Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasticity of innate lymphoid cell subsets

Abstract

Innate lymphoid cells (ILCs) are important for tissue homeostasis and for the initiation of immune responses. Based on their transcriptional regulation and cytokine profiles, ILCs can be categorized into five subsets with defined phenotypes and functional profiles, but they also have the ability to adapt to local environmental cues by changing these profiles. This plasticity raises the question of the extent to which the cytokine production profiles of ILCs are pre-programmed or are a reflection of the tissue microenvironment. Here, we review recent advances in research on ILCs, with a focus on the plasticity of these cells. We highlight the ability of ILCs to communicate with the surrounding microenvironment and discuss the possible consequences of ILC plasticity for our understanding of the biological roles of these cells. Finally, we discuss how we might use this knowledge of ILC plasticity to develop or improve options for the treatment of inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of human ILC subsets from naive precursors.
Fig. 2: Plasticity of innate lymphoid cells.
Fig. 3: Innate lymphoid cell plasticity in disease.

Similar content being viewed by others

References

  1. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  2. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    CAS  PubMed  Google Scholar 

  3. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10, 857–863 (2009).

    CAS  PubMed  Google Scholar 

  5. Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K. & Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat. Immunol. 10, 864–871 (2009).

    CAS  PubMed  Google Scholar 

  6. Veldhoen, M. et al. Transforming growth factor-β ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9, 1341–1346 (2008).

    CAS  PubMed  Google Scholar 

  7. Lee, Y. J. et al. Lineage-specific effector signatures of invariant NKT cells are shared amongst γδ T, innate lymphoid, and Th cells. J. Immunol. 197, 1460–1470 (2016).

    CAS  PubMed  Google Scholar 

  8. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    CAS  PubMed  Google Scholar 

  9. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    CAS  PubMed  Google Scholar 

  12. Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol. 10, 66–74 (2009).

    CAS  PubMed  Google Scholar 

  13. Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12, 21–27 (2011).

    CAS  PubMed  Google Scholar 

  14. Spits, H. et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    CAS  PubMed  Google Scholar 

  15. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018). This state-of-the-art review summarizes our knowledge of ILCs and updates the ILC classification into five subsets (NK cells, ILC1s, ILC2s, ILC3s and lymphoid tissue inducer cells) based on their development and function.

    CAS  PubMed  Google Scholar 

  16. Spits, H., Bernink, J. H. & Lanier, L. NK cells and type 1 innate lymphoid cells: partners in host defense. Nat. Immunol. 17, 758–764 (2016).

    CAS  PubMed  Google Scholar 

  17. Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 10, 83–91 (2009).

    CAS  PubMed  Google Scholar 

  18. Luci, C. et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 10, 75–82 (2009).

    CAS  PubMed  Google Scholar 

  19. Locksley, R. M. Nine lives: plasticity among T helper cell subsets. J. Exp. Med. 206, 1643–1646 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. DuPage, M. & Bluestone, J. A. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149–163 (2016).

    CAS  PubMed  Google Scholar 

  21. Lim, A. I. & Di Santo, J. P. ILC-poiesis: ensuring tissue ILC differentiation at the right place and time. Eur. J. Immunol. 49, 11–18 (2019).

    CAS  PubMed  Google Scholar 

  22. Cherrier, D. E., Serafini, N. & Di Santo, J. P. Innate lymphoid cell development: a T cell perspective. Immunity 48, 1091–1103 (2018).

    CAS  PubMed  Google Scholar 

  23. Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y. & Rudensky, A. Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lim, A. I. et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168, 1086–1100.e10 (2017).

    CAS  PubMed  Google Scholar 

  25. Hazenberg, M. D. & Spits, H. Human innate lymphoid cells. Blood 124, 700–709 (2014).

    CAS  PubMed  Google Scholar 

  26. Bar-Ephraim, Y. E. et al. Cross-tissue transcriptomic analysis of human secondary lymphoid organ-residing ILC3s reveals a quiescent state in the absence of inflammation. Cell Rep. 21, 823–833 (2017).

    CAS  PubMed  Google Scholar 

  27. Blom, B. & Spits, H. Development of human lymphoid cells. Annu. Rev. Immunol. 24, 287–320 (2006).

    CAS  PubMed  Google Scholar 

  28. Nagasawa, M. et al. KLRG1 and NKp46 discriminate subpopulations of human CD117+CRTH2 ILCs biased toward ILC2 or ILC3. J. Exp. Med. 216, 1762–1776 (2019). Together with Lim et al. (2017), this paper characterizes circulating ILC precursor populations from human peripheral blood.

    PubMed  PubMed Central  Google Scholar 

  29. Chen, L. et al. CD56 expression marks human group 2 innate lymphoid cell divergence from a shared NK cell and group 3 innate lymphoid cell developmental pathway. Immunity 49, 464–476.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Thome, J. J. et al. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med. 22, 72–77 (2016).

    CAS  PubMed  Google Scholar 

  31. Ricardo-Gonzalez, R. R. et al. Tissue-specific pathways extrude activated ILC2 to disseminate type 2 immunity. J. Exp. Med. 217, e20191172 (2020).

    PubMed  PubMed Central  Google Scholar 

  32. Gury-BenAri, M. et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166, 1231–1246.e13 (2016).

    CAS  PubMed  Google Scholar 

  33. Bjorklund, A. K. et al. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat. Immunol. 17, 451–460 (2016).

    PubMed  Google Scholar 

  34. Bar-Ephraim, Y. E. et al. CD62L is a functional and phenotypic marker for circulating innate lymphoid cell precursors. J. Immunol. 202, 171–182 (2019).

    CAS  PubMed  Google Scholar 

  35. Ricardo-Gonzalez, R. R. et al. Tissue signals imprint ILC2 identity with anticipatory function. Nat. Immunol. 19, 1093–1099 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fang, D. & Zhu, J. Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets. J. Exp. Med. 214, 1861–1876 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 33, 736–751 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cella, M., Otero, K. & Colonna, M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1β reveals intrinsic functional plasticity. Proc. Natl Acad. Sci. USA 107, 10961–10966 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Crellin, N. K. et al. Regulation of cytokine secretion in human CD127+ LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity 33, 752–764 (2010).

    CAS  PubMed  Google Scholar 

  40. Koues, O. I. et al. Distinct gene regulatory pathways for human innate versus adaptive lymphoid cells. Cell 165, 1134–1146 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shih, H. Y. et al. Developmental acquisition of regulomes underlies innate lymphoid cell functionality. Cell 165, 1120–1133 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stadhouders, R. et al. Epigenome analysis links gene regulatory elements in group 2 innate lymphocytes to asthma susceptibility. J. Allergy Clin. Immunol. 142, 1793–1807 (2018).

    CAS  PubMed  Google Scholar 

  43. Ohne, Y. et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat. Immunol. 17, 646–655 (2016).

    CAS  PubMed  Google Scholar 

  44. Xu, W. et al. NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep. 10, 2043–2054 (2015).

    CAS  PubMed  Google Scholar 

  45. Klose, C. S. et al. A T-bet gradient controls the fate and function of CCR6RORγ+ innate lymphoid cells. Nature 494, 261–265 (2013).

    CAS  PubMed  Google Scholar 

  46. Rankin, L. C. et al. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat. Immunol. 14, 389–395 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sciume, G. et al. Distinct requirements for T-bet in gut innate lymphoid cells. J. Exp. Med. 209, 2331–2338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Viant, C. et al. Transforming growth factor-β and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Sci. Signal. 9, ra46 (2016).

    PubMed  Google Scholar 

  49. Chea, S. et al. Notch signaling in group 3 innate lymphoid cells modulates their plasticity. Sci. Signal. 9, ra45 (2016).

    PubMed  Google Scholar 

  50. Mikami, Y. et al. NCR+ ILC3 maintain larger STAT4 reservoir via T-BET to regulate type 1 features upon IL-23 stimulation in mice. Eur. J. Immunol. 48, 1174–1180 (2018).

    CAS  PubMed  Google Scholar 

  51. Robinette, M. L. et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol. 16, 306–317 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Simoni, Y. et al. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46, 148–161 (2017).

    CAS  PubMed  Google Scholar 

  53. Bernink, J. H. et al. Interleukin-12 and -23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146–160 (2015). This study is one of the first to show that the plasticity of ILCs is associated with the pathology of an inflammatory disease in humans.

    CAS  PubMed  Google Scholar 

  54. Takayama, T. et al. Imbalance of NKp44+NKp46 and NKp44NKp46+ natural killer cells in the intestinal mucosa of patients with Crohn’s disease. Gastroenterology 139, 882–892 (2010).

    CAS  PubMed  Google Scholar 

  55. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013).

    CAS  PubMed  Google Scholar 

  56. Li, J. et al. Enrichment of IL-17A+ IFN-γ+ and IL-22+ IFN-γ+ T cell subsets is associated with reduction of NKp44+ ILC3s in the terminal ileum of Crohn’s disease patients. Clin. Exp. Immunol. 190, 143–153 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cella, M. et al. Subsets of ILC3–ILC1-like cells generate a diversity spectrum of innate lymphoid cells in human mucosal tissues. Nat. Immunol. 20, 980–991 (2019). This paper identifies transitional cell types in the transdifferentiation of human ILC3s to ILC1s in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mazzurana, L. et al. Suppression of Aiolos and Ikaros expression by lenalidomide reduces human ILC3-ILC1/NK cell transdifferentiation. Eur. J. Immunol. 49, 1344–1355 (2019).

    CAS  PubMed  Google Scholar 

  60. Parker, M. E. et al. c-Maf regulates the plasticity of group 3 innate lymphoid cells by restraining the type 1 program. J. Exp. Med. 217, e20191030 (2020).

    PubMed  Google Scholar 

  61. Pokrovskii, M. et al. Characterization of transcriptional regulatory networks that promote and restrict identities and functions of intestinal innate lymphoid cells. Immunity 51, 185–197.e6 (2019). Together with Cella et al. (2019), Mazzurana et al. (2019) and Parker et al. (2020), this is the first study of the transcriptional networks that control ILC1 and ILC3 fate and their plasticity.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Silver, J. S. et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat. Immunol. 17, 626–635 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bal, S. M. et al. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17, 636–645 (2016).

    CAS  PubMed  Google Scholar 

  64. Lim, A. I. et al. IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J. Exp. Med. 213, 569–583 (2016). Together with Silver et al. (2016) and Bal et al. (2016), this paper shows the involvement of IL-1β and IL-12 in mediating the plasticity of ILC2s to IFNγ-producing ILC1s, which is associated with the pathology of COPD and Crohn’s disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mjosberg, J. et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37, 649–659 (2012).

    PubMed  Google Scholar 

  66. Golebski, K. et al. IL-1β, IL-23, and TGF-β drive plasticity of human ILC2s towards IL-17-producing ILCs in nasal inflammation. Nat. Commun. 10, 2162 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Bernink, J. H. et al. c-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies. Nat. Immunol. 20, 992–1003 (2019). Together with Golebski et al. (2019), this paper reports the plasticity of ILC2s to convert into IL-17-producing ILC3-like cells, triggered by cytokines derived from the airway epithelium or dermal stromal cells, in the pathology of human airway or skin inflammation, respectively.

    CAS  PubMed  Google Scholar 

  68. Maier, E., Duschl, A. & Horejs-Hoeck, J. STAT6-dependent and -independent mechanisms in Th2 polarization. Eur. J. Immunol. 42, 2827–2833 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhu, J. Transcriptional regulation of Th2 cell differentiation. Immunol. Cell. Biol. 88, 244–249 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Stumhofer, J. S. et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat. Immunol. 8, 1363–1371 (2007).

    CAS  PubMed  Google Scholar 

  71. Hunter, C. A. & Kastelein, R. Interleukin-27: balancing protective and pathological immunity. Immunity 37, 960–969 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Koenen, H. J. et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112, 2340–2352 (2008).

    CAS  PubMed  Google Scholar 

  73. Tang, Q. et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28, 687–697 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Klatzmann, D. & Abbas, A. K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 15, 283–294 (2015).

    CAS  PubMed  Google Scholar 

  75. Zhang, K. et al. Cutting edge: notch signaling promotes the plasticity of group-2 innate lymphoid cells. J. Immunol. 198, 1798–1803 (2017).

    CAS  PubMed  Google Scholar 

  76. Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1hi cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat. Immunol. 16, 161–169 (2015).

    CAS  PubMed  Google Scholar 

  77. Huang, Y. et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359, 114–119 (2018). Together with Huang et al. (2015), this paper describes the so-called iILC2s as circulating ILC2s that can produce both IL-17 and IL-13.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit. Nature 529, 221–225 (2016).

    Google Scholar 

  79. Martinez-Gonzalez, I. et al. Allergen-experienced group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity 45, 198–208 (2016).

    CAS  PubMed  Google Scholar 

  80. Hochdorfer, T., Winkler, C., Pardali, K. & Mjosberg, J. Expression of c-Kit discriminates between two functionally distinct subsets of human type 2 innate lymphoid cells. Eur. J. Immunol. 49, 884–893 (2019). Together with Bernink et al. (2019), this paper describes two subpopulations of ILC2s in humans.

    PubMed  Google Scholar 

  81. van de Pavert, S. A. et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508, 123–127 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. Mielke, L. A. et al. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med. 210, 1117–1124 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Seehus, C. R. et al. Alternative activation generates IL-10 producing type 2 innate lymphoid cells. Nat. Commun. 8, 1900 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Morita, H. et al. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J. Allergy Clin. Immunol. 143, 2190–2201.e9 (2019). Together with Seehus et al. (2017), this paper describes the induction of IL-10 production by ILC2s in mice and humans, respectively.

    CAS  PubMed  Google Scholar 

  85. Califano, D. et al. Transcription factor Bcl11b controls identity and function of mature type 2 innate lymphoid cells. Immunity 43, 354–368 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Spooner, C. J. et al. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat. Immunol. 14, 1229–1236 (2013).

    CAS  PubMed  Google Scholar 

  87. Constantinides, M. G., McDonald, B. D., Verhoef, P. A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Klose, C. S. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    CAS  PubMed  Google Scholar 

  89. Scoville, S. D. et al. A progenitor cell expressing transcription factor RORγt generates all human innate lymphoid cell subsets. Immunity 44, 1140–1150 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Renoux, V. M. et al. Identification of a human natural killer cell lineage-restricted progenitor in fetal and adult tissues. Immunity 43, 394–407 (2015).

    CAS  PubMed  Google Scholar 

  91. Xu, W. et al. An Id2RFP-reporter mouse redefines innate lymphoid cell precursor potentials. Immunity 50, 1054–1068.e3 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Walker, J. A. et al. Polychromic reporter mice reveal unappreciated innate lymphoid cell progenitor heterogeneity and elusive ILC3 progenitors in bone marrow. Immunity 51, 104–118.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cortez, V. S. et al. Transforming growth factor-β signaling guides the differentiation of innate lymphoid cells in salivary glands. Immunity 44, 1127–1139 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Cortez, V. S. et al. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat. Immunol. 18, 995–1003 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gao, Y. et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18, 1004–1015 (2017).

    CAS  PubMed  Google Scholar 

  96. Cuff, A. O. et al. The obese liver environment mediates conversion of NK cells to a less cytotoxic ILC1-like phenotype. Front. Immunol. 10, 2180 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Trotta, R. et al. TGF-β utilizes SMAD3 to inhibit CD16-mediated IFN-γ production and antibody-dependent cellular cytotoxicity in human NK cells. J. Immunol. 181, 3784–3792 (2008).

    CAS  PubMed  Google Scholar 

  98. Park, E. et al. Toxoplasma gondii infection drives conversion of NK cells into ILC1-like cells. eLife 8, e47605 (2019). Together with Cortez et al. (2017), this paper shows the conversion of EOMES+ NK cells to EOMES ILC1-like cells in tumours and during T. gondii infection and implicates IL-12 and TGFβ in that process.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Takemoto, N., Intlekofer, A. M., Northrup, J. T., Wherry, E. J. & Reiner, S. L. Cutting edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation. J. Immunol. 177, 7515–7519 (2006).

    CAS  PubMed  Google Scholar 

  100. Pikovskaya, O. et al. Cutting edge: eomesodermin is sufficient to direct type 1 innate lymphocyte development into the conventional NK lineage. J. Immunol. 196, 1449–1454 (2016).

    CAS  PubMed  Google Scholar 

  101. Scoville, S. D., Freud, A. G. & Caligiuri, M. A. Modeling human natural killer cell development in the era of innate lymphoid cells. Front. Immunol. 8, 360 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Crellin, N. K., Trifari, S., Kaplan, C. D., Cupedo, T. & Spits, H. Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J. Exp. Med. 207, 281–290 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Satoh-Takayama, N. et al. IL-7 and IL-15 independently program the differentiation of intestinal CD3NKp46+ cell subsets from Id2-dependent precursors. J. Exp. Med. 207, 273–280 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Raykova, A. et al. Interleukins 12 and 15 induce cytotoxicity and early NK-cell differentiation in type 3 innate lymphoid cells. Blood Adv. 1, 2679–2691 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kotas, M. E. & Locksley, R. M. Why innate lymphoid cells? Immunity 48, 1081–1090 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sonnenberg, G. F., Fouser, L. A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 12, 383–390 (2011).

    CAS  PubMed  Google Scholar 

  107. Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Qiu, J. & Zhou, L. Aryl hydrocarbon receptor promotes RORγt+ group 3 ILCs and controls intestinal immunity and inflammation. Semin. Immunopathol. 35, 657–670 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Fragoulis, G. E., Siebert, S. & McInnes, I. B. Therapeutic targeting of IL-17 and IL-23 cytokines in immune-mediated diseases. Annu. Rev. Med. 67, 337–353 (2016).

    CAS  PubMed  Google Scholar 

  110. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    CAS  PubMed  Google Scholar 

  111. Dyring-Andersen, B. et al. Increased number and frequency of group 3 innate lymphoid cells in nonlesional psoriatic skin. Br. J. Dermatol. 170, 609–616 (2014).

    CAS  PubMed  Google Scholar 

  112. Teunissen, M. B. M. et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR+ ILC3 in lesional skin and blood of psoriasis patients. J. Invest. Dermatol. 134, 2351–2360 (2014).

    CAS  PubMed  Google Scholar 

  113. Villanova, F. et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J. Invest. Dermatol. 134, 984–991 (2014).

    CAS  PubMed  Google Scholar 

  114. Everaere, L. et al. Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity. J. Allergy Clin. Immunol. 138, 1309–1318.e11 (2016).

    CAS  PubMed  Google Scholar 

  115. Cai, T. et al. IL-17-producing ST2+ group 2 innate lymphoid cells play a pathogenic role in lung inflammation. J. Allergy Clin. Immunol. 143, 229–244.e9 (2019).

    CAS  PubMed  Google Scholar 

  116. Derycke, L., Zhang, N., Holtappels, G., Dutre, T. & Bachert, C. IL-17A as a regulator of neutrophil survival in nasal polyp disease of patients with and without cystic fibrosis. J. Cyst. Fibros. 11, 193–200 (2012).

    CAS  PubMed  Google Scholar 

  117. Withers, D. R. et al. Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat. Med. 22, 319–323 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sonnenberg, G. F. & Hepworth, M. R. Functional interactions between innate lymphoid cells and adaptive immunity. Nat. Rev. Immunol. 19, 599–613 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhou, L. et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature 568, 405–409 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hepworth, M. R. et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498, 113–117 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Vely, F. et al. Evidence of innate lymphoid cell redundancy in humans. Nat. Immunol. 17, 1291–1299 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Miller, J. S. & Lanier, L. L. Natural killer cells in cancer immunotherapy. Annu. Rev. Cancer Biol. 3, 77–103 (2019).

    Google Scholar 

  123. Chiossone, L., Dumas, P. Y., Vienne, M. & Vivier, E. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol. 18, 671–688 (2018).

    CAS  PubMed  Google Scholar 

  124. Mattner, J. & Wirtz, S. Friend or foe? The ambiguous role of innate lymphoid cells in cancer development. Trends Immunol. 38, 29–38 (2017).

    CAS  PubMed  Google Scholar 

  125. Kirchberger, S. et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210, 917–931 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Nussbaum, K. et al. Tissue microenvironment dictates the fate and tumor-suppressive function of type 3 ILCs. J. Exp. Med. 214, 2331–2347 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wagner, M., Moro, K. & Koyasu, S. Plastic heterogeneity of innate lymphoid cells in cancer. Trends Cancer 3, 326–335 (2017).

    CAS  PubMed  Google Scholar 

  128. Xuan, X. et al. ILC3 cells promote the proliferation and invasion of pancreatic cancer cells through IL-22/AKT signaling. Clin. Transl Oncol. https://doi.org/10.1007/s12094-019-02160-5 (2019).

    Article  PubMed  Google Scholar 

  129. Huber, S. et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491, 259–263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Chan, I. H. et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 7, 842–856 (2014).

    CAS  PubMed  Google Scholar 

  131. Koh, J. et al. IL23-producing human lung cancer cells promote tumor growth via conversion of innate lymphoid cell 1 (ILC1) into ILC3. Clin. Cancer Res. 25, 4026–4037 (2019).

    CAS  PubMed  Google Scholar 

  132. Carrega, P. et al. NCR+ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures. Nat. Commun. 6, 8280 (2015).

    CAS  PubMed  Google Scholar 

  133. Eisenring, M., vom Berg, J., Kristiansen, G., Saller, E. & Becher, B. IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat. Immunol. 11, 1030–1038 (2010).

    CAS  PubMed  Google Scholar 

  134. Trabanelli, S. et al. CD127+ innate lymphoid cells are dysregulated in treatment naive acute myeloid leukemia patients at diagnosis. Haematologica 100, e257–e260 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Crome, S. Q. et al. A distinct innate lymphoid cell population regulates tumor-associated T cells. Nat. Med. 23, 368–375 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Blau, H. M. et al. Plasticity of the differentiated state. Science 230, 758–766 (1985).

    CAS  PubMed  Google Scholar 

  137. Blau, H. M. & Baltimore, D. Differentiation requires continuous regulation. J. Cell. Biol. 112, 781–783 (1991).

    CAS  PubMed  Google Scholar 

  138. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  139. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial–mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    CAS  PubMed  Google Scholar 

  140. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    CAS  PubMed  Google Scholar 

  141. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Galli, S. J., Borregaard, N. & Wynn, T. A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12, 1035–1044 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Eken, A. et al. Fingolimod alters tissue distribution and cytokine production of human and murine innate lymphoid cells. Front. Immunol. 10, 217 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    CAS  PubMed  Google Scholar 

  146. Weizman, O. E. et al. ILC1 confer early host protection at initial sites of viral infection. Cell 171, 795–808 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Peng, H. et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J. Clin. Invest. 123, 1444–1456 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Roan, F. et al. CD4+ group 1 innate lymphoid cells (ILC) form a functionally distinct ILC subset that is increased in systemic sclerosis. J. Immunol. 196, 2051–2062 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank I. Martinez-Gonzalez, J. Bernink, B. Heesters, L. Krabbendam and B. Blom for critically reading the manuscript. This work is supported by an advanced grant from the European Research Council to H.S. (No. 341038). S.M.B. is supported by a Lung Foundation Fellowship (No. 6.2.17.196JO).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Hergen Spits.

Ethics declarations

Competing interests

H.S. consults for GSK and AIMM Therapeutics and owns stock in AIMM Therapeutics. S.M.B. and K.G. declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks A. Freud and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Group 1 ILCs

(ILC1s). Group 1 innate lymphoid cells (ILCs) are non-cytotoxic or weakly cytotoxic tissue-resident cells that function as the first line of defence against infections with viruses and certain bacteria. ILC1s produce interferon-γ (IFNγ) and require T-bet for their function. They express CD127 in humans and CD200R in mice, and express NKp46 in both humans and mice.

Group 2 ILCs

(ILC2s). Group 2 innate lymphoid cells (ILCs) mediate parasite expulsion and produce the type 2 cytokines IL-4, IL-5 and IL-13 in response to IL-25, IL-33 and thymic stromal lymphopoietin (TSLP). The transcription factor GATA-binding protein 3 (GATA3) is necessary for ILC2 development and function. Human ILC2s express CRTH2 and high levels of CD161, whereas most mouse ILC2s express ST2.

Group 3 ILCs

(ILC3s). Group 3 innate lymphoid cells (ILCs) are abundant at mucosal sites and are involved in immune responses to extracellular bacteria and the containment of intestinal commensals. ILC3s produce IL-22, by which they promote intestinal homeostasis. Both human and mouse ILC3s can also produce granulocyte–macrophage colony-stimulating factor (GM-CSF). Their development and function depend on retinoic acid receptor-related orphan receptor-γt (RORγt). Two subsets of ILC3s can be distinguished on the basis of cell surface expression of NKp44 in humans and NKp46 in mice.

Plasticity

Plasticity or transdifferentiation is the process by which a cell adapts phenotypically and functionally to a changing local tissue environment.

RNA velocity analysis

Whereas RNA abundance is an indicator of the state of individual cells, RNA velocity is the time derivative of the gene expression state in time. This can be directly estimated by distinguishing between unspliced and spliced mRNAs in common single-cell RNA sequencing protocols. It predicts the future state of individual cells on a timescale of hours.

Rag2 –/– Il2rg –/– mice

A lymphopenic mouse model that lacks T cells, B cells, innate lymphoid cells and natural killer cells.

Inflammatory ILC2s

(iILC2s). These group 2 innate lymphoid cells (ILC2s), which are found predominantly in the circulation, can produce both IL-17 and IL-13, express GATA-binding protein 3 (GATA3) and retinoic acid receptor-related orphan receptor-γt (RORγt), and respond to IL-25. In mice, iILC2s can be identified by the expression of killer cell lectin-like receptor G1 (KLRG1), CC-chemokine receptor 9 (CCR9) and the IL-25 receptor (IL-25R), whereas in humans they lack expression of KLRG1 and CCR9. It should be noted that there is no consensus regarding this terminology in the field and that IL-25-responsive ILC2s can also be found under non-inflammatory conditions.

Tuft cells

Also known as brush cells. ‘Tuft’ refers to the microvilli that project from the surface of these cells. They are secretory epithelial cells found in the intestines and airways that can produce IL-25. They express DCLK1 and TRPM5, and ATOH1 expression is required for their specification.

Polychromic reporter mice

A mouse model consisting of two or more combinatorial reporter genes that enables visualization of more than one protein in the same mouse. Using such mice, researchers have been able to readily identify precursor cells on the basis of expression of one or more transcription factors.

Common cytokine receptor γ-chain

(IL-2Rγ). The common cytokine receptor γ-chain (CD132; encoded by IL2RG) is a component of the receptors for a family of cytokines consisting of IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bal, S.M., Golebski, K. & Spits, H. Plasticity of innate lymphoid cell subsets. Nat Rev Immunol 20, 552–565 (2020). https://doi.org/10.1038/s41577-020-0282-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-020-0282-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer