Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microglia regulation of central nervous system myelin health and regeneration

Abstract

Microglia are resident macrophages of the central nervous system that have key functions in its development, homeostasis and response to damage and infection. Although microglia have been increasingly implicated in contributing to the pathology that underpins neurological dysfunction and disease, they also have crucial roles in neurological homeostasis and regeneration. This includes regulation of the maintenance and regeneration of myelin, the membrane that surrounds neuronal axons, which is required for axonal health and function. Myelin is damaged with normal ageing and in several neurodegenerative diseases, such as multiple sclerosis and Alzheimer disease. Given the lack of approved therapies targeting myelin maintenance or regeneration, it is imperative to understand the mechanisms by which microglia support and restore myelin health to identify potential therapeutic approaches. However, the mechanisms by which microglia regulate myelin loss or integrity are still being uncovered. In this Review, we discuss recent work that reveals the changes in white matter with ageing and neurodegenerative disease, how this relates to microglia dynamics during myelin damage and regeneration, and factors that influence the regenerative functions of microglia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Myelin dynamics: from changes in structure to demyelination to remyelination.
Fig. 2: Microglia dynamics during demyelination and remyelination: transcriptional state and function.
Fig. 3: Mechanisms regulating microglial function during myelin regeneration: intrinsic versus extrinsic influences.

Similar content being viewed by others

References

  1. Borst, K., Dumas, A. A. & Prinz, M. Microglia: immune and non-immune functions. Immunity 54, 2194–2208 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Prinz, M., Jung, S. & Priller, J. Microglia biology: one century of evolving concepts. Cell 179, 292–311 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Askew, K. et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 18, 391–405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tay, T. L. et al. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J. Physiol. 595, 1929–1945 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Réu, P. et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 20, 779–784 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Füger, P. et al. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat. Neurosci. 20, 1371–1376 (2017).

    Article  PubMed  Google Scholar 

  8. Bryois, J. et al. Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nat. Neurosci. 25, 1104–1112 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Schwartzentruber, J. et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 53, 392–402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).

    Article  PubMed Central  Google Scholar 

  11. Fünfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saab, A. S. et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91, 119–132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nemes-Baran, A. D., White, D. R. & DeSilva, T. M. Fractalkine-dependent microglial pruning of viable oligodendrocyte progenitor cells regulates myelination. Cell Rep. 32, 108047 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hughes, A. N. & Appel, B. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat. Neurosci. 23, 1055–1066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Djannatian, M. et al. Myelination generates aberrant ultrastructure that is resolved by microglia. J. Cell Biol. 222, e202204010 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Franklin, R. J. M. & ffrench-Constant, C. Regenerating CNS myelin — from mechanisms to experimental medicines. Nat. Rev. Neurosci. 18, 753–769 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Lloyd, A. F. & Miron, V. E. The pro-remyelination properties of microglia in the central nervous system. Nat. Rev. Neurol. 15, 447–458 (2019).

    Article  PubMed  Google Scholar 

  18. Yong, V. W. Microglia in multiple sclerosis: protectors turn destroyers. Neuron 110, 3534–3548 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Xie, F. et al. Gene profiling in the dynamic regulation of the lifespan of the myelin sheath structure in the optic nerve of rats. Mol. Med. Rep. 10, 217–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Sugiyama, I. et al. Ultrastructural analysis of the paranodal junction of myelinated fibers in 31-month-old-rats. J. Neurosci. Res. 70, 309–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Peters, A. The effects of normal aging on myelinated nerve fibers in monkey central nervous system. Front. Neuroanat. 3, 11 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peters, A., Sethares, C. & Killiany, R. J. Effects of age on the thickness of myelin sheaths in monkey primary visual cortex. J. Comp. Neurol. 435, 241–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019). Seminal study demonstrating microglial heterogeneity across the lifespan in mouse brain regions and in acute lesion biopsy samples from patients with MS.

    Article  CAS  PubMed  Google Scholar 

  24. Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Hansen, D. V., Hanson, J. E. & Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 217, 459–472 (2017).

    Article  PubMed  Google Scholar 

  26. Hoy, A. R. et al. Microstructural white matter alterations in preclinical Alzheimer’s disease detected using free water elimination diffusion tensor imaging. PLoS ONE 12, e0173982 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kenigsbuch, M. et al. A shared disease-associated oligodendrocyte signature among multiple CNS pathologies. Nat. Neurosci. 25, 876–886 (2022). Critical study that brings together previous scRNA-seq studies to demonstrate a common oligodendrocyte subpopulation that appears in mouse models of CNS pathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, S.-H. et al. TREM2-independent oligodendrocyte, astrocyte, and T cell responses to tau and amyloid pathology in mouse models of Alzheimer disease. Cell Rep. 37, 110158 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019). snRNA-seq of AD demonstrating alterations in oligodendrocyte lineage cell transcriptomes and changes in other cell types in pathways associated with myelination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sadick, J. S. et al. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease. Neuron 110, 1788–1805.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Poon, K. W. C. et al. Lipid biochemical changes detected in normal appearing white matter of chronic multiple sclerosis by spectral coherent Raman imaging. Chem. Sci. 9, 1586–1595 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bosch, A.van den et al. Neurofilament light chain levels in multiple sclerosis correlate with lesions containing foamy macrophages and with acute axonal damage. Neurol. Neuroimmunol. Neuroinflamm. 9, e1154 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Traka, M., Podojil, J. R., McCarthy, D. P., Miller, S. D. & Popko, B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat. Neurosci. 19, 65–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Caprariello, A. V. et al. Biochemically altered myelin triggers autoimmune demyelination. Proc. Natl Acad. Sci. USA 115, 5528–5533 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bando, Y. et al. Abnormal morphology of myelin and axon pathology in murine models of multiple sclerosis. Neurochem. Int. 81, 16–27 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Recks, M. S. et al. Early axonal damage and progressive myelin pathology define the kinetics of CNS histopathology in a mouse model of multiple sclerosis. Clin. Immunol. 149, 32–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Schäffner, E. et al. Myelin insulation as a risk factor for axonal degeneration in autoimmune demyelinating disease. Preprint at bioRxiv https://doi.org/10.1101/2021.11.11.468223 (2021).

  38. Chapman, T. W., Olveda, G. E., Bame, X., Pereira, E., & Hill, R. A. Oligodendrocyte death initiates synchronous remyelination to restore cortical myelin patterns in mice. Nat. Neurosci. 26, 555–569 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodriguez, M. & Scheithauer, B. Ultrastructure of multiple sclerosis. Ultrastruct. Pathol. 18, 3–13 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Romanelli, E. et al. Myelinosome formation represents an early stage of oligodendrocyte damage in multiple sclerosis and its animal model. Nat. Commun. 7, 13275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aber, E. R. et al. Oligodendroglial macroautophagy is essential for myelin sheath turnover to prevent neurodegeneration and death. Cell Rep. 41, 111480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu, X. et al. Sustained ErbB activation causes demyelination and hypomyelination by driving necroptosis of mature oligodendrocytes and apoptosis of oligodendrocyte precursor cells. J. Neurosci. 41, 9872–9890 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991.e19 (2020). Spatial transcriptomics surrounding amyloid-β plaques in a mouse model of AD indicates altered gene expression relating to oligodendrocytes and myelin.

    Article  CAS  PubMed  Google Scholar 

  44. Ferreira, S. et al. Amyloidosis is associated with thicker myelin and increased oligodendrogenesis in the adult mouse brain. J. Neurosci. Res. 98, 1905–1932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Desai, M. K. et al. Early oligodendrocyte/myelin pathology in Alzheimer’s disease mice constitutes a novel therapeutic target. Am. J. Pathol. 177, 1422–1435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wheeler, D., Bandaru, V. V. R., Calabresi, P. A., Nath, A. & Haughey, N. J. A defect of sphingolipid metabolism modifies the properties of normal appearing white matter in multiple sclerosis. Brain 131, 3092–3102 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. van der Poel, M. et al. Transcriptional profiling of human microglia reveals grey–white matter heterogeneity and multiple sclerosis-associated changes. Nat. Commun. 10, 1139 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fitzner, D. et al. Cell-type- and brain-region-resolved mouse brain lipidome. Cell Rep. 32, 108132 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Han, X. Multi-dimensional mass spectrometry-based shotgun lipidomics and the altered lipids at the mild cognitive impairment stage of Alzheimer’s disease. Biochim. Biophys. Acta 1801, 774–783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jorissen, W. et al. Relapsing-remitting multiple sclerosis patients display an altered lipoprotein profile with dysfunctional HDL. Sci. Rep. 7, 43410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, F. et al. Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory. Nat. Neurosci. 23, 481–486 (2020). Study demonstrating reduced production of myelin with ageing in the mouse CNS and that encouraging myelination can improve cognitive deficits.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen, J.-F. et al. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer’s disease. Neuron 109, 2292–2307.e5 (2021). Study demonstrating increased demyelination and remyelination in a mouse model of AD. However, remyelination cannot overcome the robust demyelination associated with cognitive dysfunction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bacmeister, C. M. et al. Motor learning drives dynamic patterns of intermittent myelination on learning-activated axons. Nat. Neurosci. 25, 1300–1313 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Steadman, P. E. et al. Disruption of oligodendrogenesis impairs memory consolidation in adult mice. Neuron 105, 150–164.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. McKenzie, I. A. et al. Motor skill learning requires active central myelination. Science 346, 318–322 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Neumann, B. et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 25, 473–485.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sim, F. J., Zhao, C., Penderis, J. & Franklin, R. J. M. The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J. Neurosci. 22, 2451–2459 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heß, K. et al. Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol. 140, 359–375 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lubetzki, C., Zalc, B., Williams, A., Stadelmann, C. & Stankoff, B. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 19, 678–688 (2020).

    Article  PubMed  Google Scholar 

  60. Starost, L. et al. Extrinsic immune cell-derived, but not intrinsic oligodendroglial factors contribute to oligodendroglial differentiation block in multiple sclerosis. Acta Neuropathol. 140, 715–736 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mozafari, S. et al. Multiple sclerosis iPS-derived oligodendroglia conserve their properties to functionally interact with axons and glia in vivo. Sci. Adv. 6, eabc6983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Neumann, B. et al. Myc determines the functional age state of oligodendrocyte progenitor cells. Nat. Aging 1, 826–837 (2021).

    Article  PubMed  Google Scholar 

  63. Segel, M. et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573, 130–134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Behrendt, G. et al. Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia 61, 273–286 (2013).

    Article  PubMed  Google Scholar 

  65. Desai, M. K., Guercio, B. J., Narrow, W. C. & Bowers, W. J. An Alzheimer’s disease-relevant presenilin-1 mutation augments amyloid-beta-induced oligodendrocyte dysfunction. Glia 59, 627–640 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yeung, M. S. Y. et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566, 538–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Neely, S. A. et al. New oligodendrocytes exhibit more abundant and accurate myelin regeneration than those that survive demyelination. Nat. Neurosci. 25, 415–420 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bacmeister, C. M. et al. Motor learning promotes remyelination via new and surviving oligodendrocytes. Nat. Neurosci. 23, 819–831 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mezydlo, A. et al. Remyelination by surviving oligodendrocytes is inefficient in the inflamed mammalian cortex. Neuron 111, 1748–1759.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Pernin, F. et al. Diverse injury responses of human oligodendrocyte to mediators implicated in multiple sclerosis. Brain 145, 4320–4333 (2022).

    Article  PubMed  Google Scholar 

  71. Seeker, L. A. et al. Brain matters: unveiling the distinct contributions of region, age, and sex to glia diversity and CNS function. Acta Neuropathol. Commun. 11, 84 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Luo, J. X. X. et al. Human oligodendrocyte myelination potential; relation to age and differentiation. Ann. Neurol. 91, 178–191 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Crawford, A. H., Tripathi, R. B., Richardson, W. D. & Franklin, R. J. M. Developmental origin of oligodendrocyte lineage cells determines response to demyelination and susceptibility to age-associated functional decline. Cell Rep. 15, 761–773 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bechler, M. E., Byrne, L. & Ffrench-Constant, C. CNS myelin sheath lengths are an intrinsic property of oligodendrocytes. Curr. Biol. 25, 2411–2416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Marisca, R. et al. Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation. Nat. Neurosci. 23, 363–374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016). Study demonstrating oligodendrocyte transcriptional heterogeneity by scRNA-seq in the mouse brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jäkel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019). Study demonstrating oligodendrocyte transcriptional heterogeneity shown by snRNA-seq in the human brain, in both controls and patients with MS.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Perlman, K. et al. Developmental trajectory of oligodendrocyte progenitor cells in the human brain revealed by single cell RNA sequencing. Glia 68, 1291–1303 (2020).

    Article  PubMed  Google Scholar 

  81. Yaqubi, M. et al. Regional and age-related diversity of human mature oligodendrocytes. Glia 70, 1938–1949 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Falcão, A. M. et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24, 1837–1844 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 26, 131–142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kaya, T. et al. CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat. Neurosci. 25, 1446–1457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pandey, S. et al. Disease-associated oligodendrocyte responses across neurodegenerative diseases. Cell Rep. 40, 111189 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Absinta, M. et al. A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hilscher, M. M. et al. Spatial and temporal heterogeneity in the lineage progression of fine oligodendrocyte subtypes. BMC Biol. 20, 122 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bramow, S. et al. Demyelination versus remyelination in progressive multiple sclerosis. Brain 133, 2983–2998 (2010).

    Article  PubMed  Google Scholar 

  89. de la Fuente, A. G. et al. Changes in the oligodendrocyte progenitor cell proteome with ageing. Mol. Cell. Proteom. 19, 1281–1302 (2020).

    Article  Google Scholar 

  90. Meijer, M. et al. Epigenomic priming of immune genes implicates oligodendroglia in multiple sclerosis susceptibility. Neuron 110, 1193–1210.e13 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kirby, L. et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat. Commun. 10, 3887 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Grubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Del-Aguila, J. L. et al. A single-nuclei RNA sequencing study of mendelian and sporadic ad in the human brain. Alzheimer’s Res. Ther. 11, 71 (2019).

    Article  Google Scholar 

  94. Lau, S.-F., Cao, H., Fu, A. K. Y. & Ip, N. Y. Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 117, 25800–25809 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gerrits, E. et al. Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s disease. Acta Neuropathol. 141, 681–696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Leng, K. et al. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat. Neurosci. 24, 276–287 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Morabito, S. et al. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat. Genet. 53, 1143–1155 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Valihrach, L. et al. Recent advances in deciphering oligodendrocyte heterogeneity with single-cell transcriptomics. Front. Cell. Neurosci. 16, 1025012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Park, H. et al. Single-cell RNA-sequencing identifies disease-associated oligodendrocytes in male APP NL-G-F and 5XFAD mice. Nat. Commun. 14, 802 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lloyd, A. F. et al. Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nat. Neurosci. 22, 1046–1052 (2019). Study demonstrating that a pro-remyelination microglial state appears by repopulation, following spontaneous death of pro-inflammatory microglia after demyelination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shen, K. et al. Multiple sclerosis risk gene Mertk is required for microglial activation and subsequent remyelination. Cell Rep. 34, 108835 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lewis, N. D., Hill, J. D., Juchem, K. W., Stefanopoulos, D. E. & Modis, L. K. RNA sequencing of microglia and monocyte-derived macrophages from mice with experimental autoimmune encephalomyelitis illustrates a changing phenotype with disease course. J. Neuroimmunol. 277, 26–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Yamasaki, R. et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211, 1533–1549 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271.e6 (2019). Study demonstrating transcriptional heterogeneity of microglia by scRNA-seq of mouse brain across the lifespan and after demyelination.

    Article  CAS  PubMed  Google Scholar 

  106. Plemel, J. R. et al. Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Sci. Adv. 6, eaay6324 (2020). Important study demonstrating the interaction between microglia and monocytes in CNS remyelination, with microglia limiting monocyte entry into lesions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016). Study demonstrating transcriptional heterogeneity of microglia across brain regions by microarray and how microglia in distinct regions age at different rates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Safaiyan, S. et al. White matter aging drives microglial diversity. Neuron 109, 1100–1117.e10 (2021). Study demonstrating that microglial transcriptional heterogeneity is regulated by phagocytosis of myelin debris in the ageing white matter.

    Article  CAS  PubMed  Google Scholar 

  109. van Horssen, J. et al. Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J. Neuroinflamm. 9, 156 (2012).

    Google Scholar 

  110. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Olah, M. et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat. Commun. 11, 6129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zia, S. et al. Single-cell microglial transcriptomics during demyelination defines a microglial state required for lytic carcass clearance. Mol. Neurodegener. 17, 82 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Haimon, Z. et al. Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies. Nat. Immunol. 19, 636–644 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Böttcher, C. et al. Single-cell mass cytometry reveals complex myeloid cell composition in active lesions of progressive multiple sclerosis. Acta Neuropathol. Commun. 8, 136 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ramaglia, V. et al. Multiplexed imaging of immune cells in staged multiple sclerosis lesions by mass cytometry. eLife 8, e48051 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mendiola, A. S. et al. Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nat. Immunol. 21, 513–524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gibson, E. M. et al. Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell 176, 43–55.e13 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Doroshenko, E. R. et al. Peroxisome proliferator-activated receptor-δ deficiency in microglia results in exacerbated axonal injury and tissue loss in experimental autoimmune encephalomyelitis. Front. Immunol. 12, 570425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Berglund, R. et al. Microglial autophagy–associated phagocytosis is essential for recovery from neuroinflammation. Sci. Immunol. 5, eabb5077 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Alam, M. M. et al. Deficiency of microglial autophagy increases the density of oligodendrocytes and susceptibility to severe forms of seizures. eNeuro 8, ENEURO.0183-20.2021 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mei, F. et al. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. Elife 5, e18246 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Nugent, A. A. et al. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105, 837–854.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Gouna, G. et al. TREM2-dependent lipid droplet biogenesis in phagocytes is required for remyelination. J. Exp. Med. 218, e20210227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. McNamara, N. B. et al. Microglia regulate central nervous system myelin growth and integrity. Nature 613, 120–129 (2023). Study revealing that microglia are not required for developmental myelination but instead for limiting myelin growth and demyelination.

    Article  CAS  PubMed  Google Scholar 

  126. Rojo, R. et al. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat. Commun. 10, 3215 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kiani Shabestari, S. et al. Absence of microglia promotes diverse pathologies and early lethality in Alzheimer’s disease mice. Cell Rep. 39, 110961 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Munro, D. A. D. et al. CNS macrophages differentially rely on an intronic Csf1r enhancer for their development. Development 147, dev194449 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Miron, V. E. & Priller, J. Investigating microglia in health and disease: challenges and opportunities. Trends Immunol. 41, 785–793 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Boche, D. & Gordon, M. N. Diversity of transcriptomic microglial phenotypes in aging and Alzheimer’s disease. Alzheimers Dement. 18, 360–376 (2022).

    Article  PubMed  Google Scholar 

  131. Bosch-Queralt, M. et al. Diet-dependent regulation of TGFβ impairs reparative innate immune responses after demyelination. Nat. Metab. 3, 211–227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Berghoff, S. A. et al. Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat. Neurosci. 24, 47–60 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Dong, Y. et al. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat. Neurosci. 24, 489–503 (2021). Study demonstrating the protective nature of microglia via phagocytosis of toxic lipids following demyelination.

    Article  CAS  PubMed  Google Scholar 

  134. Luan, W. et al. Microglia impede oligodendrocyte generation in aged brain. J. Inflamm. Res. 14, 6813–6831 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shobin, E. et al. Microglia activation and phagocytosis: relationship with aging and cognitive impairment in the rhesus monkey. GeroScience 39, 199–220 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Safaiyan, S. et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat. Neurosci. 19, 995–998 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rawji, K. S. et al. Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system. Acta Neuropathol. 139, 893–909 (2020). Study identifying a therapeutic strategy to rejuvenate microglial function and enhance remyelination in ageing via stimulation of phagocytic potential.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pluvinage, J. V. et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 568, 187–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cuollo, L., Antonangeli, F., Santoni, A. & Soriani, A. The senescence-associated secretory phenotype (SASP) in the challenging future of cancer therapy and age-related diseases. Biology 9, 485 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Thériault, P. & Rivest, S. Microglia: senescence impairs clearance of myelin debris. Curr. Biol. 26, R772–R775 (2016).

    Article  PubMed  Google Scholar 

  142. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Roy, A. L. et al. A blueprint for characterizing senescence. Cell 183, 1143–1146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. González-Gualda, E., Baker, A. G., Fruk, L. & Muñoz-Espín, D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J. 288, 56–80 (2021).

    Article  PubMed  Google Scholar 

  145. Tuttle, C. S. L. et al. Cellular senescence and chronological age in various human tissues: a systematic review and meta-analysis. Aging Cell 19, e13083 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Yousefzadeh, M. J. et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 19, e13094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Martínez-Cué, C. & Rueda, N. Cellular senescence in neurodegenerative diseases. Front. Cell. Neurosci. 14, 16 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Nicaise, A. M. et al. Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proc. Natl Acad. Sci. USA 116, 9030–9039 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Streit, W. J. Microglia and Alzheimer’s disease pathogenesis. J. Neurosci. Res. 77, 1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Angelova, D. M. & Brown, D. R. Microglia and the aging brain: are senescent microglia the key to neurodegeneration? J. Neurochem. 151, 676–688 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Streit, W. J., Xue, Q.-S., Tischer, J. & Bechmann, I. Microglial pathology. Acta Neuropathol. Commun. 2, 142 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Streit, W. J., Khoshbouei, H. & Bechmann, I. Dystrophic microglia in late-onset Alzheimer’s disease. Glia 68, 845–854 (2020).

    Article  PubMed  Google Scholar 

  153. Streit, W. J., Sammons, N. W., Kuhns, A. J. & Sparks, D. L. Dystrophic microglia in the aging human brain. Glia 45, 208–212 (2004).

    Article  PubMed  Google Scholar 

  154. Streit, W. J., Braak, H., Xue, Q.-S. & Bechmann, I. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 118, 475–485 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Shahidehpour, R. K. et al. Dystrophic microglia are associated with neurodegenerative disease and not healthy aging in the human brain. Neurobiol. Aging 99, 19–27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Neumann, P., Lenz, D. E., Streit, W. J. & Bechmann, I. Is microglial dystrophy a form of cellular senescence? An analysis of senescence markers in the aged human brain. Glia 71, 377–390 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Zhou, D., Borsa, M. & Simon, A. K. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 20, e13316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hu, Y. et al. Replicative senescence dictates the emergence of disease-associated microglia and contributes to Aβ pathology. Cell Rep. 35, 109228 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Xie, Y.-Y. et al. Clemastine ameliorates myelin deficits via preventing senescence of oligodendrocytes precursor cells in Alzheimer’s disease model mouse. Front. Cell Dev. Biol. 9, 733945 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22, 719–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ritschka, B. et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 31, 172–183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Linnerbauer, M., Wheeler, M. A. & Quintana, F. J. Astrocyte crosstalk in CNS inflammation. Neuron 108, 608–622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Skripuletz, T. et al. Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain 136, 147–167 (2013).

    Article  PubMed  Google Scholar 

  167. Sen, M. K., Mahns, D. A., Coorssen, J. R. & Shortland, P. J. The roles of microglia and astrocytes in phagocytosis and myelination: Insights from the cuprizone model of multiple sclerosis. Glia 70, 1215–1250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bellver-Landete, V. et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat. Commun. 10, 518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Brennan, F. H. et al. Microglia coordinate cellular interactions during spinal cord repair in mice. Nat. Commun. 13, 4096 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Greenhalgh, A. D. et al. Peripherally derived macrophages modulate microglial function to reduce inflammation after CNS injury. PLoS Biol. 16, e2005264 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. De Schepper, S. et al. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease. Nat. Neurosci. 26, 406–415 (2023).

    PubMed  PubMed Central  Google Scholar 

  172. Perry, V. H. & Holmes, C. Microglial priming in neurodegenerative disease. Nat. Rev. Neurol. 10, 217–224 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Xie, J. et al. Low-grade peripheral inflammation affects brain pathology in the AppNL-G-Fmouse model of Alzheimer’s disease. Acta Neuropathol. Commun. 9, 163 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tejera, D. et al. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. EMBO J. 38, e101064 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. García-Domínguez, I. et al. Peripheral inflammation enhances microglia response and nigral dopaminergic cell death in an in vivo MPTP model of Parkinson’s disease. Front. Cell Neurosci. 12, 398 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kho, Z. Y. & Lal, S. K. The human gut microbiome – a potential controller of wellness and disease. Front. Microbiol. 9, 1835 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Chen, J. et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 6, 28484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Zapała, B. et al. Differences in the composition of gut microbiota between patients with Parkinson’s disease and healthy controls: a cohort study. J. Clin. Med. 10, 5698 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Zhai, C.-D., Zheng, J.-J., An, B.-C., Huang, H.-F. & Tan, Z.-C. Intestinal microbiota composition in patients with amyotrophic lateral sclerosis: establishment of bacterial and archaeal communities analyses. Chin. Med. J. 132, 1815–1822 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Onisiforou, A. & Spyrou, G. M. Immunomodulatory effects of microbiota-derived metabolites at the crossroad of neurodegenerative diseases and viral infection: network-based bioinformatics insights. Front. Immunol. 13, 843128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015). First study demonstrating the impact of the gut microbiome on microglial responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. McMurran, C. E. et al. The microbiota regulates murine inflammatory responses to toxin-induced CNS demyelination but has minimal impact on remyelination. Proc. Natl Acad. Sci. USA 116, 25311–25321 (2019). First study assessing the impact of manipulating the gut microbiome on microglial responses and remyelination efficiency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chen, T., Noto, D., Hoshino, Y., Mizuno, M. & Miyake, S. Butyrate suppresses demyelination and enhances remyelination. J. Neuroinflamm. 16, 165 (2019).

    Article  Google Scholar 

  185. Wuerch, E., Lozinski, B. & Yong, V. W. MedXercise: a promising strategy to promote remyelination. Curr. Opin. Pharmacol. 61, 120–126 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Jensen, S. K. et al. Multimodal enhancement of remyelination by exercise with a pivotal role for oligodendroglial PGC1α. Cell Rep. 24, 3167–3179 (2018). Critical study demonstrating the positive impact of exercise on oligodendrocyte lineage cell responses and remyelination in mice.

    Article  CAS  PubMed  Google Scholar 

  187. Lozinski, B. M. & Yong, V. W. Exercise and the brain in multiple sclerosis. Mult. Scler. 28, 1167–1172 (2022).

    Article  PubMed  Google Scholar 

  188. Zaychik, Y. et al. High-Intensity exercise training protects the brain against autoimmune neuroinflammation: regulation of microglial redox and pro-inflammatory functions. Front. Cell. Neurosci. 15, 640724 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lozinski, B. M. et al. Exercise rapidly alters proteomes in mice following spinal cord demyelination. Sci. Rep. 11, 7239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Garraud, O., Hozzein, W. N. & Badr, G. Wound healing: time to look for intelligent, ‘natural’ immunological approaches? BMC Immunol. 18, 23 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Brickman, A. M. et al. Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident alzheimer disease in the community. Arch. Neurol. 69, 1621–1627 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Brickman, A. M. et al. Reconsidering harbingers of dementia: progression of parietal lobe white matter hyperintensities predicts Alzheimer’s disease incidence. Neurobiol. Aging 36, 27–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Tosto, G. et al. The effect of white matter hyperintensities on neurodegeneration in mild cognitive impairment. Alzheimers Dement. 11, 1510–1519 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  194. McAleese, K. E. et al. Cortical tau load is associated with white matter hyperintensities. Acta Neuropathol. Commun. 3, 60 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article  CAS  PubMed  Google Scholar 

  196. Bartzokis, G., Lu, P. H. & Mintz, J. Human brain myelination and amyloid beta deposition in Alzheimer’s disease. Alzheimers Dement. 3, 122–125 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Braak, H. & Braak, E. Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol. 92, 197–201 (1996).

    Article  CAS  PubMed  Google Scholar 

  198. Radde, R. et al. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7, 940–946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Jankowsky, J. L. & Zheng, H. Practical considerations for choosing a mouse model of Alzheimer’s disease. Mol. Neurodegener. 12, 1–22 (2017).

    Article  Google Scholar 

  200. Saito, T. et al. Single App knock-in mouse models of Alzheimer’s disease. Nat. Neurosci. 17, 661–663 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Deczkowska, A. et al. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173, 1073–1081 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Li, Q. et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA aequencing. Neuron 101, 207–223.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Chen, Y. & Colonna, M. Microglia in Alzheimer’s disease at single-cell level. Are there common patterns in humans and mice? J. Exp. Med. 218, e20202717 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lee, K.-A., Flores, R. R., Jang, I. H., Saathoff, A. & Robbins, P. D. Immune senescence, immunosenescence and aging. Front. Aging 3, 900028 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Rodier, F. & Campisi, J. Four faces of cellular senescence. J. Cell Biol. 192, 547–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Walford, R. L. The immunologic theory of aging. Immunol. Rev. 2, 171–171 (1969).

    Article  Google Scholar 

  207. Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.A.K. discloses support for this work from the Wellcome Trust Translational Neuroscience PhD Programme (108890/Z/15/Z) at The University of Edinburgh. V.E.M. discloses support for this work from the John David Eaton Chair in Multiple Sclerosis Research (St Michael’s Hospital Foundation and Barlo MS Centre) and a Medical Research Council Senior Non-Clinical Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the Review.

Corresponding author

Correspondence to Veronique E. Miron.

Ethics declarations

Competing interests

V.E.M. currently receives research funds from Astex Pharmaceuticals relating to some of the topics covered in this Review. S.A.K. declares no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks V. Wee Yong and the other anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

3×Tg mouse model of Alzheimer disease

Mice that harbour the human APP transgene containing the Swedish mutation, a PSEN1 knock-in with the M146V mutation and the MAPT transgene containing the P301L mutation. Unlike some of the other commonly used Alzheimer disease mouse models, this model progressively develops both amyloid-β plaques and neurofibrillary tangles, with extracellular amyloid-β deposited at 6 months of age and hyperphosphorylated tau aggregates observed at 12–15 months of age. These mice exhibit synaptic dysfunction before the detection of plaques and tangles, and cognitive impairment is seen at 4 months of age.

App NL-G-F mouse model of Alzheimer disease

Mice that possess a single amyloid-β precursor protein gene (APP) knock-in, containing a humanized amyloid-β domain with three mutations, namely the Swedish ‘NL’, Arctic ‘G’ and Iberian ‘F’ mutations. Although APP is expressed at wild-type levels, the NL, G and F mutations boost total amyloid-β production, encourage amyloid-β aggregation and increase the amyloid-β42:amyloid-β40 ratio, respectively. These mice exhibit amyloid-β plaque accumulation with deposition beginning at 2 months of age. They also display microgliosis, astrocytosis and synapse loss, in addition to cognitive impairment at 6 months of age. Neurofibrillary tangles are absent from this model.

APP/PS1 mouse model of Alzheimer disease

Mice that express two human transgenes for APP and PSEN1 (presenilin-1, also known as PS1), which contain the Swedish and L166P mutations, respectively. Both are under the control of the Thy1 promoter, and the mice demonstrate overexpression of APP with levels approximately threefold higher than those endogenously expressed. Amyloid-β deposition begins at 6 weeks of age, with microgliosis and astrocytosis, and dendritic spine loss is also observed in the mice. Cognitive impairment is seen at 7 months of age, and neurofibrillary tangles are absent from this model.

Border-associated macrophages

Also known as central nervous system (CNS)-associated macrophages, these macrophages reside in the border regions of the CNS including the perivascular spaces, the choroid plexus and the meninges.

Dietary cuprizone-induced demyelination

In this model, mice are fed with the copper chelator cuprizone, leading to oligodendrocyte death and subsequent demyelination followed by spontaneous remyelination, which is initiated during the late demyelination phase and continues robustly over the subsequent 3–6 weeks after withdrawal of cuprizone.

Lysophosphatidylcholine (LPC)-induced demyelination

A widely used model to study remyelination, involving injection of LPC to induce focal demyelination in either the corpus callosum or spinal cord, which is typically complete by 3 days after injection and is followed by robust remyelination without ongoing demyelination over the subsequent 2–4 weeks.

Monocytes

Monocytes originate from haematopoietic stem and progenitor cells in the bone marrow, from which they emigrate to circulate in the blood before entering tissues and differentiating into either macrophages or monocyte-derived dendritic cells.

PDGF–APP Sw.Ind mouse model of Alzheimer disease

Mice that express the human APP transgene containing the Swedish and Indiana (V717F) mutations, under the control of the PDGFB promoter. These mice overexpress APP, with amyloid-β seen at 6 weeks of age and plaques evident at 5–7 months of age. This model also demonstrates synapse loss, astrogliosis and microgliosis, in addition to cognitive deficits by 4 months of age. Neurofibrillary tangles are absent from this model.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kent, S.A., Miron, V.E. Microglia regulation of central nervous system myelin health and regeneration. Nat Rev Immunol 24, 49–63 (2024). https://doi.org/10.1038/s41577-023-00907-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00907-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing