubMed  Google Scholar 

  120. Zhao, L. et al. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol. Med. 7, 1179–1197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hollingsworth, T. J., Wang, X., White, W. A., Simpson, R. N. & Jablonski, M. M. Chronic proinflammatory signaling accelerates the rate of degeneration in a spontaneous polygenic model of inherited retinal dystrophy. Front. Pharmacol. 13, 839424 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bourseguin, J. et al. Persistent DNA damage associated with ATM kinase deficiency promotes microglial dysfunction. Nucleic Acids Res. 50, 2700–2718 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Vasek, M. J. et al. A complement–microglial axis drives synapse loss during virus-induced memory impairment. Nature 534, 538–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hu, D. D. et al. Glucocorticoids prevent enterovirus 71 capsid protein VP1 induced calreticulin surface exposure by alleviating neuronal ER stress. Neurotox. Res. 31, 204–217 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Rodríguez, A. M. et al. Brucella abortus-activated microglia induce neuronal death through primary phagocytosis. Glia 65, 1137–1151 (2017).

    Article  PubMed  Google Scholar 

  126. Sierra-Martín, A. et al. LPS-stimulated microglial cells promote ganglion cell death in organotypic cultures of quail embryo retina. Front. Cell Neurosci. 17, 1120400 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Neher, J. J. et al. Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc. Natl Acad. Sci. USA 110, E4098–E4107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Milde, S. & Brown, G. C. Knockout of the P2Y6 receptor prevents peri-infarct neuronal loss after transient, focal ischemia in mouse brain. Int. J. Mol. Sci. 23, 2304 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Katayama, T. et al. Accumulating microglia phagocytose injured neurons in hippocampal slice cultures: involvement of p38 MAP kinase. PLoS ONE 7, e40813 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li, L. et al. Resolvin D1 reprograms energy metabolism to promote microglia to phagocytize neutrophils after ischemic stroke. Cell Rep. 42, 112617 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Pickett, L. A., VanRyzin, J. W., Marquardt, A. E. & McCarthy, M. M. Microglia phagocytosis mediates the volume and function of the rat sexually dimorphic nucleus of the preoptic area. Proc. Natl Acad. Sci. USA 120, e2212646120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fourgeaud, L. et al. TAM receptors regulate multiple features of microglial physiology. Nature 532, 240–244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Huang, Y. & Lemke, G. Early death in a mouse model of Alzheimer’s disease exacerbated by microglial loss of TAM receptor signaling. Proc. Natl Acad. Sci. USA 119, e2204306119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sterling, N. A., Park, J. Y., Park, R., Cho, S. H. & Kim, S. An entosis-like process induces mitotic disruption in Pals1 microcephaly pathogenesis. Nat. Commun. 14, 82 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Schloesser, D. et al. Senescent cells suppress macrophage-mediated corpse removal via upregulation of the CD47–QPCT/L axis. J. Cell Biol. 222, e202207097 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Gao, L., He, Z. & Wu, Y. Advances in anti-metabolic disease treatments targeting CD47. Curr. Pharm. Des. 28, 3720–3728 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Kojima, Y. et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536, 86–90 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Tonnessen-Murray, C. A. et al. Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival. J. Cell Biol. 218, 3827–3844 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Thomas, A. L., Lehn, M. A., Janssen, E. M., Hildeman, D. A. & Chougnet, C. A. Naturally-aged microglia exhibit phagocytic dysfunction accompanied by gene expression changes reflective of underlying neurologic disease. Sci. Rep. 12, 19471 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tomaiuolo, R. et al. Activity of mannose-binding lectin in centenarians. Aging Cell 11, 394–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Kanaan, D., Shklyar, B., Porat-Kuperstein, L. & Toledano, H. Live imaging of phagoptosis in ex vivo Drosophila testis. Bio Protoc. 13, e4637 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks the many different researchers who have contributed to this field. The author thanks A. Tolkovsky, V. Borutaite, J. Neher, M. Fricker and U. Neniskyte, who have contributed to his understanding of cell death by phagocytosis.

Author information

Authors and Affiliations

Authors

Contributions

The author is the sole contributor to this article.

Corresponding author

Correspondence to Guy C. Brown.

Ethics declarations

Competing interest

The author declares that there are no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks G. Lemke and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cell cannibalism

Cells phagocytosing other cells, which may be dead or alive.

Desialylation

The removal of terminal sialic acid residues from glycoproteins or glycolipids.

Don’t-eat-me signals

Molecules on a cell that inhibit a phagocyte eating that cell.

Eat-me signal

A molecule on a cell that induces a phagocyte to eat that cell.

Efferocytosis

Phagocytosis of a cell dying by apoptosis.

Eryptosis

A mechanism of cell death of erythrocytes.

Entotic cell death

The death of a cell that has invaded into another cell by entosis.

Find-me signals

Molecules released from a cell that encourage a phagocyte to chemotactically migrate to the cell.

Haemophagocytosis

The phagocytosis of blood cells.

NADPH oxidase

A membrane-bound enzyme that uses cytosolic NADPH to reduce oxygen to superoxide that is released into phagosomes to kill engulfed cells.

Nurse cells

Specialized cells that support the growth and stability of neighbouring cells.

Opsonins

Normally extracellular molecules that when bound to a cell induce a phagocyte to eat that cell.

Phagocytic receptors

Receptors that directly bind eat-me signals or opsonins and then induce phagocytosis.

Programmed cell removal

The phagocytic removal of cells that may be dead, dying or alive.

Primary phagocytosis

The same as cell death by phagocytosis.

Scavenger receptors

A diverse set of receptors that mediate phagocytosis or endocytosis.

Secondary phagocytosis

Phagocytosis of a dead or dying cell.

Sialic acid-binding immunoglobulin-type lectin (SIGLEC) receptors

A family of receptors binding sialic acid residues.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, G.C. Cell death by phagocytosis. Nat Rev Immunol 24, 91–102 (2024). https://doi.org/10.1038/s41577-023-00921-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00921-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer