Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease

Abstract

Prenatal and early postnatal life represent key periods of immune system development. In addition to genetics and host biology, environment has a large and irreversible role in the immune maturation and health of an infant. One key player in this process is the gut microbiota, a diverse community of microorganisms that colonizes the human intestine. The diet, environment and medical interventions experienced by an infant determine the establishment and progression of the intestinal microbiota, which interacts with and trains the developing immune system. Several chronic immune-mediated diseases have been linked to an altered gut microbiota during early infancy. The recent rise in allergic disease incidence has been explained by the ‘hygiene hypothesis’, which states that societal changes in developed countries have led to reduced early-life microbial exposures, negatively impacting immunity. Although human cohort studies across the globe have established a correlation between early-life microbiota composition and atopy, mechanistic links and specific host–microorganism interactions are still being uncovered. Here, we detail the progression of immune system and microbiota maturation in early life, highlight the mechanistic links between microbes and the immune system, and summarize the role of early-life host–microorganism interactions in allergic disease development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Waves of immune cell production and dispersal.
Fig. 2: Gut microbiota maturation in early life and accompanying immune phenotypes.
Fig. 3: Early-life factors driving atopy development.

Similar content being viewed by others

References

  1. Park, J. E., Jardine, L., Gottgens, B., Teichmann, S. A. & Haniffa, M. Prenatal development of human immunity. Science 368, 600–603 (2020). This review describes in utero immune development in detail.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Semmes, E. C. et al. Understanding early-life adaptive immunity to guide interventions for pediatric health. Front. Immunol. 11, 595297 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kollmann, T. R., Kampmann, B., Mazmanian, S. K., Marchant, A. & Levy, O. Protecting the newborn and young infant from infectious diseases: lessons from immune ontogeny. Immunity 46, 350–363 (2017).

    Article  PubMed  CAS  Google Scholar 

  4. Rudd, B. D. Neonatal T cells: a reinterpretation. Annu. Rev. Immunol. 38, 229–247 (2020). This review provides a thorough description of the features of neonatal T cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Robertson, R. C., Manges, A. R., Finlay, B. B. & Prendergast, A. J. The human microbiome and child growth — first 1000 days and beyond. Trends Microbiol. 27, 131–147 (2019).

    Article  PubMed  CAS  Google Scholar 

  6. Vandenplas, Y. et al. Factors affecting early-life intestinal microbiota development. Nutrition 78, 110812 (2020).

    Article  PubMed  CAS  Google Scholar 

  7. Humann, J. et al. Bacterial peptidoglycan transverses the placenta to induce fetal neuroproliferation and aberrant postnatal behavior. Cell Host Microbe 19, 388–399 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Van De Pavert, S. A. et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508, 123–127 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. De Agüero, M. G. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).

    Article  Google Scholar 

  10. Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016). This review describes immune alterations observed in GF mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Torow, N. & Hornef, M. W. The neonatal window of opportunity: setting the stage for life-long host-microbial interaction and immune homeostasis. J. Immunol. 198, 557–563 (2017).

    Article  PubMed  CAS  Google Scholar 

  12. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Derrien, M., Alvarez, A. S. & de Vos, W. M. The gut microbiota in the first decade of life. Trends Microbiol. 27, 997–1010 (2019). This work describes the progression of gut microbiota development early in life.

    Article  PubMed  CAS  Google Scholar 

  14. Pantoja-Feliciano, I. G. et al. Biphasic assembly of the murine intestinal microbiota during early development. Int. Soc. Microb. Ecol. J. 7, 1112–1115 (2013).

    Google Scholar 

  15. Al Nabhani, Z. et al. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 50, 1276–1288 (2019).

    Article  PubMed  CAS  Google Scholar 

  16. Boutin, R. C. T. et al. Mining the infant gut microbiota for therapeutic targets against atopic disease. Allergy 75, 2065–2068 (2020).

    Article  PubMed  Google Scholar 

  17. Marra, F. et al. Antibiotic use in children is associated with increased risk of asthma. Pediatrics 123, 1003–1010 (2009).

    Article  PubMed  Google Scholar 

  18. Abrahamsson, T. R. et al. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Exp. Allergy 44, 842–850 (2014).

    Article  PubMed  CAS  Google Scholar 

  19. Wold, A. E. The hygiene hypothesis revised: is the rising frequency of allergy due to changes in rising the intestinal flora? Allergy 53, 20–25 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. Okada, H., Kuhn, C., Feillet, H. & Bach, J.-F. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin. Exp. Immunol. 160, 1–9 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA 108, 4578–4585 (2011).

    Article  PubMed  CAS  Google Scholar 

  22. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014). This work uses mathematical modeling to describe neonatal immune development.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Stremmel, C. et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat. Commun. 9, 75 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Popescu, D. M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. St. John, A. L., Rathore, A. P. S. & Ginhoux, F. New perspectives on the origins and heterogeneity of mast cells. Nat. Rev. Immunol. 23, 55–68 (2023).

    Article  Google Scholar 

  26. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article  PubMed  CAS  Google Scholar 

  27. Krystel-Whittemore, M., Dileepan, K. N. & Wood, J. G. Mast cell: a multi-functional master cell. Front. Immunol. 6, 620 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Woidacki, K. et al. Mast cells rescue implantation defects caused by c-kit deficiency. Cell Death Dis. 4, e462 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ngkelo, A. et al. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction. J. Exp. Med. 213, 1353–1374 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Angelo, L. S., Bimler, L. H., Nikzad, R., Aviles-Padilla, K. & Paust, S. CXCR6+ NK cells in human fetal liver and spleen possess unique phenotypic and functional capabilities. Front. Immunol. 10, 469 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Van De Pavert, S. A. & Mebius, R. E. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10, 664–674 (2010).

    Article  PubMed  Google Scholar 

  32. Ema, H. & Nakauchi, H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95, 2284–2288 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. McGovern, N. et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature 546, 662–666 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Olin, A. et al. Stereotypic immune system development in newborn children. Cell 174, 1277–1292 (2018). This study uses peripheral blood samples collected over time to describe immune maturation in infants.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Melville, J. M. & Moss, T. J. M. The immune consequences of preterm birth. Front. Neurosci. 7, 79 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stras, S. F. et al. Maturation of the human intestinal immune system occurs early in fetal development. Dev. Cell 51, 357–373.e5 (2019).

    Article  PubMed  CAS  Google Scholar 

  37. Mold, J. E. et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 330, 1695–1699 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hall, T. D. et al. Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth. Nat. Commun. 13, 5403 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mold, J. E. & McCune, J. M. Immunological tolerance during fetal development. From mouse to man. Adv. Immunol. 115, 73–111 (2012).

    Article  PubMed  CAS  Google Scholar 

  40. Kollman TR, L. O. E. A. Innate immune sensing by toll-like receptors in newborns and the elderly. Immunity 37, 771–783 (2012).

    Article  Google Scholar 

  41. Basha, S., Surendran, N. & Pichichero, M. Immune responses in neonates. Expert. Rev. Clin. Immunol. 10, 1171–1184 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Melvan, J. N., Bagby, G. J., Welsh, D. A., Nelson, S. & Zhang, P. Neonatal sepsis and neutrophil insufficiencies. Int. Rev. Immunol. 29, 315–348 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Willems, F., Vollstedt, S. & Suter, M. Phenotype and function of neonatal DC. Eur. J. Immunol. 39, 26–35 (2009).

    Article  PubMed  CAS  Google Scholar 

  44. Mestas, J. & Hughes, C. C. W. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004). This paper highlights major differences in immunity between humans and murine models.

    Article  PubMed  CAS  Google Scholar 

  45. Jones, C. A., Holloway, J. A. & Warner, J. O. Phenotype of fetal monocytes and B lymphocytes during the third trimester of pregnancy. J. Reprod. Immunol. 56, 45–60 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. Corbett, N. P. et al. Ontogeny of toll-like receptor mediated cytokine responses of human blood mononuclear cells. PLoS ONE 5, e15041 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Langrish, C. L., Buddle, J. C., Thrasher, A. J., Molecular, D. G. & Unit, I. Neonatal dendritic cells are intrinsically biased against Th-1 immune responses. Clin. Exp. Immunol. 128, 118–123 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Elahi, S. et al. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature 504, 158–162 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Maximilian, L. & Lochner, M. Development and function of secondary and tertiary lymphoid organs in the small intestine and the colon. Front. Immunol. 7, 342 (2016).

    Google Scholar 

  50. Torow, N., Marsland, B. J., Hornef, M. W. & Gollwitzer, E. S. Neonatal mucosal immunology. Mucosal Immunol. 10, 5–17 (2017).

    Article  PubMed  CAS  Google Scholar 

  51. Ménard, S. et al. Developmental switch of intestinal antimicrobial peptide expression. J. Exp. Med. 205, 183–193 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Griffiths-chu, S., Patterson, J. A. K., Berger, C. L., Edelson, R. L. & Chu, A. C. Characterization of immature T cell subpopulations in neonatal blood. Blood 64, 296–300 (1984).

    Article  PubMed  CAS  Google Scholar 

  53. Gammon, G. et al. Neonatal T-cell tolerance to minimal immunogenic peptides is caused. Nature 319, 413–415 (1986).

    Article  PubMed  CAS  Google Scholar 

  54. Rackaityte, E. & Halkias, J. Mechanisms of fetal T cell tolerance and immune regulation. Front. Immunol. 11, 588 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Michaëlsson, J., Mold, J. E., McCune, J. M. & Nixon, D. F. Regulation of T cell responses in the developing human fetus. J. Immunol. 176, 5741–5748 (2006).

    Article  PubMed  Google Scholar 

  56. Hebel, K. et al. CD4+ T cells from human neonates and infants are poised spontaneously to run a nonclassical IL-4 program. J. Immunol. 192, 5160–5170 (2014).

    Article  PubMed  CAS  Google Scholar 

  57. Adkins, B. Peripheral CD4+ lymphocytes derived from fetal versus adult thymic precursors differ phenotypically and functionally. J. Immunol. 171, 5157–5164 (2003).

    Article  PubMed  CAS  Google Scholar 

  58. Mascart, F. et al. Bordetella pertussis infection in 2-month-old infants promotes type 1 T cell responses. J. Immunol. 170, 1504–1509 (2003).

    Article  PubMed  CAS  Google Scholar 

  59. Mccarron, M. & Reen, D. J. Activated human neonatal CD8+ T cells are subject to immunomodulation by direct TLR2 or TLR5 stimulation. J. Immunol. 182, 55–62 (2022).

    Article  Google Scholar 

  60. Pekalski, M. L. et al. Neonatal and adult recent thymic emigrants produce IL-8 and express complement receptors CR1 and CR2. J. Clin. Invest. Insights 2, e93739 (2017).

    Google Scholar 

  61. Smith, N. L. et al. Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life. J. Immunol. 193, 177–184 (2014).

    Article  PubMed  CAS  Google Scholar 

  62. Siefker, D. T. & Adkins, B. Rapid CD8+ function is critical for protection of neonatal mice from an extracellular bacterial enteropathogen. Front. Pediatr. 4, 141 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yang, S. et al. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348, 589–594 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Budeus, B. et al. Human cord blood B cells differ from the adult counterpart by conserved Ig repertoires and accelerated response dynamics. J. Immunol. 206, 2839–2851 (2021).

    Article  PubMed  CAS  Google Scholar 

  65. Sarvaria, A. et al. IL-10+ regulatory B cells are enriched in cord blood and may protect against cGVHD after cord blood transplantation. Blood 128, 1346–1361 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Rackaityte, E. et al. Viable bacterial colonization is highly limited in the human intestine in utero. Nat. Med. 26, 599–607 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).

    Article  PubMed  Google Scholar 

  69. Reyman, M. et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat. Commun. 10, 4997 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M. & Hidalgo, G. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yang, R. et al. Dynamic signatures of gut microbiota and influences of delivery and feeding modes during the first 6 months of life. Physiol. Genet. 51, 368–378 (2019).

    Article  CAS  Google Scholar 

  72. Wampach, L. et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat. Commun. 9, 5091 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Galazzo, G. et al. Development of the microbiota and associations with birth mode, diet, and atopic disorders in a longitudinal analysis of stool samples, collected from infancy through early childhood. Gastroenterology 158, 1584–1596 (2020).

    Article  PubMed  CAS  Google Scholar 

  74. Chichlowski, M., De Lartigue, G., German, B. J., Raybould, H. E. & Mills, D. A. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides. J. Pediatr. Gastroenerol. Nutr. 55, 321–327 (2012).

    Article  CAS  Google Scholar 

  75. Lee, S. A. et al. Comparison of the gut microbiota profile in breast-fed and formula-fed Korean infants using pyrosequencing. Nutr. Res. Pract. 9, 242–248 (2015).

    Article  PubMed  Google Scholar 

  76. Pärnänen, K. M. M. et al. Early-life formula feeding is associated with infant gut microbiota alterations and an increased antibiotic resistance load. Am. J. Clin. Nutr. 115, 407–421 (2022).

    Article  PubMed  Google Scholar 

  77. Blanton, L. V. et al. Gut bacteria that prevent gowth impairments transmitted by microbita from malnourished children. Science 351, 1–18 (2016).

    Article  Google Scholar 

  78. Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Gillilland, M. G. et al. Ecological succession of bacterial communities during conventionalization of germ-free mice. Appl. Environ. Microbiol. 78, 2359–2366 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Gopalakrishna, K. P. et al. Maternal IgA protects against the development of necrotizing enterocolitis in preterm infants. Nat. Med. 25, 1110–1115 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Chernikova, D. A. et al. The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth. Pediatr. Res. 84, 71–79 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jia, Q. et al. Dynamic changes of the gut microbiota in preterm infants with different gestational age. Front. Microbiol. 13, 923273 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Azad, M. B. et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. Br. J. Obstet. Gynaecol. 123, 983–993 (2016).

    Article  CAS  Google Scholar 

  84. Korpela, K. et al. Antibiotics in early life associate with specific gut microbiota signatures in a prospective longitudinal infant cohort. Pediatr. Res. 88, 438–443 (2020).

    Article  PubMed  CAS  Google Scholar 

  85. Stevens, J. et al. The balance between protective and pathogenic immune responses to pneumonia in the neonatal lung is enforced by gut microbiota. Sci. Transl. Med. 14, 649 (2022).

    Article  Google Scholar 

  86. Reyman, M. et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat. Commun. 13, 893 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Gupta, R. S. et al. Hygiene factors associated with childhood food allergy and asthma. Allergy Asthma Proc. 37, 140–146 (2016).

    Article  Google Scholar 

  88. Hornef, M. W. & Torow, N. ‘Layered immunity’ and the ‘neonatal window of opportunity’ — timed succession of non-redundant phases to establish mucosal host–microbial homeostasis after birth. Immunology 159, 15–25 (2020).

    Article  PubMed  CAS  Google Scholar 

  89. Li, Y. et al. In utero human intestine harbors unique metabolome, including bacterial metabolites. J. Clin. Invest. Insights 5, e138751 (2020).

    Google Scholar 

  90. Pessa-Morikawa, T. et al. Maternal microbiota-derived metabolic profile in fetal murine intestine, brain and placenta. BioMed. Cent. Microbiol. 22, 46 (2022).

    CAS  Google Scholar 

  91. Zeng, B. et al. ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis. 10, 315 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kimura, I. et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science 367, 6481 (2020).

    Article  Google Scholar 

  93. Lee, J. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2012).

    Article  CAS  Google Scholar 

  94. Lu, P. et al. Maternal aryl hydrocarbon receptor activation protects newborns against necrotizing enterocolitis. Nat. Commun. 12, 1042 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Malek, A., Sager, R., Kuhn, P., Nicolaides, K. H. & Schneider, H. Evolution of maternofetal transport of immunoglobulins during human pregnancy. Am. J. Reprod. Immunol. 36, 248–255 (1996).

    Article  PubMed  CAS  Google Scholar 

  96. Koch, M. A. et al. Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in early life. Cell 165, 827–841 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Macpherson, A. J., De Agüero, M. G. & Ganal-Vonarburg, S. C. How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 17, 508–517 (2017).

    Article  PubMed  CAS  Google Scholar 

  98. Nakata, K., Kobayashi, K., Ishikawa, Y. & Yamamoto, M. The transfer of maternal antigen-specific IgG regulates the development of allergic airway inflammation early in life in an FcRn-dependent manner. Biochem. Biophys. Res. Commun. 395, 238–243 (2014).

    Article  Google Scholar 

  99. Zheng, W. et al. Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature 577, 543–548 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. May, K. et al. Antibody-dependent transplacental transfer of malaria blood-stage antigen using a human ex vivo placental perfusion model. PLoS ONE 4, e7986 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hu, M. et al. Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia. Nat. Commun. 10, 3031 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Thorburn, A. N. et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6, 7320 (2015).

    Article  PubMed  CAS  Google Scholar 

  103. Vuillermin, P. J. et al. Maternal carriage of Prevotella during pregnancy associates with protection against food allergy in the offspring. Nat. Commun. 11, 1452 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Apostol, A. C., Jensen, K. D. C. & Beaudin, A. E. Training the fetal immune system through maternal inflammation — a layered hygiene hypothesis. Front. Immunol. 11, 123 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Gbédandé, K. et al. Malaria modifies neonatal and early-life Toll-like receptor cytokine responses. Infect. Immun. 81, 2686–2696 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  PubMed  CAS  Google Scholar 

  107. Ohnmacht, C. et al. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 349, 989–993 (2015).

    Article  PubMed  CAS  Google Scholar 

  108. Narushima, S. et al. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes 5, 333–339 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Prinz, I. et al. Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 9, 444–457 (2016).

    Article  PubMed  Google Scholar 

  111. Pandiyan, P. et al. Microbiome dependent regulation of Tregs and Th17 cells in mucosa. Front. Immunol. 10, 426 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wingender, G. et al. Neutrophilic granulocytes modulate invariant NKT cell function in mice and humans. J. Immunol. 188, 3000–3008 (2012).

    Article  PubMed  CAS  Google Scholar 

  114. An, D. et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156, 123–133 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Yang, Y., Xu, C., Wu, D. & Wang, Z. γδ T cells: crosstalk between microbiota, chronic inflammation, and colorectal cancer. Front. Immunol. 9, 1483 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Huus, K. E., Petersen, C. & Finlay, B. B. Diversity and dynamism of IgA−microbiota interactions. Nat. Rev. Immunol. 2, 514–525 (2021).

    Article  Google Scholar 

  118. Pabst, O. & Slack, E. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol. 13, 12–21 (2020).

    Article  PubMed  CAS  Google Scholar 

  119. Flannigan, K. L. & Denning, T. L. Segmented filamentous bacteria-induced immune responses: a balancing act between host protection and autoimmunity. Immunology 154, 537–546 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Cahenzli, J., Köller, Y., Wyss, M., Geuking, M. B. & McCoy, K. D. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14, 559–570 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Dogra, S. K. et al. Nurturing the early life gut microbiome and immune maturation for long term health. Microorganisms 9, 2110 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Chassin, C. et al. MiR-146a mediates protective innate immune tolerance in the neonate intestine. Cell Host Microbe 8, 358–368 (2010).

    Article  PubMed  CAS  Google Scholar 

  123. Schuijs, M. J. et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science 349, 1106–1110 (2015). This study provides a mechanism for the protective effects of farm environments against allergic disease.

    Article  PubMed  CAS  Google Scholar 

  124. Wang, J., Ouyang, Y., Guner, Y., Ford, H. R. & Grishin, A. V. Ubiquitin-editing enzyme A20 promotes tolerance to lipopolysaccharide in enterocytes. J. Immunol. 183, 1384–1392 (2009).

    Article  PubMed  CAS  Google Scholar 

  125. Mazmanian, S. K., Cui, H. L., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  PubMed  CAS  Google Scholar 

  126. Jain, N. The early life education of the immune system: moms, microbes and (missed) opportunities. Gut Microbes 12, 1824564 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Donald, K., Petersen, C., Turvey, S. E., Finlay, B. B. & Azad, M. B. Secretory IgA: linking microbes, maternal health, and infant health through human milk. Cell Host Microbe 30, 650–659 (2022).

    Article  PubMed  CAS  Google Scholar 

  128. Wilson, E. & Butcher, E. C. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J. Exp. Med. 200, 805–809 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Rousseaux, A. et al. Human milk oligosaccharides: their effects on the host and their potential as therapeutic agents. Front. Immunol. 12, 680911 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22, 1147–1162 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898 (2021). This study identified the metabolite produced by bifidobacteria that affects immune development.

    Article  PubMed  CAS  Google Scholar 

  132. Laursen, M. F. et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat. Microbiol. 6, 1367–1382 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–549 (2011).

    Article  PubMed  CAS  Google Scholar 

  134. Hiippala, K. et al. Isolation of anti-inflammatory and epithelium reinforcing Bacteroides and Parabacteroides spp. from a healthy fecal donor. Nutrients 12, 935 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Russell, S. L. et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. Eur. Mol. Biol. Organ. Rep. 13, 440–447 (2012).

    CAS  Google Scholar 

  136. Patrick, D. M. et al. Decreasing antibiotic use, the gut microbiota, and asthma incidence in children: evidence from population-based and prospective cohort studies. Lancet Respir. Med. 8, 1094–1105 (2020).

    Article  PubMed  CAS  Google Scholar 

  137. Arnold, I. C. et al. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J. Clin. Invest. 121, 3088–3093 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Knoop, K. A. et al. Microbial antigen encounter during a pre-weaning interval is critical for tolerance to gut bacteria. Sci. Immunol. 2, 18 (2017).

    Article  Google Scholar 

  139. Al Nabhani, Z. & Eberl, G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 13, 183–189 (2020).

    Article  PubMed  CAS  Google Scholar 

  140. Arildsen, A. W. et al. Delayed gut colonization shapes future allergic responses in a murine model of atopic dermatitis. Front. Immunol. 12, 650621 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Lundblad, L. K. A., Gülec, N. & Poynter, M. E. The role of iNKT cells on the phenotypes of allergic airways in a mouse model. Pulm. Pharmacol. Ther. 45, 80–89 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Matangkasombut et al. Natural killer T cells and the regulation of asthma. Mucosal Immunol. 2, 383–392 (2009).

    Article  PubMed  CAS  Google Scholar 

  143. Reddel, S. et al. Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture. Sci. Rep. 9, 4996 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Nance, C. L. et al. The role of the microbiome in food allergy: a review. Children 7, 50 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Burbank, A. J., Sood, A. K., Kesic, M. J., Peden, D. B. & Hernandez, M. L. Environmental determinants of allergy and asthma in early life. J. Allergy Clin. Immunol. 140, 1–12 (2018).

    Article  Google Scholar 

  146. Azad, M. B. et al. Infant gut microbiota and food sensitization: associations in the first year of life. Clin. Exp. Allergy 45, 632–643 (2015).

    Article  PubMed  CAS  Google Scholar 

  147. Russell, S. L. et al. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes 4, 158–164 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kaplan, J. L., Shi, H. N. & Walker, W. A. The role of microbes in developmental immunologic programming. Pediatr. Res. 69, 465–472 (2011).

    Article  PubMed  Google Scholar 

  149. Penders, J., Stobberingh, E. E., van den Brandt, P. A. & Thijs, C. The role of the intestinal microbiota in the development of atopic disorders. Allergy 62, 1223–1236 (2007).

    Article  PubMed  CAS  Google Scholar 

  150. Roduit, C. et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy 74, 799–809 (2019).

    Article  PubMed  CAS  Google Scholar 

  151. Di Costanzo, M., De Paulis, N. & Biasucci, G. Butyrate: a link between early life nutrition and gut microbiome in the development of food allergy. Life 11, 384 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Venegas, D. P. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).

    Article  CAS  Google Scholar 

  153. Lyons, A. et al. Bacterial strain-specific induction of Foxp3+ T regulatory cells is protective in murine allergy models. Clin. Exp. Allergy 40, 811–819 (2010).

    Article  PubMed  CAS  Google Scholar 

  154. Zheng, N., Gao, Y., Zhu, W., Meng, D. & Id, W. A. W. Short chain fatty acids produced by colonizing intestinal commensal bacterial interaction with expressed breast milk are anti- inflammatory in human immature enterocytes. PLoS ONE 15, e0229283 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Dai, D. L. Y. et al. Breastfeeding enrichment of B. longum subsp. infantis mitigates the effect of antibiotics on the microbiota and childhood asthma risk. Med 4, 92–112.e5 (2022).

    Article  Google Scholar 

  156. Nuzzi, G., Di Cicco, M. E. & Peroni, D. G. Breastfeeding and allergic diseases: what’s new? Children 8, 330 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. McCall, L. I. et al. Home chemical and microbial transitions across urbanization. Nat. Microbiol. 5, 108–115 (2020).

    Article  PubMed  CAS  Google Scholar 

  158. Kirjavainen, P. V. et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat. Med. 25, 1089–1095 (2019).

    Article  PubMed  CAS  Google Scholar 

  159. Bisgaard, H. et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J. Allergy Clin. Immunol. 128, 646–652.e5 (2011).

    Article  PubMed  Google Scholar 

  160. Ege, M. J. et al. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364, 701–709 (2011).

    Article  PubMed  CAS  Google Scholar 

  161. Garn, H., Potaczek, D. P. & Pfefferle, P. I. The hygiene hypothesis and new perspectives — current challenges meeting an old postulate. Front. Immunol. 12, 637087 (2021). This review describes important recent updates to the hygiene hypothesis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Petersen, C. et al. A rich meconium metabolome in human infants is associated with early-life gut microbiota composition and reduced allergic sensitization. Cell Rep. Med. 2, 5 (2021).

    Google Scholar 

  163. Stinson, L. F., Trevenen, M. L. & Geddes, D. T. The viable microbiome of human milk differs from the metataxonomic profile. Nutrients 13, 4445 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Meyer, K. M., Prince, A. L. & Aagaard, K. M. Maternal IgA targets commensal microbiota in breast milk and the maternal and infant gut microbiomes. Am. J. Obstet. Gynecol. 220, S604–S605 (2019).

    Article  Google Scholar 

  165. Prentice, P. M. et al. Human milk short-chain fatty acid composition is associated with adiposity outcomes in infants. J. Nutr. 149, 716–722 (2019).

    Article  PubMed  Google Scholar 

  166. Stinson, L. F. et al. Human milk from atopic mothers has lower levels of short chain fatty acids. Front. Immunol. 11, 1427 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Stinson, L. F. & Geddes, D. T. Microbial metabolites: the next frontier in human milk. Trends Microbiol. 30, 408–410 (2022).

    Article  PubMed  CAS  Google Scholar 

  168. Bantz, S. K., Zhu, Z. & Zheng, T. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. J. Clin. Cell. Immunol. 5, 2 (2014).

    Google Scholar 

  169. Sullivan, P. W. et al. The burden of adult asthma in the United States: evidence from the medical expenditure panel survey. J. Allergy Clin. Immunol. 127, 363–369 (2011).

    Article  PubMed  Google Scholar 

  170. Licona-Limón, P., Kim, L. K., Palm, N. W. & Flavell, R. A. TH2, allergy and group 2 innate lymphoid cells. Nat. Immunol. 14, 536–542 (2013).

    Article  PubMed  Google Scholar 

  171. Liu, D., Tan, Y., Bajinka, O., Wang, L. & Tang, Z. Th17/IL-17 axis regulated by airway microbes get involved in the development of asthma. Curr. Allergy Asthma Rep. 20, 11 (2020).

    Article  PubMed  Google Scholar 

  172. Zhao, Y., Yang, J., Gao, Y. D. & Guo, W. Th17 immunity in patients with allergic asthma. Int. Arch. Allergy Immunol. 151, 297–307 (2010).

    Article  PubMed  CAS  Google Scholar 

  173. Zhang, Z. et al. Association of infant antibiotic exposure and risk of childhood asthma: a meta-analysis. World Allergy Organ. J. 14, 11 (2021).

    Article  Google Scholar 

  174. Donovan, B. M. et al. Dose, timing, and type of infant antibiotic use and the risk of childhood asthma. Clin. Infect. Dis. 70, 1658–1665 (2020).

    Article  PubMed  Google Scholar 

  175. Lee, G. C. et al. Outpatient antibiotic prescribing in the United States: 2000 to 2010. BioMed. Centr Med. 12, 96 (2014).

    Google Scholar 

  176. King, L. M., Bartoces, M., Fleming-Dutra, K. E., Roberts, R. M. & Hicks, L. A. Changes in US outpatient antibiotic prescriptions from 2011-2016. Clin. Infect. Dis. 70, 370–377 (2020).

    PubMed  Google Scholar 

  177. Xue, M. et al. Breastfeeding and risk of childhood asthma: a systematic review and meta-analysis. Eur. Respir. J. Open Res. 7, 4 (2021).

    Google Scholar 

  178. Bloch, A. M., Mimouni, D., Mimouni, M. & Gdalevich, M. Does breastfeeding protect against allergic rhinitis during childhood? A meta-analysis of prospective studies. Acta Paediatr. Int. J. Paediatr. 91, 275–279 (2002).

    Article  Google Scholar 

  179. Azad, M. B. et al. Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices. J. Nutr. 148, 1733–1742 (2018).

    Article  PubMed  Google Scholar 

  180. Lasekan, J. et al. Growth and gastrointestinal tolerance in healthy term infants fed milk-based infant formula supplemented with five human milk oligosaccharides (HMOs): a randomized multicenter trial. Nutrients 14, 2625 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Puccio, G. et al. Effects of infant formula with human milk oligosaccharides on growth and morbidity: a randomized multicenter trial. J. Pediatr. Gastroenterol. Nutr. 64, 624–631 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).

    Article  PubMed  CAS  Google Scholar 

  183. Tan-Lim, C. S. C. & Esteban-Ipac, N. A. R. Probiotics as treatment for food allergies among pediatric patients: a meta-analysis. World Allergy Organ. J. 11, 25 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Tang, R. B., Chang, J. K. & Chen, H. L. Can probiotics be used to treat allergic diseases? J. Chin. Med. Assoc. 78, 154–157 (2015).

    Article  PubMed  Google Scholar 

  185. Kuitunen, M., Kukkonen, K., Juntunen-Backman, K. & Korpela, R. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J. Allergy Clin. Immunol. 123, 335–341 (2009).

    Article  PubMed  Google Scholar 

  186. Colquitt, A. S., Miles, E. A. & Calder, P. C. Do probiotics in pregnancy reduce allergies and asthma in infancy and childhood? A systematic review. Nutrients 14, 1852 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  187. More, D., Shepard, C., More, C. & Mayol-Kreiser, S. The perinatal use of probiotics, prebiotics, and synbiotics for the primary prevention of allergic diseases in children: a systematic review. Hum. Nutr. Metab. 25, 200125 (2021).

    Article  CAS  Google Scholar 

  188. Blümer, N. et al. Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring. Clin. Exp. Allergy 37, 348–357 (2007).

    Article  PubMed  Google Scholar 

  189. Singh, T. P. & Natraj, B. H. Next-generation probiotics: a promising approach towards designing personalized medicine. Crit. Rev. Microbiol. 47, 479–498 (2021).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

B.B.F’s lab is supported by a Canadian Institutes for Health Research (CIHR) Foundation Grant. B.B.F. is also a Canadian Institute for Advanced Research (CIFAR) Senior Fellow. K.D. is supported by the Four Year Fellowship Tuition Award, President’s Academic Excellence Initiative PhD Award and International Tuition Award at the University of British Columbia.

Author information

Authors and Affiliations

Authors

Contributions

K.D. wrote the article; B.B.F. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to B. Brett Finlay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks H. Deshmukh, S. Way and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Germ-free mice

(GF mice). Mice that are kept in sterile conditions and are devoid of microbes, often used to study what happens in the absence of a microbiota.

Hygiene hypothesis

Hypothesis stating that reduced contact with environmental microbes has contributed to the recent rise in immune-mediated diseases.

Isolated lymphoid follicles

Organized centres of lymphoid tissue lining the intestine.

Paneth cells

Cells that line the intestine and modulate the gut microbiota; important producers of antimicrobial peptides.

Polymeric Ig receptor

(PIgR). Receptor responsible for carrying antibodies including IgA across mucosal surfaces for secretion into the lumen; donates a peptide to secreted antibodies and contributes to antibody stability.

Window of opportunity

Period of early life when the immune system is still developing and is susceptible to the influence of microbes and environmental factors, affecting lifelong immunity; often thought to be represented by the first 3 months after birth.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donald, K., Finlay, B.B. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol 23, 735–748 (2023). https://doi.org/10.1038/s41577-023-00874-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00874-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing