Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NOD-like receptor-mediated plant immunity: from structure to cell death

Abstract

Animal and plant immune systems use intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) to detect pathogens, resulting in the activation of immune responses that are often associated with localized host cell death. Whereas vertebrate NLRs detect evolutionarily conserved molecular patterns and have undergone comparatively little copy number expansion, plant NLRs detect virulence factors that have often diversified in plant pathogen populations, and thus plant NLRs have been subject to parallel diversification. Plant NLRs sense the presence of virulence factors with enzymatic virulence activity often indirectly through their modification of host target proteins. By contrast, phytopathogenic virulence factors without enzymatic activity are usually recognized by NLRs directly by their structure. Structural and biochemical analyses have shown that both indirect and direct recognition of plant pathogens trigger the oligomerization of plant NLRs into active complexes. Assembly into three-layered ring-like structures has emerged as a common principle of NLR activation in plants and animals, but with distinct amino-terminal domains initiating different signalling pathways. Collectively, these analyses point to host cell membranes as a convergence point for activated plant NLRs and the disruption of cellular ion homeostasis as a possible major factor in NLR-triggered cell death signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modes of plant NLR-mediated non-self recognition across pathogen lineages.
Fig. 2: Co-evolutionary arms race between plant NLRs and pathogen effectors.
Fig. 3: Schematic representation of ZAR1 resistosome formation.
Fig. 4: Comparison between the ZAR1 coiled-coil (CC) domain and the four-helix bundles of CC and HeLo-like domain structures from plants and vertebrates.
Fig. 5: The predicted pore formed by ZAR1 coiled-coil (CC) domains is markedly different in size from that formed by gasdermin.
Fig. 6: Schematic summary of the current model describing plant immunity mediated by TIR-type NLRs.
Fig. 7: Schematic summary of signalling pathways presumed to be involved in NLR-mediated membrane perturbation.

Similar content being viewed by others

References

  1. Jones, J. D. G., Vance, R. E. & Dangl, J. L. Intracellular innate immune surveillance devices in plants and animals. Science 354, aaf6395 (2016).

    PubMed  Google Scholar 

  2. Maekawa, T., Kufer, T. A. & Schulze-Lefert, P. NLR functions in plant and animal immune systems: so far and yet so close. Nat. Immunol. 12, 818–826 (2011).

    Google Scholar 

  3. Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539–548 (2010). This review provides insights into the ability of plants to recognize pathogens through strategies that include both conserved and diversified pathogen molecules, and how pathogens manipulate plant defence responses.

    CAS  PubMed  Google Scholar 

  4. Urbach, J. M. & Ausubel, F. M. The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Proc. Natl Acad. Sci. USA 114, 1063–1068 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lo Presti, L. et al. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 66, 513–545 (2015).

    CAS  PubMed  Google Scholar 

  6. Toruno, T. Y., Stergiopoulos, I. & Coaker, G. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annu. Rev. Phytopathol. 54, 419–441 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006). This work provides a conceptual framework for the plant immune system and its evolution.

    CAS  PubMed  Google Scholar 

  8. Monteiro, F. & Nishimura, M. T. Structural, functional, and genomic diversity of plant NLR proteins: an evolved resource for rational engineering of plant immunity. Annu. Rev. Phytopathol. 56, 243–267 (2018).

    CAS  PubMed  Google Scholar 

  9. Elinav, E., Strowig, T., Henao-Mejia, J. & Flavell, R. A. Regulation of the antimicrobial response by NLR proteins. Immunity 34, 665–679 (2011).

    CAS  PubMed  Google Scholar 

  10. Dangl, J. L. & Jones, J. D. G. Plant pathogens and integrated defence responses to infection. Nature 411, 826–833 (2001).

    CAS  PubMed  Google Scholar 

  11. Jorgensen, I., Rayamajhi, M. & Miao, E. A. Programmed cell death as a defence against infection. Nat. Rev. Immunol. 17, 151–164 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Maekawa, T. et al. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9, 187–199 (2011).

    CAS  PubMed  Google Scholar 

  13. Williams, S. J. et al. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344, 299–303 (2014). This study shows that the plant TIR-type NLRs RPS4 and RRS1 function together as a receptor complex in which the two NLRs have distinct roles in pathogen recognition and immune signalling.

    CAS  PubMed  Google Scholar 

  14. Bernoux, M. et al. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9, 200–211 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cui, H. T., Tsuda, K. & Parker, J. E. Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66, 487–511 (2015).

    CAS  PubMed  Google Scholar 

  16. Tsuda, K. & Somssich, I. E. Transcriptional networks in plant immunity. New Phytol. 206, 932–947 (2015).

    CAS  PubMed  Google Scholar 

  17. Jacob, F., Vernaldi, S. & Maekawa, T. Evolution and conservation of plant NLR functions. Front. Immunol. 4, 297 (2013).

    PubMed  PubMed Central  Google Scholar 

  18. Meyers, B. C., Kaushik, S. & Nandety, R. S. Evolving disease resistance genes. Curr. Opin. Plant Biol. 8, 129–134 (2005).

    CAS  PubMed  Google Scholar 

  19. Michelmore, R. W. & Meyers, B. C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8, 1113–1130 (1998).

    CAS  PubMed  Google Scholar 

  20. Proell, M., Riedl, S. J., Fritz, J. H., Rojas, A. M. & Schwarzenbacher, R. The nod-like receptor (NLR) family: a tale of similarities and differences. PLoS ONE 3, e2119 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cesari, S. Multiple strategies for pathogen perception by plant immune receptors. New Phytol. 219, 17–24 (2018).

    CAS  PubMed  Google Scholar 

  23. Van der Biezen, E. A. & Jones, J. D. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23, 454–456 (1998).

    PubMed  Google Scholar 

  24. van der Hoorn, R. A. & Kamoun, S. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20, 2009–2017 (2008).

    PubMed  PubMed Central  Google Scholar 

  25. Cesari, S., Bernoux, M., Moncuquet, P., Kroj, T. & Dodds, P. N. A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis. Front. Plant Sci. 5, 606 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Deslandes, L. & Rivas, S. Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci. 17, 644–655 (2012).

    CAS  PubMed  Google Scholar 

  27. Martin, R. et al. Structure of the activated Roq1 resistosome directly recognizing the pathogen effector XopQ. Science 370, eabd9993 (2020). This study shows direct recognition of the bacterial effector XopQ by the TIR-type plant NLR Roq1, leading to the assembly of a tetrameric receptor complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu, S., Hwang, I. & Rhee, S. The crystal structure of type III effector protein XopQ from Xanthomonas oryzae complexed with adenosine diphosphate ribose. Proteins 82, 2910–2914 (2014).

    CAS  PubMed  Google Scholar 

  29. Li, W., Chiang, Y. H. & Coaker, G. The HopQ1 effector’s nucleoside hydrolase-like domain is required for bacterial virulence in Arabidopsis and tomato, but not host recognition in tobacco. PLoS ONE 8, e59684 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Adlung, N. & Bonas, U. Dissecting virulence function from recognition: cell death suppression in Nicotiana benthamiana by XopQ/HopQ1-family effectors relies on EDS1-dependent immunity. Plant J. 91, 430–442 (2017).

    CAS  PubMed  Google Scholar 

  31. Bozkurt, T. O., Schornack, S., Banfield, M. J. & Kamoun, S. Oomycetes, effectors, and all that jazz. Curr. Opin. Plant Biol. 15, 483–492 (2012).

    PubMed  Google Scholar 

  32. Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814 (2006).

    CAS  PubMed  Google Scholar 

  33. Stergiopoulos, I. & de Wit, P. J. Fungal effector proteins. Annu. Rev. Phytopathol. 47, 233–263 (2009).

    CAS  PubMed  Google Scholar 

  34. Ellis, J. G., Lawrence, G. J., Luck, J. E. & Dodds, P. N. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11, 495–506 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanzaki, H. et al. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J. 72, 894–907 (2012).

    CAS  PubMed  Google Scholar 

  36. Maqbool, A. et al. Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. Elife 4, e08709 (2015).

    PubMed Central  Google Scholar 

  37. De la Concepcion, J. C. et al. Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen. Nat. Plants 4, 576–585 (2018).

    PubMed  Google Scholar 

  38. Goritschnig, S., Steinbrenner, A. D., Grunwald, D. J. & Staskawicz, B. J. Structurally distinct Arabidopsis thaliana NLR immune receptors recognize tandem WY domains of an oomycete effector. New Phytol. 210, 984–996 (2016).

    CAS  PubMed  Google Scholar 

  39. Krasileva, K. V., Dahlbeck, D. & Staskawicz, B. J. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22, 2444–2458 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lawrence, G. J. Melampsora lini, rust of flax and linseed. Adv. Plant Pathol. 3, 313–331 (1988).

    Google Scholar 

  41. Dodds, P. N., Lawrence, G. J., Catanzariti, A. M., Ayliffe, M. A. & Ellis, J. G. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell 16, 755–768 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, C. I. et al. Crystal structures of flax rust avirulence proteins AvrL567-A and -D reveal details of the structural basis for flax disease resistance specificity. Plant Cell 19, 2898–2912 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Anderson, C. et al. Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini. BMC Genomics 17, 667 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Bhullar, N. K., Street, K., Mackay, M., Yahiaoui, N. & Keller, B. Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc. Natl Acad. Sci. USA 23, 9519–9524 (2009).

    Google Scholar 

  45. Bourras, S. et al. Multiple avirulence loci and allele-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew. Plant Cell 27, 2991–3012 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bourras, S. et al. The AvrPm3-Pm3 effector-NLR interactions control both race-specific resistance and host-specificity of cereal mildews on wheat. Nat. Commun. 10, 2292 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. Maekawa, T. et al. Subfamily-specific specialization of RGH1/MLA immune receptors in wild barley. Mol. Plant Microbe Interact. 1, 107–119 (2019).

    Google Scholar 

  48. Seeholzer, S. et al. Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol. Plant Microbe Interact. 23, 497–509 (2010).

    CAS  PubMed  Google Scholar 

  49. Jorgensen, J. H. Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 13, 97–119 (1994).

    Google Scholar 

  50. Skamnioti, P. et al. Genetics of avirulence genes in Blumeria graminis f.sp hordei and physical mapping of AVRa22 and AVRa12. Fungal Genet. Biol. 45, 243–252 (2008).

    CAS  PubMed  Google Scholar 

  51. Pedersen, C. et al. Structure and evolution of barley powdery mildew effector candidates. BMC Genomics 13, 694 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Saur, I. M. L. et al. Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism. eLife 8, e44471 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Pennington, H. G. et al. The fungal ribonuclease-like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA. PLoS Pathog. 15, e1007620 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. Praz, C. R. et al. AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus. New Phytol. 213, 1301–1314 (2017).

    CAS  PubMed  Google Scholar 

  55. Lu, X. et al. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. Proc. Natl Acad. Sci. USA 113, E6486–E6495 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Frantzeskakis, L. et al. The Parauncinula polyspora draft genome provides insights into patterns of gene erosion and genome expansion in powdery mildew fungi. mBio 10, e01692–e01719 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Periyannan, S. et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341, 786–788 (2013).

    CAS  PubMed  Google Scholar 

  58. Mago, R. et al. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat. Plants 1, 15186 (2015).

    CAS  PubMed  Google Scholar 

  59. Chen, J. et al. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358, 1607–1610 (2017).

    CAS  PubMed  Google Scholar 

  60. Van de Weyer, A. L. et al. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178, 1260–1272 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. Schulze-Lefert, P. & Panstruga, R. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 16, 117–125 (2011).

    CAS  PubMed  Google Scholar 

  62. Laflamme, B. et al. The pan-genome effector-triggered immunity landscape of a host-pathogen interaction. Science 367, 763–768 (2020).

    CAS  PubMed  Google Scholar 

  63. Cevik, V. et al. Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust (Albugo candida). Proc. Natl Acad. Sci. USA 116, 2767–2773 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Inoue, Y. et al. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357, 80–82 (2017).

    CAS  PubMed  Google Scholar 

  65. Desveaux, D. et al. Type III effector activation via nucleotide binding, phosphorylation, and host target interaction. PLoS Pathog. 3, e48 (2007).

    PubMed  PubMed Central  Google Scholar 

  66. Xing, W. et al. The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 449, 243–247 (2007).

    CAS  PubMed  Google Scholar 

  67. Dong, J. et al. Crystal structure of the complex between Pseudomonas effector AvrPtoB and the tomato Pto kinase reveals both a shared and a unique interface compared with AvrPto-Pto. Plant Cell 21, 1846–1859 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ntoukakis, V., Saur, I. M. L., Conlan, B. & Rathjen, J. P. The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition. Curr. Opin. Plant Biol. 20, 69–74 (2014).

    CAS  PubMed  Google Scholar 

  69. Zhang, Z. M. et al. Mechanism of host substrate acetylation by a YopJ family effector. Nat. Plants 3, 17115 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo, L. et al. Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. Proc. Natl Acad. Sci. USA 115, 11637–11642 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Burdett, H., Kobe, B. & Anderson, P. A. Animal NLRs continue to inform plant NLR structure and function. Arch. Biochem. Biophys. 670, 58–68 (2019).

    CAS  PubMed  Google Scholar 

  72. Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    CAS  PubMed  Google Scholar 

  73. DeYoung, B. J. & Innes, R. W. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol. 7, 1243–1249 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Steele, J. F. C., Hughes, R. K. & Banfield, M. J. Structural and biochemical studies of an NB-ARC domain from a plant NLR immune receptor. PLoS ONE 14, e0221226 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Collier, S. M., Hamel, L. P. & Moffett, P. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol. Plant Microbe Interact. 24, 918–931 (2011).

    CAS  PubMed  Google Scholar 

  76. Wang, J. Z. et al. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, eaav5870 (2019). This article reports the supramolecular structure containing the Arabidopsis CC-type NLR ZAR1, the pseudokinase RSK1, PBL2UMP and deoxyadenosine triphosphate, which reveals the ZAR1-driven oligomerization of the pentameric complex on indirect effector recognition.

    CAS  PubMed  Google Scholar 

  77. Wang, J. Z. et al. Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364, eaav5868 (2019).

    CAS  PubMed  Google Scholar 

  78. Wang, G. et al. The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18, 285–295 (2015).

    CAS  PubMed  Google Scholar 

  79. Adachi, H. et al. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 8, 49956 (2019).

    Google Scholar 

  80. Casey, L. W. et al. The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proc. Natl Acad. Sci. USA 113, 12856–12861 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hao, W., Collier, S. M., Moffett, P. & Chai, J. J. Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2). J. Biol. Chem. 288, 35868–35876 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Burdett, H. et al. The plant “resistosome”: structural insights into immune signaling. Cell Host Microbe 26, 193–201 (2019).

    CAS  PubMed  Google Scholar 

  83. Dhuriya, Y. K. & Sharma, D. Necroptosis: a regulated inflammatory mode of cell death. J. Neuroinflamm. 15, 199 (2018).

    Google Scholar 

  84. Dondelinger, Y. et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 7, 971–981 (2014).

    CAS  PubMed  Google Scholar 

  85. Zhang, L. M. et al. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350, 404–409 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cheng, T. C., Hong, C., Akey, I. V., Yuan, S. J. & Akey, C. W. A near atomic structure of the active human apoptosome. eLife 5, e17755 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. Vande Walle, L. & Lamkanfi, M. Pyroptosis. Curr. Biol. 26, 568–572 (2016).

    Google Scholar 

  88. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    CAS  PubMed  Google Scholar 

  89. Shi, J. J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    CAS  PubMed  Google Scholar 

  90. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ruan, J. B., Xia, S. Y., Liu, X., Lieberman, J. & Wu, H. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557, 62–67 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ve, T., Williams, S. J. & Kobe, B. Structure and function of Toll/interleukin-1 receptor/resistance protein (TIR) domains. Apoptosis 20, 250–261 (2015).

    CAS  PubMed  Google Scholar 

  93. Zhang, X. X. et al. Multiple functional self-association interfaces in plant TIR domains. Proc. Natl Acad. Sci. USA 114, 2046–2052 (2017).

    Google Scholar 

  94. Essuman, K. et al. TIR domain proteins are an ancient family of NAD+-consuming enzymes. Curr. Biol. 28, 421–430 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wan, L. et al. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365, 799–803 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gerdts, J., Brace, E. J., Sasaki, Y., DiAntonio, A. & Milbrandt, J. SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science 348, 453–457 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Essuman, K. et al. The SARM1 Toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron 93, 1334–1343 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Horsefield, S. et al. NAD+ cleavage activity by animal an plant TIR domains in cell death pathways. Science 365, 793–799 (2019).

    CAS  PubMed  Google Scholar 

  99. Castel, B. et al. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol. 222, 966–980 (2019).

    CAS  PubMed  Google Scholar 

  100. Wu, Z. S. et al. Differential regulation of TNL-mediated immune signaling by redundant helper CNLs. New Phytol. 222, 938–953 (2019).

    CAS  PubMed  Google Scholar 

  101. Lapin, D., Bhandari, D. D. & Parker, J. E. Origins and immunity networking functions of EDS1 family proteins. Annu. Rev. Phytopathol. 58, 7–24 (2020). This review describes the distinctive features of EDS1–SAG101 and EDS1–PAD4 complexes in TIR-type NLR-triggered cell death and pathogen growth restriction.

    Google Scholar 

  102. Duxbury, Z. et al. Induced proximity of a TIR signaling domain on a plant-mammalian NLR chimera activates defense in plants. Proc. Natl Acad. Sci. USA 117, 18832–18839 (2020). This study provides evidence that induced proximity of a plant TIR domain imposed by oligomerization of a mammalian inflammasome is sufficient to activate plant defence responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ma, S. et al. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 370, eabe3069 (2020). This study shows direct recognition of the oomycete effector ATR1 by the TIR-type plant NLR RPP1, leading to a tetrameric receptor assembly required for NADase activity.

    CAS  PubMed  Google Scholar 

  104. Bonardi, V. et al. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc. Natl Acad. Sci. USA 108, 16463–16468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Peart, J. R., Mestre, P., Lu, R., Malcuit, I. & Baulcombe, D. C. NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr. Biol. 15, 968–973 (2005).

    CAS  PubMed  Google Scholar 

  106. Qi, T. et al. NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in Nicotiana benthamiana. Proc. Natl Acad. Sci. USA 115, 10979–10987 (2018).

    Google Scholar 

  107. Lapin, D. et al. A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-domain immune receptors. Plant Cell 10, 2430–2455 (2019).

    Google Scholar 

  108. Jubic, L. M., Saile, S., Furzer, O. J., El Kasmi, F. & Dangl, J. L. Help wanted: helper NLRs and plant immune responses. Curr. Opin. Plant Biol. 50, 82–94 (2019).

    CAS  PubMed  Google Scholar 

  109. Xiao, S. Y. et al. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291, 118–120 (2001).

    CAS  PubMed  Google Scholar 

  110. Daskalov, A. et al. Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis. Proc. Natl Acad. Sci. USA 113, 2720–2725 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Greenwald, J. et al. The mechanism of prion inhibition by HET-S. Mol. Cell 38, 889–899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Seuring, C. et al. The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol. 10, e1001451 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Su, L. J. et al. A plug release mechanism for membrane permeation by MLKL. Structure 22, 1489–1500 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Mahdi, L. K. et al. Discovery of a family of mixed lineage kinase domain-like proteins in plants and their role in innate immune signaling. Cell Host Microbe https://doi.org/10.1016/j.chom.2020.08.012 (2020). This study reports the discovery of a plant protein family resembling the vertebrate necroptosis mediator MLKL.

    Article  PubMed  Google Scholar 

  115. Hildebrand, J. M. et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc. Natl Acad. Sci. USA 111, 15072–15077 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wiermer, M., Feys, B. J. & Parker, J. E. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol. 8, 383–389 (2005).

    CAS  PubMed  Google Scholar 

  117. Ngou, B. P. M. et al. Estradiol-inducible AvrRps4 expression reveals distinct properties of TIR-NLR-mediated effector-triggered immunity. J. Exp. Bot. 71, 2186–2197 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hander, T. et al. Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides. Science 363, eaar7486 (2019). This study demonstrates a molecular mechanism that links the intracellular and Ca2+-dependent activation of a cysteine protease with the maturation and release of damage-induced immunomodulatory peptides.

    CAS  PubMed  Google Scholar 

  119. Yamaguchi, Y., Pearce, G. & Ryan, C. A. The cell surface leucine-rich repeat receptor for AtPep1, an endoaenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc. Natl Acad. Sci. USA 103, 10104–10109 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Yamaguchi, Y., Huffaker, A., Bryan, A. C., Tax, F. E. & Ryan, C. A. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22, 508–522 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ngou, B. P. M., Ahn, H.-K., Ding, P. & Jones, J. D. G. Mutual potentiation of plant immunity by cell-surface and intracellularreceptors. Preprint at bioRxiv https://doi.org/10.1101/2020.04.10.034173 (2020).

    Article  Google Scholar 

  122. Yuan, M. J. Z. et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Preprint at bioRxiv https://doi.org/10.1101/2020.04.10.031294 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gust, A. A., Pruitt, R. & Nürnberger, T. Sensing danger: key to activating plant immunity. Trends Plant Sci. 22, 779–791 (2017).

    CAS  PubMed  Google Scholar 

  124. Knepper, C., Savory, E. A. & Day, B. Arabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion. Plant Physiol. 156, 286–300 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Century, K. S., Holub, E. B. & Staskawicz, B. J. Ndr1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc. Natl Acad. Sci. USA 92, 6597–6601 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Knepper, C., Savory, E. A. & Day, B. The role of NDR1 in pathogen perception and plant defense signaling. Plant Signal. Behav. 6, 1114–1116 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max Planck Society (P.S.-L.), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) in the Collaborative Research Centre Grant 1403 (P.S.-L.) and under Germany’s Excellence Strategy — EXC-Number 2048/1 — project 390686111 (P.S.-L.), the Novo Nordisk Foundation grant NNF19OC0056457 (R.P.) and the Daimler und Benz Foundation (I.M.L.S.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Paul Schulze-Lefert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks J. D. G. Jones, B. Kobe, D. Mackey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Protein Data Bank: https://www.rcsb.org/

Glossary

Microbe-associated molecular patterns

(MAMPs). Epitopes that are often conserved among a class of microorganisms and recognized by animal and plant immune receptors.

Damage-associated molecular patterns

Host molecules produced and released on cellular insults, including cell wall damage, and perceived by host receptor proteins to activate or amplify host immune responses.

Haustoria

Specialized pathogen structures that invaginate the plasma membrane of individual host cells to promote pathogen virulence, supposedly via effector delivery and nutrient uptake.

Accessions

Groups of related plant material from one species and collected at one time from a specific location.

Necroptotic cell death

Caspase-independent form of programmed cell death in vertebrates.

Apoptosome

A protein complex formed during the process of apoptosis and composed of cytochrome c, APAF1 and deoxyadenosine triphosphate.

Inflammasome

A protein complex responsible for sensing pathogens, the activation of inflammatory responses and the initiation of a form of programmed cell death known as pyroptosis.

Pyroptosis

A form of programmed cell death involving cell lysis through the formation of membrane pores and subsequent release of cellular contents.

Toll-like receptors

Mammalian transmembrane immune receptors incorporating an amino-terminal Toll/interleukin-1 receptor domain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saur, I.M.L., Panstruga, R. & Schulze-Lefert, P. NOD-like receptor-mediated plant immunity: from structure to cell death. Nat Rev Immunol 21, 305–318 (2021). https://doi.org/10.1038/s41577-020-00473-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-020-00473-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing