Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuromodulation by the immune system: a focus on cytokines

Abstract

Interactions between the immune system and the nervous system have been described mostly in the context of diseases. More recent studies have begun to reveal how certain immune cell-derived soluble effectors, the cytokines, can influence host behaviour even in the absence of infection. In this Review, we contemplate how the immune system shapes nervous system function and how it controls the manifestation of host behaviour. Interactions between these two highly complex systems are discussed here also in the context of evolution, as both may have evolved to maximize an organism’s ability to respond to environmental threats in order to survive. We describe how the immune system relays information to the nervous system and how cytokine signalling occurs in neurons. We also speculate on how the brain may be hardwired to receive and process information from the immune system. Finally, we propose a unified theory depicting a co-evolution of the immune system and host behaviour in response to the evolutionary pressure of pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Initiation of behavioural responses.
Fig. 2: How the brain senses infection.
Fig. 3: Effects of distinct cytokines on different behavioural responses.
Fig. 4: Cytokine signalling to neurons.
Fig. 5: The close evolution between the immune system and the central nervous system.

Similar content being viewed by others

References

  1. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pinho-Ribeiro, F. A., Verri, W. A. & Chiu, I. M. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol. 38, 5–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Baral, P. et al. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia. Nat. Med. 24, 417–426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pinho-Ribeiro, F. A. et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell 173, 1083–1097.e1022 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Diaz-Salazar, C. et al. Cell-intrinsic adrenergic signaling controls the adaptive NK cell response to viral infection. J. Exp. Med. 217, e20190549 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wieduwild, E. et al. β2-adrenergic signals downregulate the innate immune response and reduce host resistance to viral infection. J. Exp. Med. 217, e20190554 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takenaka, M. C., Guereschi, M. G. & Basso, A. S. Neuroimmune interactions: dendritic cell modulation by the sympathetic nervous system. Semin. Immunopathol. 39, 165–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277–281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klose, C. S. N. et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549, 282–286 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Diogenes, A., Ferraz, C. C. R., Akopian, A. N., Henry, M. A. & Hargreaves, K. M. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J. Dent. Res. 90, 759–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, T., Gao, Y.-J. & Ji, R.-R. Emerging role of Toll-like receptors in the control of pain and itch. Neurosci. Bull. 28, 131–144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, T. & Ma, C. Peripheral nociceptors as immune sensors in the development of pain and itch. Adv. Exp. Med. Biol. 904, 77–85 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Oetjen, L. K. et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell 171, 217–228.e213 (2017). This articles provides evidence for how type 2 cytokines, IL-4 and IL-13, can activate sensory neurons to further chronic itch.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Steinberg, B. E. et al. Cytokine-specific neurograms in the sensory vagus nerve. Bioelectron. Med. 3, 7–17 (2016). This article demonstrates how the peripheral vagus nerve can be directly activated by pro-inflammatory cytokines.

    Article  PubMed  Google Scholar 

  17. Zhang, X.-C., Kainz, V., Burstein, R. & Levy, D. Tumor necrosis factor-α induces sensitization of meningeal nociceptors mediated via local COX and p38 MAP kinase actions. Pain 152, 140–149 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Kioussis, D. & Pachnis, V. Immune and nervous systems: more than just a superficial similarity? Immunity 31, 705–710 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Bergner, R. M. What is behavior? And so what? New Ideas Psychol. 29, 147–155 (2011).

    Article  Google Scholar 

  20. Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080 (2010). This is one of the first studies demonstrating how T cell-derived cytokines, particularly IL-4, in physiological conditions can influence learning and the acquisition of spatial memory in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Filiano, A. J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016). This article implicates direct neuronal signalling of T cell-derived IFNγ in regulating an aspect of social behaviour in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alves de Lima, K. et al. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat. Immunol. https://doi.org/10.1038/s41590-020-0776-4 (2020). This article illustrates how meningeal γδ T cells produce IL-17A at homeostasis to signal to neurons in the prefrontal cortex and maintain basal anxiety levels in mice.

    Article  PubMed  Google Scholar 

  25. Alves de Lima, K., Rustenhoven, J. & Kipnis, J. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu. Rev. Immunol. 38, 597–620 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Ribeiro, M. et al. Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. 4, eaay5199 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Swanson, L. W. Cerebral hemisphere regulation of motivated behavior. Brain Res. 886, 113–164 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Kupari, J., Häring, M., Agirre, E., Castelo-Branco, G. & Ernfors, P. An atlas of vagal sensory neurons and their molecular specialization. Cell Rep. 27, 2508–2523.e2504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chiu, I. M. et al. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity. eLife 3, e04660 (2014).

    Article  PubMed Central  Google Scholar 

  30. Fleischer, J., Breer, H. & Strotmann, J. Mammalian olfactory receptors. Front. Cell Neurosci. 3, 9 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Roper, S. D. & Chaudhari, N. Taste buds: cells, signals and synapses. Nat. Rev. Neurosci. 18, 485–497 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cisek, P. & Kalaska, J. F. Neural mechanisms for interacting with a world full of action choices. Annu. Rev. Neurosci. 33, 269–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Peng, Y. et al. Sweet and bitter taste in the brain of awake behaving animals. Nature 527, 512–515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tinbergen, N. The Study of Instinct (Clarendon Press/Oxford University Press, 1951).

  36. Sokolowski, K. & Corbin, J. G. Wired for behaviors: from development to function of innate limbic system circuitry. Front. Mol. Neurosci. 5, 55 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ball, G. F. & Balthazart, J. How useful is the appetitive and consummatory distinction for our understanding of the neuroendocrine control of sexual behavior? Horm. Behav. 53, 307–311 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Inglis, I. R., Langton, S., Forkman, B. & Lazarus, J. An information primacy model of exploratory and foraging behaviour. Anim. Behav. 62, 543–557 (2001).

    Article  Google Scholar 

  39. Li, Y. et al. Neuronal representation of social information in the medial amygdala of awake behaving mice. Cell 171, 1176–1190.e1117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Remedios, R. et al. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex. Nature 550, 388–392 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tierney, A. J. The evolution of learned and innate behavior: contributions from genetics and neurobiology to a theory of behavioral evolution. Anim. Learn. Behav. 14, 339–348 (1986).

    Article  Google Scholar 

  42. Allen, W. E. et al. Global representations of goal-directed behavior in distinct cell types of mouse Neocortex. Neuron 94, 891–907.e896 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Riceberg, J. S. & Shapiro, M. L. Reward stability determines the contribution of orbitofrontal cortex to adaptive behavior. J. Neurosci. 32, 16402–16409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sutton, R. S. & Barto, A. G. Reinforcement learning: an introduction. IEEE Trans. Neural Netw. 9, 1054–1054 (1998).

    Article  Google Scholar 

  45. Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, P. & Hong, W. Neural circuit mechanisms of social behavior. Neuron 98, 16–30 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. LeDoux, J. & Daw, N. D. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat. Rev. Neurosci. 19, 269–282 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, J., Zhang, X., Muralidhar, S., LeBlanc, S. A. & Tonegawa, S. Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron 93, 1464–1479.e1465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cai, H., Haubensak, W., Anthony, T. E. & Anderson, D. J. Central amygdala PKC-δ+ neurons mediate the influence of multiple anorexigenic signals. Nat. Neurosci. 17, 1240–1248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kohl, J. et al. Functional circuit architecture underlying parental behaviour. Nature 556, 326–331 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beier, K. T. et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 162, 622–634 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schwarz, L. A. et al. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature 524, 88–92 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marder, E. Neuromodulation of neuronal circuits: back to the future. Neuron 76, 1–11 (2012). This article provides a detailed overview of the principles of neuromodulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McCormick, D. A. & Nusbaum, M. P. Editorial overview: neuromodulation: tuning the properties of neurons, networks and behavior. Curr. Opin. Neurobiol. 29, iv–vii (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nadim, F. & Bucher, D. Neuromodulation of neurons and synapses. Curr. Opin. Neurobiol. 29, 48–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Katz, P. Beyond Neurotransmissionneuromodulation and Its Importance for Information Processing (Oxford University Press, 1999).

  57. Katz, P. S. Neural mechanisms underlying the evolvability of behaviour. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2086–2099 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Katz, P. S. & Lillvis, J. L. Reconciling the deep homology of neuromodulation with the evolution of behavior. Curr. Opin. Neurobiol. 29, 39–47 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Bucher, D. & Marder, E. SnapShot: neuromodulation. Cell 155, 482–482.e481 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Bargmann, C. I. Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 34, 458–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Janeway, C. A. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  62. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Kono, H. & Rock, K. L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Janeway, C. A. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Cooper, M. D. & Alder, M. N. The evolution of adaptive immune systems. Cell 124, 815–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Boehm, T. & Swann, J. B. Origin and evolution of adaptive immunity. Annu. Rev. Anim. Biosci. 2, 259–283 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Flajnik, M. F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet. 11, 47–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, J.-M. & An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 45, 27–37 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Akdis, M. et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 138, 984–1010 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. DeVries, M. E. et al. Defining the origins and evolution of the chemokine/chemokine receptor system. J. Immunol. 176, 401–415 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Ozaki, K. & Leonard, W. J. Cytokine and cytokine receptor pleiotropy and redundancy. J. Biol. Chem. 277, 29355–29358 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Becher, B., Spath, S. & Goverman, J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 17, 49–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Kipnis, J. Multifaceted interactions between adaptive immunity and the central nervous system. Science 353, 766–771 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kipnis, J. Immune system: the “seventh sense”. J. Exp. Med. 215, 397–398 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McKim, D. B. et al. Microglial recruitment of IL-1β-producing monocytes to brain endothelium causes stress-induced anxiety. Mol. Psychiatry 23, 1421–1431 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Dantzer, R., Konsman, J. P., Bluthé, R. M. & Kelley, K. W. Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton. Neurosci. 85, 60–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Baral, P., Udit, S. & Chiu, I. M. Pain and immunity: implications for host defence. Nat. Rev. Immunol. 19, 433–447 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Berthoud, H. R. & Neuhuber, W. L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85, 1–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Bonaz, B., Sinniger, V. & Pellissier, S. The vagus nerve in the neuro-immune axis: implications in the pathology of the gastrointestinal tract. Front. Immunol. 8, 1452 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. von Banchet, G. S., Kiehl, M. & Schaible, H.-G. Acute and long-term effects of IL-6 on cultured dorsal root ganglion neurones from adult rat. J. Neurochem. 94, 238–248 (2005).

    Article  CAS  Google Scholar 

  82. Jin, X. & Gereau, R. W. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J. Neurosci. 26, 246–255 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shen, K.-F. et al. Interleukin-10 down-regulates voltage gated sodium channels in rat dorsal root ganglion neurons. Exp. Neurol. 247, 466–475 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Stemkowski, P. L., Noh, M.-C., Chen, Y. & Smith, P. A. Increased excitability of medium-sized dorsal root ganglion neurons by prolonged interleukin-1β exposure is K+ channel dependent and reversible. J. Physiol. 593, 3739–3755 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chiu, I. M. et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501, 52–57 (2013). This article describes how bacterial products directly activate nociceptor sensory neurons to influence pain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Da Mesquita, S., Fu, Z. & Kipnis, J. The meningeal lymphatic system: a new player in neurophysiology. Neuron 100, 375–388 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wrona, D. Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J. Neuroimmunol. 172, 38–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Blatteis, C. M. The afferent signalling of fever. J. Physiol. 526, 470 (2000).

    CAS  PubMed  Google Scholar 

  89. Dantzer, R. Cytokine, sickness behavior, and depression. Immunol. Allergy Clin. North. Am. 29, 247–264 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Vichaya, E. G. et al. Microglia depletion fails to abrogate inflammation-induced sickness in mice and rats. J. Neuroinflammation 17, 172 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Blank, T. et al. Brain endothelial- and epithelial-specific interferon receptor chain 1 drives virus-induced sickness behavior and cognitive impairment. Immunity 44, 901–912 (2016). This article illustrates how type I interferons induced on viral infection can signal to brain endothelial and epithelial cells to inhibit hippocampal plasticity and impair cognition.

    Article  CAS  PubMed  Google Scholar 

  92. Van Dam, A. M., Brouns, M., Man-A-Hing, W. & Berkenbosch, F. Immunocytochemical detection of prostaglandin E2 in microvasculature and in neurons of rat brain after administration of bacterial endotoxin. Brain Res. 613, 331–336 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Blomqvist, A. & Engblom, D. Neural mechanisms of inflammation-induced fever. Neuroscientist 24, 381–399 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ching, S. et al. Endothelial-specific knockdown of interleukin-1 (IL-1) type 1 receptor differentially alters CNS responses to IL-1 depending on its route of administration. J. Neurosci. 27, 10476–10486 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, X. et al. Cell-type-specific interleukin 1 receptor 1 signaling in the brain regulates distinct neuroimmune activities. Immunity 50, 317–333.e316 (2019). This article demonstrates how endothelial-specific IL-1R1 is necessary and sufficient to promote sickness behaviour in mice, and how expression of IL-1R1 in other cells can contribute to other aspects of CNS inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Duan, L. et al. PDGFRβ cells rapidly relay inflammatory signal from the circulatory system to neurons via chemokine CCL2. Neuron 100, 183–200.e188 (2018). This article shows how blood vessel-associated mural cells function as intermediaries conveying systemic inflammation information to CNS neurons through chemokine signalling.

    Article  CAS  PubMed  Google Scholar 

  97. Aubert, A., Vega, C., Dantzer, R. & Goodall, G. Pyrogens specifically disrupt the acquisition of a task involving cognitive processing in the rat. Brain Behav. Immun. 9, 129–148 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Kent, S., Bluthé, R. M., Kelley, K. W. & Dantzer, R. Sickness behavior as a new target for drug development. Trends Pharmacol. Sci. 13, 24–28 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Konsman, J. P., Parnet, P. & Dantzer, R. Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci. 25, 154–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Hart, B. L. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).

    Article  CAS  PubMed  Google Scholar 

  101. Erickson, M. A. & Banks, W. A. Cytokine and chemokine responses in serum and brain after single and repeated injections of lipopolysaccharide: multiplex quantification with path analysis. Brain Behav. Immun. 25, 1637–1648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Garlanda, C., Dinarello, C. A. & Mantovani, A. The interleukin-1 family: back to the future. Immunity 39, 1003–1018 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Krueger, J. M., Walter, J., Dinarello, C. A., Wolff, S. M. & Chedid, L. Sleep-promoting effects of endogenous pyrogen (interleukin-1). Am. J. Physiol. 246, R994–R999 (1984). This article provides one of the first examples of how IL-1β can alter sleep, which has since been associated with sickness behaviour.

    CAS  PubMed  Google Scholar 

  104. Anforth, H. R. et al. Biological activity and brain actions of recombinant rat interleukin-1alpha and interleukin-1beta. Eur. Cytokine Netw. 9, 279–288 (1998).

    CAS  PubMed  Google Scholar 

  105. Cibelli, M. et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann. Neurol. 68, 360–368 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Skelly, D. T. et al. Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms. Mol. Psychiatry 24, 1533–1548 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Fang, J., Wang, Y. & Krueger, J. M. Effects of interleukin-1 beta on sleep are mediated by the type I receptor. Am. J. Physiol. 274, R655–R660 (1998).

    CAS  PubMed  Google Scholar 

  108. Takahashi, S., Fang, J., Kapás, L., Wang, Y. & Krueger, J. M. Inhibition of brain interleukin-1 attenuates sleep rebound after sleep deprivation in rabbits. Am. J. Physiol. 273, R677–R682 (1997).

    CAS  PubMed  Google Scholar 

  109. Opp, M. R. & Krueger, J. M. Anti-interleukin-1 beta reduces sleep and sleep rebound after sleep deprivation in rats. Am. J. Physiol. 266, R688–R695 (1994).

    CAS  PubMed  Google Scholar 

  110. Cremona, S., Goujon, E., Kelley, K. W., Dantzer, R. & Parnet, P. Brain type I but not type II IL-1 receptors mediate the effects of IL-1 beta on behavior in mice. Am. J. Physiol. 274, R735–R740 (1998).

    CAS  PubMed  Google Scholar 

  111. Cunningham, E. T. et al. In situ histochemical localization of type I interleukin-1 receptor messenger RNA in the central nervous system, pituitary, and adrenal gland of the mouse. J. Neurosci. 12, 1101–1114 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Deyerle, K. L., Sims, J. E., Dower, S. K. & Bothwell, M. A. Pattern of IL-1 receptor gene expression suggests role in noninflammatory processes. J. Immunol. 149, 1657–1665 (1992).

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bluthé, R. M. et al. Role of interleukin-1beta and tumour necrosis factor-alpha in lipopolysaccharide-induced sickness behaviour: a study with interleukin-1 type I receptor-deficient mice. Eur. J. Neurosci. 12, 4447–4456 (2000).

    PubMed  Google Scholar 

  115. Dantzer, R. Cytokine-induced sickness behavior: where do we stand? Brain Behav. Immun. 15, 7–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Fang, J., Wang, Y. & Krueger, J. M. Mice lacking the TNF 55 kDa receptor fail to sleep more after TNFalpha treatment. J. Neurosci. 17, 5949–5955 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Krueger, J. M. et al. Sleep. A physiologic role for IL-1 beta and TNF-alpha. Ann. N. Y. Acad. Sci. 856, 148–159 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Vitkovic, L., Bockaert, J. & Jacque, C. “Inflammatory” cytokines: neuromodulators in normal brain? J. Neurochem. 74, 457–471 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Lenczowski, M. J. et al. Central administration of rat IL-6 induces HPA activation and fever but not sickness behavior in rats. Am. J. Physiol. 276, R652–R658 (1999).

    CAS  PubMed  Google Scholar 

  120. Bluthé, R. M., Michaud, B., Poli, V. & Dantzer, R. Role of IL-6 in cytokine-induced sickness behavior: a study with IL-6 deficient mice. Physiol. Behav. 70, 367–373 (2000).

    Article  PubMed  Google Scholar 

  121. Chai, Z., Gatti, S., Toniatti, C., Poli, V. & Bartfai, T. Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1 beta: a study on IL-6-deficient mice. J. Exp. Med. 183, 311–316 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Ruzek, M. C., Miller, A. H., Opal, S. M., Pearce, B. D. & Biron, C. A. Characterization of early cytokine responses and an interleukin (IL)-6-dependent pathway of endogenous glucocorticoid induction during murine cytomegalovirus infection. J. Exp. Med. 185, 1185–1192 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schöbitz, B., Voorhuis, D. A. & De Kloet, E. R. Localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Neurosci. Lett. 136, 189–192 (1992).

    Article  PubMed  Google Scholar 

  124. Schöbitz, B., de Kloet, E. R., Sutanto, W. & Holsboer, F. Cellular localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Eur. J. Neurosci. 5, 1426–1435 (1993).

    Article  PubMed  Google Scholar 

  125. Harden, L. M., du Plessis, I., Poole, S. & Laburn, H. P. Interleukin (IL)-6 and IL-1 beta act synergistically within the brain to induce sickness behavior and fever in rats. Brain Behav. Immun. 22, 838–849 (2008). This article illustrates how two inflammatory cytokines, IL-6 and IL-1β, act in synergy to promote different aspects of sickness behaviour in rodents.

    Article  CAS  PubMed  Google Scholar 

  126. Renault, P. F. et al. Psychiatric complications of long-term interferon alfa therapy. Arch. Intern. Med. 147, 1577–1580 (1987).

    Article  CAS  PubMed  Google Scholar 

  127. Capuron, L. et al. Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology 26, 643–652 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Capuron, L. & Miller, A. H. Cytokines and psychopathology: lessons from interferon-alpha. Biol. Psychiatry 56, 819–824 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Mostafavi, S. et al. Type I interferon signaling genes in recurrent major depression: increased expression detected by whole-blood RNA sequencing. Mol. Psychiatry 19, 1267–1274 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Miller, A. H. Norman Cousins Lecture. Mechanisms of cytokine-induced behavioral changes: psychoneuroimmunology at the translational interface. Brain Behav. Immun. 23, 149–158 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Capuron, L. et al. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol. Psychiatry 7, 468–473 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Steiner, J. et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J. Neuroinflammation 8, 94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Capuron, L. et al. Association of exaggerated HPA axis response to the initial injection of interferon-alpha with development of depression during interferon-alpha therapy. Am. J. Psychiatry 160, 1342–1345 (2003).

    Article  PubMed  Google Scholar 

  134. Juengling, F. D. et al. Prefrontal cortical hypometabolism during low-dose interferon alpha treatment. Psychopharmacology 152, 383–389 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Capuron, L. et al. Anterior cingulate activation and error processing during interferon-alpha treatment. Biol. Psychiatry 58, 190–196 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Raison, C. L., Capuron, L. & Miller, A. H. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 27, 24–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Plata-Salamán, C. R. Cytokine-induced anorexia. Behavioral, cellular, and molecular mechanisms. Ann. N. Y. Acad. Sci. 856, 160–170 (1998).

    Article  PubMed  Google Scholar 

  138. Prieto, G. A. & Cotman, C. W. Cytokines and cytokine networks target neurons to modulate long-term potentiation. Cytokine Growth Factor Rev. 34, 27–33 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Donzis, E. J. & Tronson, N. C. Modulation of learning and memory by cytokines: signaling mechanisms and long term consequences. Neurobiol. Learn. Mem. 115, 68–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Yirmiya, R. & Goshen, I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 25, 181–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Bellinger, F. P., Madamba, S. & Siggins, G. R. Interleukin 1 beta inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain Res. 628, 227–234 (1993).

    Article  CAS  PubMed  Google Scholar 

  142. Tong, L. et al. Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. J. Neurosci. 32, 17714–17724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Vereker, E., O’Donnell, E. & Lynch, M. A. The inhibitory effect of interleukin-1beta on long-term potentiation is coupled with increased activity of stress-activated protein kinases. J. Neurosci. 20, 6811–6819 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Farrar, W. L., Kilian, P. L., Ruff, M. R., Hill, J. M. & Pert, C. B. Visualization and characterization of interleukin 1 receptors in brain. J. Immunol. 139, 459–463 (1987).

    Article  CAS  PubMed  Google Scholar 

  145. Smith, D. E. et al. A central nervous system-restricted isoform of the interleukin-1 receptor accessory protein modulates neuronal responses to interleukin-1. Immunity 30, 817–831 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Imamura, Y. et al. Interleukin-1β causes long-term potentiation deficiency in a mouse model of septic encephalopathy. Neuroscience 187, 63–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Kitazawa, M. et al. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J. Immunol. 187, 6539–6549 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Habbas, S. et al. Neuroinflammatory tnfα impairs memory via astrocyte signaling. Cell 163, 1730–1741 (2015). This article illustrates how TNF produced during neuroinflammation can signal to astrocytes, which in turn alters synaptic function and learning.

    Article  CAS  PubMed  Google Scholar 

  149. Garré, J. M., Silva, H. M., Lafaille, J. J. & Yang, G. CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-α. Nat. Med. 23, 714–722 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Patterson, P. H. Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr. Opin. Neurobiol. 12, 115–118 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Brown, A. S. et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch. Gen. Psychiatry 61, 774–780 (2004).

    Article  PubMed  Google Scholar 

  152. Brown, A. S. Prenatal infection as a risk factor for schizophrenia. Schizophr. Bull. 32, 200–202 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Knuesel, I. et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 10, 643–660 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016). This article demonstrates how injection of IL-17A into pregnant mice or into the fetal brain can lead to anatomical brain changes and behavioural abnormalities in adult offspring.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shin Yim, Y. et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549, 482–487 (2017). This article shows how ablation of IL-17RA in neural cells of adult offspring exposed to maternal immune activation can rescue the associated behavioural deficits.

    Article  PubMed  CAS  Google Scholar 

  156. Lammert, C. R. et al. Cutting edge: critical roles for microbiota-mediated regulation of the immune system in a prenatal immune activation model of autism. J. Immunol. 201, 845–850 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Smith, S. E. P., Li, J., Garbett, K., Mirnics, K. & Patterson, P. H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 27, 10695–10702 (2007). This seminal article demonstrates how injection of IL-6 into pregnant mice can result in lasting autism-like or schizophrenia-related behavioural changes in the offspring.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Swerdlow, N. R., Braff, D. L., Hartston, H., Perry, W. & Geyer, M. A. Latent inhibition in schizophrenia. Schizophr. Res. 20, 91–103 (1996).

    Article  CAS  PubMed  Google Scholar 

  160. Wynn, J. K. et al. Prepulse facilitation and prepulse inhibition in schizophrenia patients and their unaffected siblings. Biol. Psychiatry 55, 518–523 (2004).

    Article  PubMed  Google Scholar 

  161. Reed, M. D. et al. IL-17a promotes sociability in mouse models of neurodevelopmental disorders. Nature 577, 249–253 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Cervero, F. Sensory innervation of the viscera: peripheral basis of visceral pain. Physiol. Rev. 74, 95–138 (1994).

    Article  CAS  PubMed  Google Scholar 

  163. Binshtok, A. M. et al. Nociceptors are interleukin-1beta sensors. J. Neurosci. 28, 14062–14073 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Richter, F. et al. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum. 64, 4125–4134 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Thakur, M. et al. Defining the nociceptor transcriptome. Front. Mol. Neurosci. 7, 87 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Hess, A. et al. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc. Natl Acad. Sci. USA 108, 3731–3736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cevikbas, F. et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: Involvement of TRPV1 and TRPA1. J. Allergy Clin. Immunol. 133, 448–460 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Xu, J. et al. The cytokine TGF-β induces interleukin-31 expression from dermal dendritic cells to activate sensory neurons and stimulate wound itching. Immunity https://doi.org/10.1016/j.immuni.2020.06.023 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Wilson, S. R. et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155, 285–295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cook, A. D., Christensen, A. D., Tewari, D., McMahon, S. B. & Hamilton, J. A. Immune cytokines and their receptors in inflammatory pain. Trends Immunol. 39, 240–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Avital, A. et al. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus 13, 826–834 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Hryniewicz, A., Bialuk, I., Kamiński, K. A. & Winnicka, M. M. Impairment of recognition memory in interleukin-6 knock-out mice. Eur. J. Pharmacol. 577, 219–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Naude, P. J. W. et al. Analysis of cognition, motor performance and anxiety in young and aged tumor necrosis factor alpha receptor 1 and 2 deficient mice. Behav. Brain Res. 258, 43–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Stellwagen, D. & Malenka, R. C. Synaptic scaling mediated by glial TNF-alpha. Nature 440, 1054–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Beattie, E. C. et al. Control of synaptic strength by glial TNFalpha. Science 295, 2282–2285 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Ross, F. M., Allan, S. M., Rothwell, N. J. & Verkhratsky, A. A dual role for interleukin-1 in LTP in mouse hippocampal slices. J. Neuroimmunol. 144, 61–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  177. Goshen, I. et al. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 32, 1106–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Kipnis, J., Cohen, H., Cardon, M., Ziv, Y. & Schwartz, M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc. Natl Acad. Sci. USA 101, 8180–8185 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Brynskikh, A., Warren, T., Zhu, J. & Kipnis, J. Adaptive immunity affects learning behavior in mice. Brain Behav. Immun. 22, 861–869 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Rattazzi, L. et al. CD4+ but not CD8+ T cells revert the impaired emotional behavior of immunocompromised RAG-1-deficient mice. Transl Psychiatry 3, e280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Quinnies, K. M., Cox, K. H. & Rissman, E. F. Immune deficiency influences juvenile social behavior and maternal behavior. Behav. Neurosci. 129, 331–338 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Cohen, H. et al. Maladaptation to mental stress mitigated by the adaptive immune system via depletion of naturally occurring regulatory CD4+CD25+ cells. J. Neurobiol. 66, 552–563 (2006).

    Article  PubMed  Google Scholar 

  183. Filiano, A. J., Gadani, S. P. & Kipnis, J. How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat. Rev. Neurosci. 18, 375–384 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Brombacher, T. M. et al. IL-13-mediated regulation of learning and memory. J. Immunol. 198, 2681–2688 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Vogelaar, C. F. et al. Fast direct neuronal signaling via the IL-4 receptor as therapeutic target in neuroinflammation. Sci. Transl Med. 10, eaao2304 (2018).

    Article  PubMed  CAS  Google Scholar 

  186. Zhu, P. J. et al. Suppression of PKR promotes network excitability and enhanced cognition by interferon-γ-mediated disinhibition. Cell 147, 1384–1396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lebwohl, M. et al. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N. Engl. J. Med. 373, 1318–1328 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Chiricozzi, A., Romanelli, M., Saraceno, R. & Torres, T. No meaningful association between suicidal behavior and the use of IL-17A-neutralizing or IL-17RA-blocking agents. Expert Opin. Drug Saf. 15, 1653–1659 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Kabitzke, P. A., Barr, G. A., Chan, T., Shair, H. N. & Wiedenmayer, C. P. Medial prefrontal cortex processes threatening stimuli in juvenile rats. Neuropsychopharmacology 39, 1924–1932 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Fernández-Guasti, A. & López-Rubalcava, C. Modification of the anxiolytic action of 5-HT1A compounds by GABA–benzodiazepine agents in rats. Pharmacol. Biochem. Behav. 60, 27–32 (1998).

    Article  PubMed  Google Scholar 

  191. Mesquita, A. R. et al. IL-10 modulates depressive-like behavior. J. Psychiatr. Res. 43, 89–97 (2008).

    Article  PubMed  Google Scholar 

  192. Zalcman, S. S. & Siegel, A. The neurobiology of aggression and rage: role of cytokines. Brain Behav. Immun. 20, 507–514 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Jaehne, E. J. & Baune, B. T. Effects of chemokine receptor signalling on cognition-like, emotion-like and sociability behaviours of CCR6 and CCR7 knockout mice. Behav. Brain Res. 261, 31–39 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Milenkovic, V. M., Stanton, E. H., Nothdurfter, C., Rupprecht, R. & Wetzel, C. H. The role of chemokines in the pathophysiology of major depressive disorder. Int. J. Mol. Sci. 20, 2283 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  195. de Vries, H. E. et al. Effect of endotoxin on permeability of bovine cerebral endothelial cell layers in vitro. J. Pharmacol. Exp. Ther. 277, 1418–1423 (1996).

    PubMed  Google Scholar 

  196. Tunkel, A. R., Rosser, S. W., Hansen, E. J. & Scheld, W. M. Blood-brain barrier alterations in bacterial meningitis: development of an in vitro model and observations on the effects of lipopolysaccharide. In Vitro Cell Dev. Biol. 27A, 113–120 (1991).

    Article  CAS  PubMed  Google Scholar 

  197. Korin, B. et al. High-dimensional, single-cell characterization of the brain’s immune compartment. Nat. Neurosci. 20, 1300–1309 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395.e386 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    Article  PubMed  CAS  Google Scholar 

  200. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Norris, G. T. & Kipnis, J. Immune cells and CNS physiology: microglia and beyond. J Exp. Med. 216, 60–70 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl Med. 4, 147ra111 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Yang, N. J. & Chiu, I. M. Bacterial signaling to the nervous system through toxins and metabolites. J. Mol. Biol. 429, 587–605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Mukai, K., Tsai, M., Saito, H. & Galli, S. J. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 282, 121–150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sayed, B. A., Christy, A. L., Walker, M. E. & Brown, M. A. Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J. Immunol. 184, 6891–6900 (2010).

    Article  CAS  PubMed  Google Scholar 

  207. Nagasawa, M., Spits, H. & Ros, X. R. Innate lymphoid cells (ilcs): cytokine hubs regulating immunity and tissue homeostasis. Cold Spring Harb. Perspect. Biol. 10, a030304 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Brocker, C., Thompson, D., Matsumoto, A., Nebert, D. W. & Vasiliou, V. Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum. Genomics 5, 30–55 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Boulay, J.-L., O’Shea, J. J. & Paul, W. E. Molecular phylogeny within type I cytokines and their cognate receptors. Immunity 19, 159–163 (2003).

    Article  CAS  PubMed  Google Scholar 

  210. Secombes, C. J., Wang, T. & Bird, S. in The Evolution of the Immune System 87–150 (Elsevier, 2016).

  211. Kirsten, K., Soares, S. M., Koakoski, G., Carlos Kreutz, L. & Barcellos, L. J. G. Characterization of sickness behavior in zebrafish. Brain Behav. Immun. 73, 596–602 (2018).

    Article  CAS  PubMed  Google Scholar 

  212. Kirsten, K., Fior, D., Kreutz, L. C. & Barcellos, L. J. G. First description of behavior and immune system relationship in fish. Sci. Rep. 8, 846 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Chen, C. et al. IL-17 is a neuromodulator of Caenorhabditis elegans sensory responses. Nature 542, 43–48 (2017). This article describes an orthologue of IL-17A in C. elegans and how its direct signalling to peripheral neurons can modify the response to oxygen input and subsequently aggregation behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Masuzzo, A., Montanari, M., Kurz, L. & Royet, J. How bacteria impact host nervous system and behaviors: lessons from flies and worms. Trends Neurosci. 43, 998–1010 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Arbouzova, N. I. & Zeidler, M. P. JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. Development 133, 2605–2616 (2006).

    Article  CAS  PubMed  Google Scholar 

  216. Copf, T., Goguel, V., Lampin-Saint-Amaux, A., Scaplehorn, N. & Preat, T. Cytokine signaling through the JAK/STAT pathway is required for long-term memory in Drosophila. Proc. Natl Acad. Sci. USA 108, 8059–8064 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Masuzzo, A. et al. Peptidoglycan-dependent NF-κB activation in a small subset of brain octopaminergic neurons controls female oviposition. eLife 8, e50559 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Barajas-Azpeleta, R. et al. Antimicrobial peptides modulate long-term memory. PLoS Genet. 14, e1007440 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Toda, H., Williams, J. A., Gulledge, M. & Sehgal, A. A sleep-inducing gene, nemuri, links sleep and immune function in Drosophila. Science 363, 509–515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e1022 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e1016 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Deverman, B. E. & Patterson, P. H. Cytokines and CNS development. Neuron 64, 61–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  223. Altan-Bonnet, G. & Mukherjee, R. Cytokine-mediated communication: a quantitative appraisal of immune complexity. Nat. Rev. Immunol. 19, 205–217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Dunkelberger, J. R. & Song, W.-C. Complement and its role in innate and adaptive immune responses. Cell Res. 20, 34–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  225. Stephan, A. H., Barres, B. A. & Stevens, B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35, 369–389 (2012).

    Article  CAS  PubMed  Google Scholar 

  226. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. McDevitt, H. O. Discovering the role of the major histocompatibility complex in the immune response. Annu. Rev. Immunol. 18, 1–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  228. Shatz, C. J. MHC class I: an unexpected role in neuronal plasticity. Neuron 64, 40–45 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ek, M., Kurosawa, M., Lundeberg, T. & Ericsson, A. Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. J. Neurosci. 18, 9471–9479 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Goehler, L. E. et al. Interleukin-1beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J. Neurosci. 19, 2799–2806 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Pavlov, V. A., Chavan, S. S. & Tracey, K. J. Molecular and functional neuroscience in immunity. Annu. Rev. Immunol. 36, 783–812 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Litman, G. W., Rast, J. P. & Fugmann, S. D. The origins of vertebrate adaptive immunity. Nat. Rev. Immunol. 10, 543–553 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Thompson, C. B. New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3, 531–539 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Smith for editing the manuscript, A. Ampagliazzo for assistance with the figures and M. Lemieux for helping with the discussion of Fig. 4. This work was supported by grants from the US National Institutes of Health (MH108156, AT010416 and AG034113) to J.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Kipnis.

Ethics declarations

Competing interests

J.K. is a member of scientific advisory group for Puretech Health. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks R. Medzhitov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Autonomic

Autonomic behaviours are generally characterized as reflexive or unconscious behavioural responses to stimuli.

Proprioception

The perception of movement, position and force of limbs. Fast-conducting Aα fibres receive and transmit proprioceptive signals.

Interoception

The sensations or afferents that arise from visceral organs such as the gastrointestinal, urinary, circulatory or respiratory systems.

Neurotransmitters

Small molecules released from chemical synapses upon depolarization or in response to an increase in intracellular calcium concentrations in neurons. They are stored in small synaptic vesicles in the presynaptic terminal along with the enzymes crucial for its synthesis. They bind to receptors in the postsynaptic cell to influence gene expression and resting potential.

Neuropeptides

Small proteins produced with neurotransmitters in the presynaptic neuron but that are located in different cell compartments. They are present in larger granular vesicles and are released in response to specific stimuli. Their effect is of slow onset and longer lasting compared with neurotransmitters, and they act on G-protein-coupled receptors on the postsynaptic cell.

Dorsal root ganglia

A group of cell bodies or somas of sensory afferent fibres located along the spine. They carry information from the periphery to the central nervous system.

Synaptic transmission

The process by which neurons communicate; it can occur in two ways. Chemical transmission occurs via the release of neurotransmitters from the presynaptic terminal on depolarization to the postsynaptic cell. Electrical transmission, on the other hand, is bidirectional and occurs through clusters of gap junctions between adjacent cells. The gap junction channels allow the passage of electrical currents and small molecules.

Long-term potentiation

(LTP). The strengthening of synaptic connections between neurons that occurs after repeated high-frequency electrical stimulation.

Hypothalamic–pituitary–adrenal (HPA) axis

The major anatomical structures responsible for regulating stress responses. The HPA axis results in the release of cortisol, which promotes vascular activity, reduces immune responses, restricts inflammation and maximizes resources to protect the organism from damaging effects of stress.

Synaptic scaling

The process of calibrating the neuronal synapses to maintain stable or homeostatic firing rates.

Morris water maze

Used to test the hippocampal-dependent learning and memory of rodents. It comprises two parts: spatial acquisition and reversal. In spatial acquisition, the animal is allowed to navigate a swimming arena with opaque water where a hidden platform is located. It must use distal, spatial cues to find the hidden platform. The animals are tested daily after being placed in random start locations. The time it takes for the animal to find the platform is then recorded across the testing days. In reversal, the hidden platform is relocated to the opposite quadrant, and the animal’s ability to find the platform is tested.

Inhibitory neurons

Typically release inhibitory neurotransmitters such as GABA, which leads to the hyperpolarization of the postsynaptic cell.

Three-chamber sociability assay

Tests the sociability of rodents. The test animal is placed in a three-chamber box, and, because rodents are typically social animals, they will display preference for a novel mouse compared with a novel object. The time spent in each chamber either with the novel mouse or the novel object is then recorded.

Dural meninges

The outermost layer of the meninges, which is a membranous structure that lines the skull and surrounds the central nervous system. Lymphatic vessels that drain the cerebrospinal fluid are located in the dural meninges.

Elevated plus maze

A behavioural task that assesses anxiety-like behaviour in rodents. It uses a plus-shaped elevated apparatus with two open arms and two closed arms. Rodents typically show a tendency for dark, enclosed spaces as they hide from predators, and they have an unconditioned fear of heights and open spaces. Increased time spent on the open arms suggests a reduction in anxiety-like behaviour.

Open field test

Measures the activity and exploratory behaviour of rodents. It can also be used to test for anxiety-related behaviour. The typical behaviour of rodents is to spend more time in close proximity to the walls compared with the open area. Increased time spent in the open area indicates less anxiety-like behaviour.

Excitatory glutamatergic neurons

Release glutamate, an excitatory neurotransmitter, to the postsynaptic cell, which causes its depolarization.

Y-maze test

Used to assess the natural predisposition of rodents to explore novel environments. The test animal is allowed to freely move across the three arms of the maze, and the number of new arm entries is measured as the animal does not prefer to enter the arm that has been visited recently.

Glymphatic system

The astrocyte-dependent system of movement of cerebrospinal fluid and interstitial fluid across the brain parenchyma to clear metabolic waste.

Subarachnoid space

The space between the arachnoid mater and the pia mater, which are two of the layers of the meninges. This space is filled with cerebrospinal fluid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvador, A.F., de Lima, K.A. & Kipnis, J. Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol 21, 526–541 (2021). https://doi.org/10.1038/s41577-021-00508-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00508-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing