Review Article | Published:

The emerging role of ADAM metalloproteinases in immunity

Nature Reviews Immunologyvolume 18pages745758 (2018) | Download Citation


Proteolysis is an irreversible physiological process that can result in the termination or activation of protein function. Many transmembrane proteins that are involved in the cellular communication between immune cells and structural cells — for example, Notch, CD23, CD44, and membrane-anchored cytokines and their receptors — are cleaved by the ADAM (a disintegrin and metalloproteinase) family of enzymes. Here, we review recent insights into the molecular activation, substrate specificity and function of ADAM proteins in the development and regulation of the immune system, with a particular focus on the roles of ADAM10 and ADAM17.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Immunological Genome Project:


  1. 1.

    Wolfsberg, T. G. et al. The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: structural, functional, and evolutionary implications. Proc. Natl Acad. Sci. USA 90, 10783–10787 (1993).

  2. 2.

    Wolfsberg, T. G., Primakoff, P., Myles, D. G. & White, J. M. ADAM, a novel family of membrane proteins containing a disintegrin and metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. J. Cell Biol. 131, 275–278 (1995).After the identification of a new metalloproteinase in fertility research, this is the first description of the family of ADAM proteins.

  3. 3.

    Black, R. A. et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729–733 (1997).

  4. 4.

    Liu, J., Qian, C. & Cao, X. Post-translational modification control of innate immunity. Immunity 45, 15–30 (2016).

  5. 5.

    Edwards, D. R., Handsley, M. M. & Pennington, C. J. The ADAM metalloproteinases. Mol. Aspects Med. 29, 258–289 (2008).

  6. 6.

    Heng, T. S., Painter, M. W. & Immunological Genome Project Consortium. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

  7. 7.

    Prox, J. et al. Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10. Cell. Mol. Life Sci. 69, 2919–2932 (2012).

  8. 8.

    Saraceno, C. et al. SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation. Cell Death Dis. 5, e1547 (2014).

  9. 9.

    Marcello, E., Gardoni, F., Di Luca, M. & Perez-Otano, I. An arginine stretch limits ADAM10 exit from the endoplasmic reticulum. J. Biol. Chem. 285, 10376–10384 (2010).

  10. 10.

    Ebsen, H., Lettau, M., Kabelitz, D. & Janssen, O. Identification of SH3 domain proteins interacting with the cytoplasmic tail of the a disintegrin and metalloprotease 10 (ADAM10). PLOS ONE 9, e102899 (2014).

  11. 11.

    Lorenzen, I. et al. Control of ADAM17 activity by regulation of its cellular localisation. Sci. Rep. 6, 35067 (2016).

  12. 12.

    Dusterhoft, S. et al. Extracellular juxtamembrane segment of ADAM17 interacts with membranes and is essential for its shedding activity. Biochemistry 54, 5791–5801 (2015).

  13. 13.

    Seegar, T. C. M. et al. Structural basis for regulated proteolysis by the alpha-secretase ADAM10. Cell 171, 1638–1648 (2017). Here, the X-ray crystal structure of ADAM10 is described, revealing how a conformational change is required for full activity of the metalloproteinase domain.

  14. 14.

    Grotzinger, J., Lorenzen, I. & Dusterhoft, S. Molecular insights into the multilayered regulation of ADAM17: the role of the extracellular region. Biochim. Biophys. Acta 1864, 2088–2095 (2017).

  15. 15.

    Sommer, A. et al. Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat. Commun. 7, 11523 (2016).

  16. 16.

    Fischer, K. et al. Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8 + T cells. Blood 108, 4094–4101 (2006).

  17. 17.

    Cisse, M. et al. The extracellular regulated kinase-1 (ERK1) controls regulated alpha-secretase-mediated processing, promoter transactivation, and mRNA levels of the cellular prion protein. J. Biol. Chem. 286, 29192–29206 (2011).

  18. 18.

    Diaz-Rodriguez, E., Montero, J. C., Esparis-Ogando, A., Yuste, L. & Pandiella, A. Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding. Mol. Biol. Cell 13, 2031–2044 (2002).

  19. 19.

    Soond, S. M., Everson, B., Riches, D. W. & Murphy, G. ERK-mediated phosphorylation of Thr735 in TNFalpha-converting enzyme and its potential role in TACE protein trafficking. J. Cell Sci. 118, 2371–2380 (2005).

  20. 20.

    Wisniewska, M. et al. Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex. J. Mol. Biol. 381, 1307–1319 (2008).

  21. 21.

    Xu, P., Liu, J., Sakaki-Yumoto, M. & Derynck, R. TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Sci. Signal 5, ra34 (2012).

  22. 22.

    Deng, W., Cho, S., Su, P. C., Berger, B. W. & Li, R. Membrane-enabled dimerization of the intrinsically disordered cytoplasmic domain of ADAM10. Proc. Natl Acad. Sci. USA 111, 15987–15992 (2014).

  23. 23.

    Schwarz, J. et al. Polo-like kinase 2, a novel ADAM17 signaling component, regulates tumor necrosis factor alpha ectodomain shedding. J. Biol. Chem. 289, 3080–3093 (2014).

  24. 24.

    Reyat, J. S. et al. ADAM10-interacting tetraspanins Tspan5 and Tspan17 regulate VE-cadherin expression and promote T lymphocyte transmigration. J. Immunol. 99, 666–676 (2017).

  25. 25.

    Matthews, A. L., Szyroka, J., Collier, R., Noy, P. J. & Tomlinson, M. G. Scissor sisters: regulation of ADAM10 by the TspanC8 tetraspanins. Biochem. Soc. Trans. 45, 719–730 (2017).This review summarizes how tetraspanin C8 family members interact with ADAM10 and regulate its localization and substrate-specific activity.

  26. 26.

    Adrain, C., Zettl, M., Christova, Y., Taylor, N. & Freeman, M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 335, 225–228 (2012).

  27. 27.

    McIlwain, D. R. et al. iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 335, 229–232 (2012).References 26 and 27 show the importance of the inactive rhomboid protein RHBDF2 for ADAM17-mediated TNF shedding.

  28. 28.

    Li, X. et al. iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc. Natl Acad. Sci. USA 112, 6080–6085 (2015).

  29. 29.

    Maretzky, T. et al. iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding. Proc. Natl Acad. Sci. USA 110, 11433–11438 (2013).

  30. 30.

    Matthews, A. L., Noy, P. J., Reyat, J. S. & Tomlinson, M. G. Regulation of a disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: the emerging role of tetraspanins and rhomboids. Platelets 28, 333–341 (2017).

  31. 31.

    Hartmann, D. et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum. Mol. Genet. 11, 2615–2624 (2002).

  32. 32.

    Brou, C. et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell 5, 207–216 (2000).

  33. 33.

    Mumm, J. S. et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol. Cell 5, 197–206 (2000).

  34. 34.

    Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of notch. Dev. Cell 33, 729–736 (2015).

  35. 35.

    Musse, A. A., Meloty-Kapella, L. & Weinmaster, G. Notch ligand endocytosis: mechanistic basis of signaling activity. Semin. Cell Dev. Biol. 23, 429–436 (2012).

  36. 36.

    Langridge, P. D. & Struhl, G. Epsin-dependent ligand endocytosis activates Notch by force. Cell 171, 1383–1396 (2017).

  37. 37.

    De Strooper, B. et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

  38. 38.

    Chastagner, P., Rubinstein, E. & Brou, C. Ligand-activated Notch undergoes DTX4-mediated ubiquitylation and bilateral endocytosis before ADAM10 processing. Sci. Signal. 10, eaag2989 (2017).

  39. 39.

    Kueh, H. Y. et al. Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment. Nat. Immunol. 17, 956–965 (2016).

  40. 40.

    Robey, E. et al. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483–492 (1996).

  41. 41.

    Washburn, T. et al. Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell 88, 833–843 (1997).

  42. 42.

    Yasutomo, K., Doyle, C., Miele, L., Fuchs, C. & Germain, R. N. The duration of antigen receptor signalling determines CD4+ versus CD8+ T cell lineage fate. Nature 404, 506–510 (2000).

  43. 43.

    Tian, L. et al. ADAM10 is essential for proteolytic activation of Notch during thymocyte development. Int. Immunol. 20, 1181–1187 (2008).This paper demonstrates a cell-intrinsic role for ADAM10 in Notch 1 cleavage during thymocyte development and it describes the first study of conditional deletion of ADAM10 in a mouse model.

  44. 44.

    Manilay, J. O., Anderson, A. C., Kang, C. & Robey, E. A. Impairment of thymocyte development by dominant-negative Kuzbanian (ADAM-10) is rescued by the Notch ligand, delta-1. J. Immunol. 174, 6732–6741 (2005).

  45. 45.

    Gravano, D. M., McLelland, B. T., Horiuchi, K. & Manilay, J. O. ADAM17 deletion in thymic epithelial cells alters aire expression without affecting T cell developmental progression. PLOS ONE 5, e13528 (2010).

  46. 46.

    Gossens, K., Naus, S., Hollander, G. A. & Ziltener, H. J. Deficiency of the metalloproteinase-disintegrin ADAM8 is associated with thymic hyper-cellularity. PLOS ONE 5, e12766 (2010).

  47. 47.

    Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

  48. 48.

    Helbig, C. et al. Notch controls the magnitude of T helper cell responses by promoting cellular longevity. Proc. Natl Acad. Sci. USA 109, 9041–9046 (2012).

  49. 49.

    Guy, C. S. et al. Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat. Immunol. 14, 262–270 (2013).

  50. 50.

    Maekawa, Y. et al. Notch controls the survival of memory CD4+ T cells by regulating glucose uptake. Nat. Med. 21, 55–61 (2015).

  51. 51.

    Laky, K., Evans, S., Perez-Diez, A. & Fowlkes, B. J. Notch signaling regulates antigen sensitivity of naive CD4+ T cells by tuning co-stimulation. Immunity 42, 80–94 (2015).

  52. 52.

    Luty, W. H., Rodeberg, D., Parness, J. & Vyas, Y. M. Antiparallel segregation of notch components in the immunological synapse directs reciprocal signaling in allogeneic Th:DC conjugates. J. Immunol. 179, 819–829 (2007).

  53. 53.

    Anderson, A. C. et al. The Notch regulator Numb links the Notch and TCR signaling pathways. J. Immunol. 174, 890–897 (2005).

  54. 54.

    Palmer, W. H. & Deng, W. M. Ligand-independent mechanisms of Notch activity. Trends Cell Biol. 25, 697–707 (2015).

  55. 55.

    Britton, G. J. et al. PKCtheta links proximal T cell and Notch signaling through localized regulation of the actin cytoskeleton. Elife 6, e20003 (2017).

  56. 56.

    Li, N. et al. Metalloproteases regulate T cell proliferation and effector function via LAG-3. EMBO J. 26, 494–504 (2007).

  57. 57.

    Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

  58. 58.

    Andrews, L. P., Marciscano, A. E., Drake, C. G. & Vignali, D. A. LAG3 (CD223) as a cancer immunotherapy target. Immunol. Rev. 276, 80–96 (2017).

  59. 59.

    Clayton, K. L. et al. Soluble T cell immunoglobulin mucin domain 3 is shed from CD8+ T cells by the sheddase ADAM10, is increased in plasma during untreated HIV infection, and correlates with HIV disease progression. J. Virol. 89, 3723–3736 (2015).

  60. 60.

    Schulte, M. et al. ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death Differ. 14, 1040–1049 (2007).

  61. 61.

    Ebsen, H., Lettau, M., Kabelitz, D. & Janssen, O. Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Mol. Immunol. 65, 416–428 (2015).

  62. 62.

    Yacoub, D. et al. CD154 is released from T cells by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and ADAM17 in a CD40 protein-dependent manner. J. Biol. Chem. 288, 36083–36093 (2013).

  63. 63.

    Jenabian, M. A. et al. Soluble CD40-ligand (sCD40L, sCD154) plays an immunosuppressive role via regulatory T cell expansion in HIV infection. Clin. Exp. Immunol. 178, 102–111 (2014).

  64. 64.

    Eichenauer, D. A. et al. ADAM10 inhibition of human CD30 shedding increases specificity of targeted immunotherapy in vitro. Cancer Res. 67, 332–338 (2007).

  65. 65.

    Velasquez, S. Y., Garcia, L. F., Opelz, G., Alvarez, C. M. & Susal, C. Release of soluble CD30 after allogeneic stimulation is mediated by memory T cells and regulated by IFN-gamma and IL-2. Transplantation 96, 154–161 (2013).

  66. 66.

    Nagano, O. & Saya, H. Mechanism and biological significance of CD44 cleavage. Cancer Sci. 95, 930–935 (2004).

  67. 67.

    Miletti-Gonzalez, K. E. et al. Identification of function for CD44 intracytoplasmic domain (CD44-ICD): modulation of matrix metalloproteinase 9 (MMP-9) transcription via novel promoter response element. J. Biol. Chem. 287, 18995–19007 (2012).

  68. 68.

    Schulz, B. et al. ADAM10 regulates endothelial permeability and T-cell transmigration by proteolysis of vascular endothelial cadherin. Circ. Res. 102, 1192–1201 (2008).

  69. 69.

    Hundhausen, C. et al. Regulated shedding of transmembrane chemokines by the disintegrin and metalloproteinase 10 facilitates detachment of adherent leukocytes. J. Immunol. 178, 8064–8072 (2007).

  70. 70.

    Amsen, D., Antov, A. & Flavell, R. A. The different faces of Notch in T-helper-cell differentiation. Nat. Rev. Immunol. 9, 116–124 (2009).

  71. 71.

    Tanigaki, K. et al. Regulation of alphabeta/gammadelta T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004).

  72. 72.

    Franke, M. et al. Human and murine interleukin 23 receptors are novel substrates for a disintegrin and metalloproteases ADAM10 and ADAM17. J. Biol. Chem. 291, 10551–10561 (2016).

  73. 73.

    Kanzaki, H. et al. A-disintegrin and metalloproteinase (ADAM) 17 enzymatically degrades interferon-gamma. Sci. Rep. 6, 32259 (2016).

  74. 74.

    Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. V. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat. Immunol. 1, 31–36 (2000).

  75. 75.

    Cerutti, A., Cols, M. & Puga, I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat. Rev. Immunol. 13, 118–132 (2013).

  76. 76.

    Pillai, S. & Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat. Rev. Immunol. 9, 767–777 (2009).

  77. 77.

    Tanigaki, K. et al. Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat. Immunol. 3, 443–450 (2002).

  78. 78.

    Saito, T. et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18, 675–685 (2003).

  79. 79.

    Hozumi, K. et al. Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat. Immunol 5, 638–644 (2004).

  80. 80.

    Fasnacht, N. et al. Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. J. Exp. Med. 211, 2265–2279 (2014).

  81. 81.

    Gibb, D. R. et al. ADAM10 is essential for Notch2-dependent marginal zone B cell development and CD23 cleavage in vivo. J. Exp. Med. 207, 623–635 (2010).This is the first study to describe the crucial role of ADAM10 in the development of MZB cells.

  82. 82.

    Hammad, H. et al. Transitional B cells commit to marginal zone B cell fate by Taok3-mediated surface expression of ADAM10. Nat. Immunol. 18, 313–320 (2017).

  83. 83.

    Simonetti, G. et al. IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression and activity. J. Exp. Med. 210, 2887–2902 (2013).

  84. 84.

    Kraus, M., Alimzhanov, M. B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell 117, 787–800 (2004).

  85. 85.

    Arnon, T. I., Horton, R. M., Grigorova, I. L. & Cyster, J. G. Visualization of splenic marginal zone B cell shuttling and follicular B cell egress. Nature 493, 684–688 (2013).

  86. 86.

    Weskamp, G. et al. ADAM10 is a principal ‘sheddase’ of the low-affinity immunoglobulin E receptor CD23. Nat. Immunol. 7, 1293–1298 (2006).

  87. 87.

    Mathews, J. A., Gibb, D. R., Chen, B. H., Scherle, P. & Conrad, D. H. CD23 sheddase a disintegrin and metalloproteinase 10 (ADAM10) is also required for CD23 sorting into B cell-derived exosomes. J. Biol. Chem. 285, 37531–37541 (2010).

  88. 88.

    Chaimowitz, N. S. et al. A disintegrin and metalloproteinase 10 regulates antibody production and maintenance of lymphoid architecture. J. Immunol. 187, 5114–5122 (2011).

  89. 89.

    Folgosa, L., Zellner, H. B., El Shikh, M. E. & Conrad, D. H. Disturbed follicular architecture in B cell a disintegrin and metalloproteinase (ADAM)10 knockouts is mediated by compensatory increases in ADAM17 and TNF-alpha shedding. J. Immunol. 191, 5951–5958 (2013).

  90. 90.

    Lownik, J. C. et al. ADAM10-mediated ICOS ligand shedding on B cells is necessary for proper T cell ICOS regulation and T follicular helper responses. J. Immunol. 199, 2305–2315 (2017).

  91. 91.

    Chaimowitz, N. S., Kang, D. J., Dean, L. M. & Conrad, D. H. ADAM10 regulates transcription factor expression required for plasma cell function. PLOS ONE 7, e42694 (2012).

  92. 92.

    Smulski, C. R. et al. BAFF- and TACI-dependent processing of BAFFR by ADAM proteases regulates the survival of B cells. Cell Rep. 18, 2189–2202 (2017).

  93. 93.

    Possot, C. et al. Notch signaling is necessary for adult, but not fetal, development of RORgammat+ innate lymphoid cells. Nat. Immunol. 12, 949–958 (2011).

  94. 94.

    Pham, D. H. et al. Effects of ADAM10 and ADAM17 inhibitors on natural killer cell expansion and antibody-dependent cellular cytotoxicity against breast cancer cells in vitro. Anticancer Res. 37, 5507–5513 (2017).

  95. 95.

    Chitadze, G. et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int. J. Cancer 133, 1557–1566 (2013).

  96. 96.

    Kohga, K. et al. Anticancer chemotherapy inhibits MHC class I-related chain a ectodomain shedding by downregulating ADAM10 expression in hepatocellular carcinoma. Cancer Res. 69, 8050–8057 (2009).

  97. 97.

    Matusali, G. et al. Soluble ligands for the NKG2D receptor are released during HIV-1 infection and impair NKG2D expression and cytotoxicity of NK cells. FASEB J. 27, 2440–2450 (2013).

  98. 98.

    Nuckel, H. et al. The prognostic significance of soluble NKG2D ligands in B cell chronic lymphocytic leukemia. Leukemia 24, 1152–1159 (2010).

  99. 99.

    Zocchi, M. R. et al. ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing. Oncoimmunology 5, e1123367 (2016).

  100. 100.

    Camodeca, C. et al. Discovery of a new selective inhibitor of a disintegrin and metalloprotease 10 (ADAM-10) able to reduce the shedding of NKG2D ligands in Hodgkin’s lymphoma cell models. Eur. J. Med. Chem. 111, 193–201 (2016).

  101. 101.

    Weber, S. et al. Regulation of adult hematopoiesis by the a disintegrin and metalloproteinase 10 (ADAM10). Biochem. Biophys. Res. Commun. 442, 234–241 (2013).

  102. 102.

    Yoda, M. et al. Dual functions of cell-autonomous and non-cell-autonomous ADAM10 activity in granulopoiesis. Blood 118, 6939–6942 (2011).

  103. 103.

    Maney, S. K. et al. Deletions in the cytoplasmic domain of iRhom1 and iRhom2 promote shedding of the TNF receptor by the protease ADAM17. Sci. Signal 8, ra109 (2015).

  104. 104.

    Wong, E. et al. Harnessing the natural inhibitory domain to control TNFalpha converting enzyme (TACE) activity in vivo. Sci. Rep 6, 35598 (2016).

  105. 105.

    Menghini, R., Fiorentino, L., Casagrande, V., Lauro, R. & Federici, M. The role of ADAM17 in metabolic inflammation. Atherosclerosis 228, 12–17 (2013).

  106. 106.

    Schumacher, N. et al. Shedding of endogenous interleukin-6 receptor (IL-6R) is governed by a disintegrin and metalloproteinase (ADAM) proteases while a full-length IL-6R isoform localizes to circulating microvesicles. J. Biol. Chem. 290, 26059–26071 (2015).

  107. 107.

    Tang, J. et al. Adam17-dependent shedding limits early neutrophil influx but does not alter early monocyte recruitment to inflammatory sites. Blood 118, 786–794 (2011).

  108. 108.

    Pruessmeyer, J. et al. Leukocytes require ADAM10 but not ADAM17 for their migration and inflammatory recruitment into the alveolar space. Blood 123, 4077–4088 (2014).

  109. 109.

    Driscoll, W. S., Vaisar, T., Tang, J., Wilson, C. L. & Raines, E. W. Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype. Circ. Res. 113, 52–61 (2013).

  110. 110.

    Moller-Hackbarth, K. et al. A disintegrin and metalloprotease (ADAM) 10 and ADAM17 are major sheddases of T cell immunoglobulin and mucin domain 3 (Tim-3). J. Biol. Chem. 288, 34529–34544 (2013).

  111. 111.

    Zhao, D. et al. Frontline science: Tim-3-mediated dysfunctional engulfment of apoptotic cells in SLE. J. Leukoc. Biol. 102, 1313–1322 (2017).

  112. 112.

    Londino, J. D., Gulick, D., Isenberg, J. S. & Mallampalli, R. K. Cleavage of signal regulatory protein alpha (SIRPalpha) enhances inflammatory signaling. J. Biol. Chem. 290, 31113–31125 (2015).

  113. 113.

    van der Vorst, E. P. et al. Myeloid a disintegrin and metalloproteinase domain 10 deficiency modulates atherosclerotic plaque composition by shifting the balance from inflammation toward fibrosis. Am. J. Pathol. 185, 1145–1155 (2015).

  114. 114.

    Thornton, P. et al. TREM2 shedding by cleavage at the H157-S158 bond is accelerated for the Alzheimer’s disease-associated H157Y variant. EMBO Mol. Med. 9, 1366–1378 (2017).

  115. 115.

    Kleinberger, G. et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl Med. 6, 243ra286 (2014).

  116. 116.

    Damle, S. R. et al. ADAM10 and Notch1 on murine dendritic cells control the development of type 2 immunity and IgE production. Allergy 73, 125–136 (2018).

  117. 117.

    Lewis, K. L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780–791 (2011).

  118. 118.

    Kirkling, M. E. et al. Notch signaling facilitates in vitro generation of cross-presenting classical dendritic cells. Cell Rep. 23, 3658–3672 (2018).

  119. 119.

    Nishida-Fukuda, H. et al. Ectodomain shedding of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) is induced by vascular endothelial growth factor A (VEGF-A). J. Biol. Chem. 291, 10490–10500 (2016).

  120. 120.

    Zimmerman, B. et al. Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell 167, 1041–1051 (2016).

  121. 121.

    Zuidscherwoude, M. et al. The tetraspanin web revisited by super-resolution microscopy. Sci. Rep. 5, 12201 (2015).

  122. 122.

    Yanez-Mo, M., Barreiro, O., Gordon-Alonso, M., Sala-Valdes, M. & Sanchez-Madrid, F. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol. 19, 434–446 (2009).

  123. 123.

    Hemler, M. E. Tetraspanin proteins promote multiple cancer stages. Nat. Rev. Cancer 14, 49–60 (2014).

  124. 124.

    Levy, S. Function of the tetraspanin molecule CD81 in B and T cells. Immunol. Res. 58, 179–185 (2014).

  125. 125.

    Dornier, E. et al. TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals. J. Cell Biol. 199, 481–496 (2012).

  126. 126.

    Haining, E. J. et al. The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J. Biol. Chem. 287, 39753–39765 (2012).

  127. 127.

    Saint-Pol, J. et al. Regulation of the trafficking and the function of the metalloprotease ADAM10 by tetraspanins. Biochem. Soc. Trans. 45, 937–944 (2017).

  128. 128.

    Jouannet, S. et al. TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization. Cell. Mol. Life Sci. 73, 1895–1915 (2016).

  129. 129.

    Noy, P. J. et al. TspanC8 tetraspanins and a disintegrin and metalloprotease 10 (ADAM10) interact via their extracellular regions: evidence for distinct binding mechanisms for different TspanC8 proteins. J. Biol. Chem. 291, 3145–3157 (2016).

  130. 130.

    Van Eerdewegh, P. et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426–430 (2002).

  131. 131.

    Koppelman, G. H. & Sayers, I. Evidence of a genetic contribution to lung function decline in asthma. J. Allergy Clin. Immunol. 128, 479–484 (2011).

  132. 132.

    Jie, Z. et al. The effects of Th2 cytokines on the expression of ADAM33 in allergen-induced chronic airway inflammation. Respir. Physiol. Neurobiol. 168, 289–294 (2009).

  133. 133.

    Davies, E. R. et al. Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life. JCI Insight 1, e87632 (2016).

  134. 134.

    King, N. E. et al. Expression and regulation of a disintegrin and metalloproteinase (ADAM)8 in experimental asthma. Am. J. Respir. Cell. Mol. Biol. 31, 257–265 (2004).

  135. 135.

    Oreo, K. M. et al. Sputum ADAM8 expression is increased in severe asthma and COPD. Clin. Exp. Allergy 44, 342–352 (2014).

  136. 136.

    Knolle, M. D. et al. Adam8 limits the development of allergic airway inflammation in mice. J. Immunol. 190, 6434–6449 (2013).

  137. 137.

    Naus, S. et al. The metalloprotease-disintegrin ADAM8 is essential for the development of experimental asthma. Am. J. Respir. Crit. Care Med. 181, 1318–1328 (2010).

  138. 138.

    Cooley, L. F. et al. Increased B cell ADAM10 in allergic patients and Th2 prone mice. PLOS ONE 10, e0124331 (2015).

  139. 139.

    Dewitz, C. et al. T cell immunoglobulin and mucin domain 2 (TIM-2) is a target of ADAM10-mediated ectodomain shedding. FEBS J. 281, 157–174 (2014).

  140. 140.

    Virreira Winter, S., Zychlinsky, A. & Bardoel, B. W. Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus alpha-hemolysin-mediated toxicity. Sci. Rep. 6, 24242 (2016).

  141. 141.

    von Hoven, G. et al. Dissecting the role of ADAM10 as a mediator of Staphylococcus aureus alpha-toxin action. Biochem. J. 473, 1929–1940 (2016).

  142. 142.

    Inoshima, I. et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat. Med. 17, 1310–1314 (2011).This study shows that ADAM10 is the receptor for the staphylococcal toxin α-haemolysin in vivo and identifies ADAM10 activity as a novel therapeutic target for α-haemolysin-induced disease.

  143. 143.

    Seike, S. et al. Delta-toxin from Clostridium perfringens perturbs intestinal epithelial barrier function in Caco-2 cell monolayers. Biochim. Biophys. Acta 1860, 428–433 (2018).

  144. 144.

    Brauweiler, A. M., Goleva, E. & Leung, D. Y. Interferon-gamma protects from Staphylococcal alpha toxin-induced keratinocyte death through apolipoprotein L1. J. Invest. Dermatol. 136, 658–664 (2016).

  145. 145.

    Takeda, S. ADAM and ADAMTS family proteins and snake venom metalloproteinases: a structural overview. Toxins (Basel) 8, E155 (2016).

  146. 146.

    Wong, E., Maretzky, T., Peleg, Y., Blobel, C. P. & Sagi, I. The functional maturation of a disintegrin and metalloproteinase (ADAM) 9, 10, and 17 requires processing at a newly identified proprotein convertase (PC) cleavage site. J. Biol. Chem. 290, 12135–12146 (2015).

Download references


Reviewer information

Nature Reviews Immunology thanks D. Conrad, M. Tomlinson and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Author information


  1. VIB Center for Inflammation Research, Ghent University, Ghent, Belgium

    • Bart N. Lambrecht
    • , Matthias Vanderkerken
    •  & Hamida Hammad
  2. Department of Respiratory Medicine, University Hospital Ghent, Ghent, Belgium

    • Bart N. Lambrecht
    •  & Hamida Hammad
  3. Department of Pulmonary Medicine, ErasmusMC, Rotterdam, Netherlands

    • Bart N. Lambrecht


  1. Search for Bart N. Lambrecht in:

  2. Search for Matthias Vanderkerken in:

  3. Search for Hamida Hammad in:


All authors contributed to researching data for the article, discussing its content and writing, reviewing and editing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Bart N. Lambrecht.

Supplementary information



Large proteinase complexes that cleave substrates within their transmembrane domain.


A superfamily of widely expressed membrane proteins involved in membrane compartmentalization.

Rhomboid proteins

An evolutionarily conserved family of intramembrane serine proteases implicated in diverse cellular functions.

Thymic epithelial cells

(TECs). Antigen-presenting cells in the thymus that regulate the T cell repertoire and establish central tolerance.

Autoimmune regulator protein

(AIRE). A transcription factor expressed in the thymic medulla that drives negative selection of self-recognizing T cells.

T cell exhaustion

A state of T cell dysfunction arising during chronic infections and cancer.

Activation-induced cell death

Programmed cell death owing to FAS–FAS ligand (FASL) interactions.

Indoleamine 2-3-dioxygenase pathway

(IDO pathway). A pathway mediating immunosuppressive effects through the metabolism of tryptophan to kynurenine.

Type 1 immune responses

Immune responses against intracellular microorganisms characterized by the involvement of group 1 innate lymphoid cells, CD8+ cytotoxic T cells and CD4+ T helper 1 cells.

Somatic hypermutation

Enzymatic modification of immunoglobulin genes required for the generation of high-affinity antibodies.

Marginal zone reticular cells

(MRCs). A stromal cell type in secondary lymphoid tissues, primarily located in the outer edge of follicles.

Capping regions

Areas of surface cell membrane in B cells containing clusters of crosslinked B cell receptors.

Airway remodelling

Structural changes in the large and small airways that occur in various diseases such as asthma.

Innate lymphoid cells

(ILCs). Immune cells that belong to the lymphoid lineage but do not express antigen-specific receptors.

Antibody-dependent cytotoxicity

A mechanism through which crystallizable fragment (Fc) receptor-bearing effector cells can recognize and kill antibody-coated target cells.

IL-6R trans-signalling

The activation of membrane-bound gp130 by a complex of IL-6 with the soluble IL-6 receptor.

About this article

Publication history