Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting hypoxia-inducible factors: therapeutic opportunities and challenges

Abstract

Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that are crucial for adaptation of metazoans to limited oxygen availability. Recently, HIF activation and inhibition have emerged as therapeutic targets in various human diseases. Pharmacologically desirable effects of HIF activation include erythropoiesis stimulation, cellular metabolism optimization during hypoxia and adaptive responses during ischaemia and inflammation. By contrast, HIF inhibition has been explored as a therapy for various cancers, retinal neovascularization and pulmonary hypertension. This Review discusses the biochemical mechanisms that control HIF stabilization and the molecular strategies that can be exploited pharmacologically to activate or inhibit HIFs. In addition, we examine medical conditions that benefit from targeting HIFs, the potential side effects of HIF activation or inhibition and future challenges in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular structure of hypoxia-inducible factors.
Fig. 2: Crystal structures of PHD2 and HIF-PHDi complexes and HIF2α–PT2385–PT2977 complexes.
Fig. 3: Potential therapeutic applications of HIF-PHDis in various diseases.
Fig. 4: Potential therapeutic applications of HIF inhibition in various diseases.

Similar content being viewed by others

References

  1. Taylor, C. T. & McElwain, J. C. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology 25, 272–279 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Mills, D. B. et al. The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments. eLife 7, e31176 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Semenza, G. L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23763 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, Y., Cox, S. R., Morita, T. & Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ. Res. 77, 638–643 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Poth, J. M., Brodsky, K., Ehrentraut, H., Grenz, A. & Eltzschig, H. K. Transcriptional control of adenosine signaling by hypoxia-inducible transcription factors during ischemic or inflammatory disease. J. Mol. Med. 91, 183–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Eltzschig, H. K., Sitkovsky, M. V. & Robson, S. C. Purinergic signaling during inflammation. N. Engl. J. Med. 367, 2322–2333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prabhakar, N. R. & Semenza, G. L. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev. 92, 967–1003 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Semenza, G. L. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 365, 537–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Eckle, T. et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat. Med. 18, 774–782 (2012). This study reports that adenosine-dependent Per2 stabilization facilitates HIF-elicited cardiac metabolic adaptation and ischaemia tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion — from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, P., Chandel, N. S. & Simon, M. C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 21, 268–283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith, T. G., Robbins, P. A. & Ratcliffe, P. J. The human side of hypoxia-inducible factor. Br. J. Haematol. 141, 325–334 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manalo, D. J. et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659–669 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Neudecker, V., Yuan, X., Bowser, J. L. & Eltzschig, H. K. MicroRNAs in mucosal inflammation. J. Mol. Med. 95, 935–949 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Neudecker, V., Brodsky, K. S., Kreth, S., Ginde, A. A. & Eltzschig, H. K. Emerging roles for microRNAs in perioperative medicine. Anesthesiology 124, 489–506 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Ju, C. et al. Hypoxia-inducible factor-1alpha-dependent induction of miR122 enhances hepatic ischemia tolerance. J. Clin. Invest. 131, e140300 (2021). This paper demonstrates that miRNAs can function in feed-forward loops by repressing PHDs, thereby enhancing their transcriptional induction through HIFs and providing tissue protection during liver ischemia–reperfusion injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, G. L. & Semenza, G. L. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268, 21513–21518 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Semenza, G. L., Nejfelt, M. K., Chi, S. M. & Antonarakis, S. E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc. Natl Acad. Sci. USA 88, 5680–5684 (1991). This study is among the first reports from the Nobel laureate Gregg Semenza to describe a novel protein as a HIF that functions as a transcriptional enhancer of EPO.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Semenza, G. L., Koury, S. T., Nejfelt, M. K., Gearhart, J. D. & Antonarakis, S. E. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc. Natl Acad. Sci. USA 88, 8725–8729 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fandrey, J., Schodel, J., Eckardt, K. U., Katschinski, D. M. & Wenger, R. H. Now a nobel gas: oxygen. Pflug. Arch. 471, 1343–1358 (2019).

    Article  CAS  Google Scholar 

  21. Ivan, M. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001). This study reports the identification of VHL tumour suppressor protein as a key molecule in the oxygen-dependent degradation of HIFα.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Jaakkola, P. et al. Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001). This study describes EGL9 as a key dioxygenase for oxygen-dependent HIF prolyl hydroxylation in C. elegans and defined isoforms of conserved HIF-PHDs in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  24. Eltzschig, H. K. et al. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J. Exp. Med. 202, 1493–1505 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eltzschig, H. K. et al. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104, 3986–3992 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Thompson, L. F. et al. Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med. 200, 1395–1405 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eltzschig, H. K. et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J. Exp. Med. 198, 783–796 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wicks, E. E. & Semenza, G. L. Hypoxia-inducible factors: cancer progression and clinical translation. J. Clin. Invest. 132, e159839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eltzschig, H. K. & Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364, 656–665 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bowser, J. L., Lee, J. W., Yuan, X. & Eltzschig, H. K. The hypoxia–adenosine link during inflammation. J. Appl. Physiol. 123, 1303–1320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eckle, T. et al. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium. PLoS Biol. 11, e1001665 (2013). This study demonstrates that HIF1α is stabilized in the lungs during ARDS, and functions in endogenous lung protection by optimizing glucose metabolism in alveolar epithelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bartels, K., Grenz, A. & Eltzschig, H. K. Hypoxia and inflammation are two sides of the same coin. Proc. Natl Acad. Sci. USA 110, 18351–18352 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karhausen, J. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest. 114, 1098–1106 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clambey, E. T. et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl Acad. Sci. USA 109, E2784–E2793 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Campbell, E. L. et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40, 66–77 (2014). This study shows that infiltrating neutrophils deplete local oxygen to stabilize HIF and promote intestinal inflammation resolution in murine colitis models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eltzschig, H. K., Bratton, D. L. & Colgan, S. P. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat. Rev. Drug. Discov. 13, 852–869 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hatfield, S. M. et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl. Med. 7, 277ra230 (2015).

    Article  Google Scholar 

  38. Lee, J. W., Ko, J., Ju, C. & Eltzschig, H. K. Hypoxia signaling in human diseases and therapeutic targets. Exp. Mol. Med. 51, 1–13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ong, S. G. et al. HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc. Res. 104, 24–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Guo, Y. et al. Systematic review with meta-analysis: HIF-1alpha attenuates liver ischemia-reperfusion injury. Transpl. Rev. 29, 127–134 (2015).

    Article  Google Scholar 

  41. Gao, R. Y. et al. Hypoxia-inducible factor-2alpha reprograms liver macrophages to protect against acute liver injury through the production of interleukin-6. Hepatology 71, 2105–2117 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Kapitsinou, P. P. et al. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J. Clin. Invest. 124, 2396–2409 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hill, P. et al. Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 19, 39–46 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Woods, P. S. et al. HIF-1alpha induces glycolytic reprograming in tissue-resident alveolar macrophages to promote cell survival during acute lung injury. eLife 11, e77457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, Y. I. et al. Local stabilization of hypoxia-inducible factor-1alpha controls intestinal inflammation via enhanced gut barrier function and immune regulation. Front. Immunol. 11, 609689 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Dowdell, A. S. et al. The HIF target ATG9A is essential for epithelial barrier function and tight junction biogenesis. Mol. Biol. Cell 31, 2249–2258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin, A. E. et al. Role of hypoxia inducible factor-1alpha (HIF-1alpha) in innate defense against uropathogenic escherichia coli infection. PLoS Pathog. 11, e1004818 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bhandari, T. & Nizet, V. Hypoxia-inducible factor (HIF) as a pharmacological target for prevention and treatment of infectious diseases. Infect. Dis. Ther. 3, 159–174 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Suhara, T. et al. Inhibition of the oxygen sensor PHD2 in the liver improves survival in lactic acidosis by activating the Cori cycle. Proc. Natl Acad. Sci. USA 112, 11642–11647 (2015). This study shows that PHD2 is a novel therapeutic target for lactic acidosis and indicates that pharmacological enhancement of PHD2 might benefit infectious and ischaemic diseases.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sanghani, N. S. & Haase, V. H. Hypoxia-inducible factor activators in renal anemia: current clinical experience. Adv. Chronic Kidney Dis. 26, 253–266 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Eckardt, K. U. et al. Safety and efficacy of vadadustat for anemia in patients undergoing dialysis. N. Engl. J. Med. 384, 1601–1612 (2021). This study reports two randomized, phase III clinical trials that showed that HIF-PHDi vadadustat was non-inferior to darbepoetin alfa in cardiovascular safety and efficacy in correcting anaemia in patients with CKD undergoing dialysis.

    Article  CAS  PubMed  Google Scholar 

  52. Chertow, G. M. et al. Vadadustat in patients with anemia and non-dialysis-dependent CKD. N. Engl. J. Med. 384, 1589–1600 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, N. et al. Roxadustat for anemia in patients with kidney disease not receiving dialysis. N. Engl. J. Med. 381, 1001–1010 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Chen, N. et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis. N. Engl. J. Med. 381, 1011–1022 (2019). This study reports the results from a randomized and multicentre phase III clinical trial that showed that HIF-PHDi roxadustat was noninferior to parenteral epoetin alfa in correcting anaemia in Chinese patients undergoing dialysis.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou, J. & Gong, K. Belzutifan: a novel therapy for von Hippel-Lindau disease. Nat. Rev. Nephrol. 18, 205–206 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Jonasch, E. et al. Belzutifan for renal cell carcinoma in von Hippel-Lindau disease. N. Engl. J. Med. 385, 2036–2046 (2021). This study reports the results from a randomized and multicentre phase III clinical trial that showed the safety and efficacy of HIF2α inhibitor belzutifan as a treatment for RCC and non-RCC neoplasms in patients with VHL disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kamihara, J. et al. Belzutifan, a potent HIF2alpha inhibitor, in the pacak-zhuang syndrome. N. Engl. J. Med. 385, 2059–2065 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Choueiri, T. K. & Kaelin, W. G. Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat. Med. 26, 1519–1530 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Salman, S. et al. HIF inhibitor 32-134D eradicates murine hepatocellular carcinoma in combination with anti-PD1 therapy. J. Clin. Invest. 132, e156774 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pullamsetti, S. S., Mamazhakypov, A., Weissmann, N., Seeger, W. & Savai, R. Hypoxia-inducible factor signaling in pulmonary hypertension. J. Clin. Invest. 130, 5638–5651 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, J. et al. HIF-1alpha and HIF-2alpha redundantly promote retinal neovascularization in patients with ischemic retinal disease. J. Clin. Invest. 131, e139202 (2021). This article provides evidence that targeting both HIF1α and HIF2α is necessary to prevent retinal neovascularization in patients with sickle cell retinopathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dengler, V. L., Galbraith, M. & Espinosa, J. M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol. 49, 1–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Semenza, G. L. Pharmacologic targeting of hypoxia-inducible factors. Annu. Rev. Pharmacol. Toxicol. 59, 379–403 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Diao, X. et al. Identification of oleoylethanolamide as an endogenous ligand for HIF-3alpha. Nat. Commun. 13, 2529 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu, D., Potluri, N., Lu, J., Kim, Y. & Rastinejad, F. Structural integration in hypoxia-inducible factors. Nature 524, 303–308 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 12, 5447–5454 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tian, H., McKnight, S. L. & Russell, D. W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11, 72–82 (1997). This study reports the identification of EPAS1/HIF2α as an important player in vascularization.

    Article  CAS  PubMed  Google Scholar 

  68. Mastrogiannaki, M., Matak, P. & Peyssonnaux, C. The gut in iron homeostasis: role of HIF-2 under normal and pathological conditions. Blood 122, 885–892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Knutson, A. K., Williams, A. L., Boisvert, W. A. & Shohet, R. V. HIF in the heart: development, metabolism, ischemia, and atherosclerosis. J. Clin. Invest. 131, e137557 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol. Cell Biol. 23, 9361–9374 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takeda, N. et al. Differential activation and antagonistic function of HIF-alpha isoforms in macrophages are essential for NO homeostasis. Genes Dev. 24, 491–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Branco-Price, C. et al. Endothelial cell HIF-1alpha and HIF-2alpha differentially regulate metastatic success. Cancer Cell 21, 52–65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Makino, Y. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414, 550–554 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Makino, Y., Kanopka, A., Wilson, W. J., Tanaka, H. & Poellinger, L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J. Biol. Chem. 277, 32405–32408 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Semenza, G. L. The genomics and genetics of oxygen homeostasis. Annu. Rev. Genomics Hum. Genet. 21, 183–204 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. McNeill, L. A. et al. Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803. Biochem. J. 367, 571–575 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Freedman, S. J. et al. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proc. Natl Acad. Sci. USA 99, 5367–5372 (2002). This report provides the solution structure as a mechanism of the specific recognition of CBP–p300 by HIF1α.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, N. et al. The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism. Cell Metab. 11, 364–378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hirota, K. HIF-alpha prolyl hydroxylase inhibitors and their implications for biomedicine: a comprehensive review. Biomedicines 9, 468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999). This study shows that VHL tumour suppressor gene product pVHL is important for oxygen-dependent degradation of HIFα.

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Iwai, K. et al. Identification of the von Hippel–Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Natl Acad. Sci. USA 96, 12436–12441 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schofield, C. J. & Ratcliffe, P. J. Signalling hypoxia by HIF hydroxylases. Biochem. Biophys. Res. Commun. 338, 617–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Kasper, L. H. et al. Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J. 24, 3846–3858 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wenger, R. H., Stiehl, D. P. & Camenisch, G. Integration of oxygen signaling at the consensus HRE. Sci. STKE 2005, re12 (2005).

    Article  PubMed  Google Scholar 

  85. Hartmann, H. et al. Hypoxia-independent activation of HIF-1 by Enterobacteriaceae and their siderophores. Gastroenterology 134, 756–767 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Appelhoff, R. J. et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 279, 38458–38465 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Yeh, T. L. et al. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem. Sci. 8, 7651–7668 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Markolovic, S., Wilkins, S. E. & Schofield, C. J. Protein hydroxylation catalyzed by 2-oxoglutarate-dependent oxygenases. J. Biol. Chem. 290, 20712–20722 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hodges, V. M., Rainey, S., Lappin, T. R. & Maxwell, A. P. Pathophysiology of anemia and erythrocytosis. Crit. Rev. Oncol. Hematol. 64, 139–158 (2007).

    Article  PubMed  Google Scholar 

  90. Dame, C. et al. Erythropoietin mRNA expression in human fetal and neonatal tissue. Blood 92, 3218–3225 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, Y. et al. Erythropoietin action in stress response, tissue maintenance and metabolism. Int. J. Mol. Sci. 15, 10296–10333 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Obara, N. et al. Repression via the GATA box is essential for tissue-specific erythropoietin gene expression. Blood 111, 5223–5232 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Souma, T., Suzuki, N. & Yamamoto, M. Renal erythropoietin-producing cells in health and disease. Front. Physiol. 6, 167 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Haase, V. H. Hypoxia-inducible factor-prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease. Kidney Int. Suppl. 11, 8–25 (2021).

    Article  Google Scholar 

  95. Macdougall, I. C. et al. Antibody-mediated pure red cell aplasia in chronic kidney disease patients receiving erythropoiesis-stimulating agents: new insights. Kidney Int. 81, 727–732 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Warnecke, C. et al. Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB J. 18, 1462–1464 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Flamme, I. et al. Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85-3934 (molidustat) stimulates erythropoietin production without hypertensive effects. PLoS ONE 9, e111838 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  98. Kapitsinou, P. P. et al. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood 116, 3039–3048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Minamishima, Y. A. & Kaelin, W. G. Jr. Reactivation of hepatic EPO synthesis in mice after PHD loss. Science 329, 407 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Peyssonnaux, C. et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J. Clin. Invest. 117, 1926–1932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Qian, Z. M. et al. Divalent metal transporter 1 is a hypoxia-inducible gene. J. Cell Physiol. 226, 1596–1603 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Taylor, M. et al. Hypoxia-inducible factor-2alpha mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 140, 2044–2055 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Singh, A. K. et al. Daprodustat for the treatment of anemia in patients not undergoing dialysis. N. Engl. J. Med. 385, 2313–2324 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Singh, A. K. et al. Daprodustat for the treatment of anemia in patients undergoing dialysis. N. Engl. J. Med. 385, 2325–2335 (2021). This study reports the results from a randomized phase III clinical trial that demonstrated that HIF-PHDi daprodustat was noninferior to ESAs in cardiovascular safety and efficacy in correcting anaemia in patients with CKD undergoing dialysis.

    Article  CAS  PubMed  Google Scholar 

  105. Koeppen, M. et al. Hypoxia-inducible factor 2-alpha-dependent induction of amphiregulin dampens myocardial ischemia-reperfusion injury. Nat. Commun. 9, 816 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  106. Eltzschig, H. K., Bonney, S. K. & Eckle, T. Attenuating myocardial ischemia by targeting A2B adenosine receptors. Trends Mol. Med. 19, 345–354 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bowser, J. L., Phan, L. H. & Eltzschig, H. K. The hypoxia-adenosine link during Intestinal Inflammation. J. Immunol. 200, 897–907 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Vohwinkel, C. U., Hoegl, S. & Eltzschig, H. K. Hypoxia signaling during acute lung injury. J. Appl. Physiol. 119, 1157–1163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Eckle, T. et al. Identification of hypoxia-inducible factor HIF-1A as transcriptional regulator of the A2B adenosine receptor during acute lung injury. J. Immunol. 192, 1249–1256 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Vohwinkel, C. U. et al. HIF1A-dependent induction of alveolar epithelial PFKFB3 dampens acute lung injury. JCI Insight 7, e157855 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zhao, C. et al. Deficiency of HIF-1alpha enhances influenza A virus replication by promoting autophagy in alveolar type II epithelial cells. Emerg. Microbes Infect. 9, 691–706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. McClendon, J. et al. Hypoxia-inducible factor 1alpha signaling promotes repair of the alveolar epithelium after acute lung injury. Am. J. Pathol. 187, 1772–1786 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gong, H. et al. HIF2alpha signaling inhibits adherens junctional disruption in acute lung injury. J. Clin. Invest. 125, 652–664 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Jiang, X. et al. Endothelial hypoxia-inducible factor-2alpha is required for the maintenance of airway microvasculature. Circulation 139, 502–517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Colgan, S. P., Furuta, G. T. & Taylor, C. T. Hypoxia and innate immunity: keeping up with the HIFsters. Annu. Rev. Immunol. 38, 341–363 (2020). This is an authoritative review on the importance of HIF in the regulation of innate immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Palazon, A., Goldrath, A. W., Nizet, V. & Johnson, R. S. HIF transcription factors, inflammation, and immunity. Immunity 41, 518–528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Taylor, C. T. & Scholz, C. C. The effect of HIF on metabolism and immunity. Nat. Rev. Nephrol. 18, 573–587 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. McGettrick, A. F. & O’Neill, L. A. J. The role of HIF in immunity and inflammation. Cell Metab. 32, 524–536 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Berg, N. K. et al. Hypoxia-inducible factor-dependent induction of myeloid-derived netrin-1 attenuates natural killer cell infiltration during endotoxin-induced lung injury. FASEB J. 35, e21334 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Wu, G. et al. Hypoxia exacerbates inflammatory acute lung injury via the Toll-like receptor 4 signaling pathway. Front. Immunol. 9, 1667 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wing, P. A. C. et al. Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells. Cell Rep. 35, 109020 (2021). This is the first study to show the potential benefit of HIF-PHDi during SARS-CoV-2 infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wing, P. A. C. et al. Hypoxia inducible factors regulate infectious SARS-CoV-2, epithelial damage and respiratory symptoms in a hamster COVID-19 model. PLoS Pathog. 18, e1010807 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nakamura, M., Imamura, T., Sobajima, M. & Kinugawa, K. Initial experience of hypoxia-inducible factor prolyl hydroxylase inhibitors in patients with heart failure and renal anemia. Heart Vessels 38, 284–290 (2023).

    Article  PubMed  Google Scholar 

  124. Wen, T., Zhang, X., Wang, Z. & Zhou, R. Hypoxia-inducible factor prolyl hydroxylase inhibitors in patients with renal anemia: a meta-analysis of randomized trials. Nephron 144, 572–582 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Bartels, K., Karhausen, J., Clambey, E. T., Grenz, A. & Eltzschig, H. K. Perioperative organ injury. Anesthesiology 119, 1474–1489 (2013).

    Article  PubMed  Google Scholar 

  126. Williams, G. W., Berg, N. K., Reskallah, A., Yuan, X. & Eltzschig, H. K. Acute respiratory distress syndrome: contemporary management and novel approaches during COVID-19. Anesthesiology 134, 270–282 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Gumbert, S. D. et al. Perioperative acute kidney injury. Anesthesiology 132, 180–204 (2020).

    Article  PubMed  Google Scholar 

  128. Macdougall, I. C. New anemia therapies: translating novel strategies from bench to bedside. Am. J. Kidney Dis. 59, 444–451 (2012).

    Article  PubMed  Google Scholar 

  129. Agrawal, D. et al. Desidustat in anemia due to non-dialysis-dependent chronic kidney disease: a phase 3 study (DREAM-ND). Am. J. Nephrol. 53, 352–360 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Maxwell, P. H. & Eckardt, K. U. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat. Rev. Nephrol. 12, 157–168 (2016). This is an authoritative review that discusses the advantages and challenges of using HIF-PHDis as treatment for renal anaemia.

    Article  CAS  PubMed  Google Scholar 

  131. Percy, M. J. et al. Novel exon 12 mutations in the HIF2A gene associated with erythrocytosis. Blood 111, 5400–5402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Percy, M. J. et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 358, 162–168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Percy, M. J. et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc. Natl Acad. Sci. USA 103, 654–659 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Beck, J., Henschel, C., Chou, J., Lin, A. & Del Balzo, U. Evaluation of the carcinogenic potential of roxadustat (FG-4592), a small molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase in CD-1 mice and Sprague Dawley rats. Int. J. Toxicol. 36, 427–439 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Provenzano, R. et al. Efficacy and cardiovascular safety of roxadustat for treatment of anemia in patients with non-dialysis-dependent CKD: pooled results of three randomized clinical trials. Clin. J. Am. Soc. Nephrol. 16, 1190–1200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kiriakidis, S. et al. Complement C1q is hydroxylated by collagen prolyl 4 hydroxylase and is sensitive to off-target inhibition by prolyl hydroxylase domain inhibitors that stabilize hypoxia-inducible factor. Kidney Int. 92, 900–908 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schejbel, L. et al. Molecular basis of hereditary C1q deficiency–revisited: identification of several novel disease-causing mutations. Genes Immun. 12, 626–634 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Fallah, J. & Rini, B. I. HIF inhibitors: status of current clinical development. Curr. Oncol. Rep. 21, 6 (2019).

    Article  PubMed  Google Scholar 

  139. Aquino-Galvez, A. et al. Effects of 2-methoxyestradiol on apoptosis and HIF-1alpha and HIF-2alpha expression in lung cancer cells under normoxia and hypoxia. Oncol. Rep. 35, 577–583 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Gheorghiade, M., van Veldhuisen, D. J. & Colucci, W. S. Contemporary use of digoxin in the management of cardiovascular disorders. Circulation 113, 2556–2564 (2006).

    Article  PubMed  Google Scholar 

  141. Zhang, H. et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc. Natl Acad. Sci. USA 105, 19579–19586 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  142. Currie, G. M., Wheat, J. M. & Kiat, H. Pharmacokinetic considerations for digoxin in older people. Open Cardiovasc. Med. J. 5, 130–135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ren, X., Diao, X., Zhuang, J. & Wu, D. Structural basis for the allosteric inhibition of hypoxia-inducible factor (HIF)-2 by belzutifan. Mol. Pharmacol. 102, 240–247 (2022).

    Article  CAS  Google Scholar 

  144. Rapisarda, A. et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res. 62, 4316–4324 (2002).

    CAS  PubMed  Google Scholar 

  145. Rapisarda, A. et al. Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res. 64, 1475–1482 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Welsh, S., Williams, R., Kirkpatrick, L., Paine-Murrieta, G. & Powis, G. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol. Cancer Ther. 3, 233–244 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Jacoby, J. J. et al. Treatment with HIF-1alpha antagonist PX-478 inhibits progression and spread of orthotopic human small cell lung cancer and lung adenocarcinoma in mice. J. Thorac. Oncol. 5, 940–949 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Koh, M. Y. et al. Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha. Mol. Cancer Ther. 7, 90–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Miranda, E. et al. A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells. J. Am. Chem. Soc. 135, 10418–10425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Burslem, G. M., Kyle, H. F., Nelson, A., Edwards, T. A. & Wilson, A. J. Hypoxia inducible factor (HIF) as a model for studying inhibition of protein-protein interactions. Chem. Sci. 8, 4188–4202 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Greenberger, L. M. et al. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth. Mol. Cancer Ther. 7, 3598–3608 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Zimmer, M. et al. Small-molecule inhibitors of HIF-2a translation link its 5′UTR iron-responsive element to oxygen sensing. Mol. Cell 32, 838–848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang, D. L., Ghosh, M. C. & Rouault, T. A. The physiological functions of iron regulatory proteins in iron homeostasis - an update. Front. Pharmacol. 5, 124 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Dai, Z. et al. Therapeutic targeting of vascular remodeling and right heart failure in pulmonary arterial hypertension with a HIF-2alpha inhibitor. Am. J. Respir. Crit. Care Med. 198, 1423–1434 (2018). This study reports the beneficial therapeutic effect of pharmacological HIF2α inhibitor C76 in rodent models of pulmonary hypertension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Scheuermann, T. H. et al. Artificial ligand binding within the HIF2alpha PAS-B domain of the HIF2 transcription factor. Proc. Natl Acad. Sci. USA 106, 450–455 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  156. Scheuermann, T. H. et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 9, 271–276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wehn, P. M. et al. Design and activity of specific hypoxia-inducible factor-2alpha (HIF-2alpha) inhibitors for the treatment of clear cell renal cell carcinoma: discovery of clinical candidate (S)-3-((2,2-difluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1 H-inden-4-yl)oxy)-5-fluorobenzonitrile (PT2385). J. Med. Chem. 61, 9691–9721 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Courtney, K. D. et al. HIF-2 complex dissociation, target inhibition, and acquired resistance with PT2385, a first-in-class HIF-2 inhibitor, in patients with clear cell renal cell carcinoma. Clin. Cancer Res. 26, 793–803 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Courtney, K. D. et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2alpha antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 36, 867–874 (2018). This study reports the results from a first-in-human phase I clinical trial indicating a favourable safety profile and activity of HIF2α inhibitor PT2385 in patients with heavily pretreated ccRCC.

    Article  CAS  PubMed  Google Scholar 

  160. Xu, R. et al. 3-[(1S,2S,3R)-2,3-Difluoro-1-hydroxy-7-methylsulfonylindan-4-yl]oxy-5-fluorobenzonitrile (PT2977), a hypoxia-inducible factor 2α (HIF-2α) inhibitor for the treatment of clear cell renal cell carcinoma. J. Med. Chem. 62, 6876–6893 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Choueiri, T. K. et al. Inhibition of hypoxia-inducible factor-2alpha in renal cell carcinoma with belzutifan: a phase 1 trial and biomarker analysis. Nat. Med. 27, 802–805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. No authors listed. FDA OK’s HIF2α inhibitor belzutifan. Cancer Discov. 11, 2360–2361 (2021).

    Article  Google Scholar 

  163. Wong, S. C. et al. HIF2alpha-targeted RNAi therapeutic inhibits clear cell renal cell carcinoma. Mol. Cancer Ther. 17, 140–149 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Ma, Y. et al. HIF2 inactivation and tumor suppression with a tumor-directed RNA-silencing drug in mice and humans. Clin. Cancer Res. 28, 5405–5418 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  165. Muz, B., de la Puente, P., Azab, F. & Azab, A. K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 3, 83–92 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Semenza, G. L. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33, 207–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rapisarda, A. et al. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res. 64, 6845–6848 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Ardizzoni, A. et al. Topotecan, a new active drug in the second-line treatment of small-cell lung cancer: a phase II study in patients with refractory and sensitive disease. The European Organization for Research and Treatment of Cancer Early Clinical Studies Group and New Drug Development Office, and the Lung Cancer Cooperative Group. J. Clin. Oncol. 15, 2090–2096 (1997).

    Article  CAS  PubMed  Google Scholar 

  169. Tibes, R. et al. Results from a phase I, dose-escalation study of PX-478, an orally available inhibitor of HIF-1α. J. Clin. Oncol. 28, 3076–3076 (2010).

    Article  Google Scholar 

  170. Jeong, W. et al. Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor-1 alpha (HIF-1alpha), in patients with refractory solid tumors. Cancer Chemother. Pharmacol. 73, 343–348 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Wu, J. et al. Evaluation of a locked nucleic acid form of antisense oligo targeting HIF-1alpha in advanced hepatocellular carcinoma. World J. Clin. Oncol. 10, 149–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Article  ADS  Google Scholar 

  173. Kasherman, L., Siu, D. H. W., Woodford, R. & Harris, C. A. Angiogenesis inhibitors and immunomodulation in renal cell cancers: the past, present, and future. Cancers 14, 1406 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Pandey, A. K. et al. Mechanisms of VEGF (vascular endothelial growth factor) inhibitor-associated hypertension and vascular disease. Hypertension 71, e1–e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Kamba, T. & McDonald, D. M. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br. J. Cancer 96, 1788–1795 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ganner, A. et al. VHL suppresses RAPTOR and inhibits mTORC1 signaling in clear cell renal cell carcinoma. Sci. Rep. 11, 14827 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  177. Battelli, C. & Cho, D. C. mTOR inhibitors in renal cell carcinoma. Therapy 8, 359–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Toschi, A., Lee, E., Gadir, N., Ohh, M. & Foster, D. A. Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J. Biol. Chem. 283, 34495–34499 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Motzer, R. J. et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer 126, 4156–4167 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Raval, R. R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell Biol. 25, 5675–5686 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pelosci, A. LITESPARK-005 trial reveals PFS benefit of belzutifan in advanced RCC. Cancer Network, Home of the Journal ONCOLOGY (23 August 2023).

  183. Stransky, L. A. et al. Sensitivity of VHL mutant kidney cancers to HIF2 inhibitors does not require an intact p53 pathway. Proc. Natl Acad. Sci. USA 119, e2120403119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Davis, L. et al. Targeting HIF-2alpha in the tumor microenvironment: redefining the role of HIF-2alpha for solid cancer therapy. Cancers 14, 1259 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Feldman, D. R. et al. Phase I trial of bevacizumab plus escalated doses of sunitinib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 1432–1439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Redlich, A. et al. Pseudohypoxic pheochromocytomas and paragangliomas dominate in children. Pediatr. Blood Cancer 68, e28981 (2021).

    Article  CAS  PubMed  Google Scholar 

  187. Yang, C. et al. Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia. J. Mol. Med. 93, 93–104 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Zhuang, Z. et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N. Engl. J. Med. 367, 922–930 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Pacak, K. et al. New syndrome of paraganglioma and somatostatinoma associated with polycythemia. J. Clin. Oncol. 31, 1690–1698 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Yang, C. et al. Novel HIF2A mutations disrupt oxygen sensing, leading to polycythemia, paragangliomas, and somatostatinomas. Blood 121, 2563–2566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wang, H. et al. A transgenic mouse model of Pacak–Zhuang syndrome with an EPAS1 gain-of-function mutation. Cancers 11, 667 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Maron, B. A. Revised definition of pulmonary hypertension and approach to management: a clinical primer. J. Am. Heart Assoc. 12, e029024 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  193. He, M. et al. Hypoxia induces the dysfunction of human endothelial colony-forming cells via HIF-1alpha signaling. Respir. Physiol. Neurobiol. 247, 87–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Shan, F., Li, J. & Huang, Q. Y. HIF-1 alpha-induced up-regulation of miR-9 contributes to phenotypic modulation in pulmonary artery smooth muscle cells during hypoxia. J. Cell Physiol. 229, 1511–1520 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. Zeng, Y. et al. Hypoxia inducible factor-1 mediates expression of miR-322: potential role in proliferation and migration of pulmonary arterial smooth muscle cells. Sci. Rep. 5, 12098 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  196. Luo, Y. et al. CD146-HIF-1alpha hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension. Nat. Commun. 10, 3551 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  197. Tang, H. et al. Endothelial HIF-2alpha contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition. Am. J. Physiol. Lung Cell Mol. Physiol. 314, L256–L275 (2018).

    PubMed  Google Scholar 

  198. Hu, C. J. et al. Suppression of HIF2 signalling attenuates the initiation of hypoxia-induced pulmonary hypertension. Eur. Respir. J. 54, 1900378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kim, Y. M. et al. Hypoxia-inducible factor-1alpha in pulmonary artery smooth muscle cells lowers vascular tone by decreasing myosin light chain phosphorylation. Circ. Res. 112, 1230–1233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kojima, H. et al. Hypoxia-inducible factor-1 alpha deletion in myeloid lineage attenuates hypoxia-induced pulmonary hypertension. Physiol. Rep. 7, e14025 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Yu, Y. A. et al. Nonclassical monocytes sense hypoxia, regulate pulmonary vascular remodeling, and promote pulmonary hypertension. J. Immunol. 204, 1474–1485 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Cowburn, A. S. et al. HIF2alpha–arginase axis is essential for the development of pulmonary hypertension. Proc. Natl Acad. Sci. USA 113, 8801–8806 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  203. Labrousse-Arias, D. et al. HIF-2alpha-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction. Cardiovasc. Res. 109, 115–130 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Wang, S. et al. EPAS1 (endothelial PAS domain protein 1) orchestrates transactivation of endothelial ICAM1 (intercellular adhesion molecule 1) by small nucleolar RNA host gene 5 (SNHG5) to promote hypoxic pulmonary hypertension. Hypertension 78, 1080–1091 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Tan, Q. et al. Erythrocytosis and pulmonary hypertension in a mouse model of human HIF2A gain of function mutation. J. Biol. Chem. 288, 17134–17144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Jiang, Y. et al. Topotecan prevents hypoxia-induced pulmonary arterial hypertension and inhibits hypoxia-inducible factor-1alpha and TRPC channels. Int. J. Biochem. Cell Biol. 104, 161–170 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Ghosh, M. C. et al. Therapeutic inhibition of HIF-2alpha reverses polycythemia and pulmonary hypertension in murine models of human diseases. Blood 137, 2509–2519 (2021). This study shows the beneficial therapeutic effect of pharmacological HIF2α inhibitor belzutifan in a murine model of polycythaemia, pulmonary hypertension, pulmonary fibrosis and complications due to gain-of-function mutation of HIF2A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Campochiaro, P. A. Ocular neovascularization. J. Mol. Med. 91, 311–321 (2013).

    Article  CAS  PubMed  Google Scholar 

  209. Ozaki, H. et al. Hypoxia inducible factor-1alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest. Ophthalmol. Vis. Sci. 40, 182–189 (1999).

    CAS  PubMed  Google Scholar 

  210. Kelly, B. D. et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ. Res. 93, 1074–1081 (2003).

    Article  CAS  PubMed  Google Scholar 

  211. Barben, M., Schori, C., Samardzija, M. & Grimm, C. Targeting Hif1a rescues cone degeneration and prevents subretinal neovascularization in a model of chronic hypoxia. Mol. Neurodegener. 13, 12 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Dioum, E. M., Clarke, S. L., Ding, K., Repa, J. J. & Garcia, J. A. HIF-2alpha-haploinsufficient mice have blunted retinal neovascularization due to impaired expression of a proangiogenic gene battery. Invest. Ophthalmol. Vis. Sci. 49, 2714–2720 (2008).

    Article  PubMed  Google Scholar 

  213. Qin, Y. et al. PAI-1 is a vascular cell-specific HIF-2-dependent angiogenic factor that promotes retinal neovascularization in diabetic patients. Sci. Adv. 8, eabm1896 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Zeng, M. et al. The HIF-1 antagonist acriflavine: visualization in retina and suppression of ocular neovascularization. J. Mol. Med. 95, 417–429 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Usui-Ouchi, A. et al. An allosteric peptide inhibitor of HIF-1alpha regulates hypoxia-induced retinal neovascularization. Proc. Natl Acad. Sci. USA 117, 28297–28306 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  216. Miwa, Y. et al. Pharmacological HIF inhibition prevents retinal neovascularization with improved visual function in a murine oxygen-induced retinopathy model. Neurochem. Int. 128, 21–31 (2019).

    Article  CAS  PubMed  Google Scholar 

  217. Pan, X. & Lv, Y. Effects and mechanism of action of PX-478 in oxygen-induced retinopathy in mice. Ophthalmic Res. 63, 182–193 (2020).

    Article  CAS  PubMed  Google Scholar 

  218. Cheng, X. et al. Marked and rapid effects of pharmacological HIF-2alpha antagonism on hypoxic ventilatory control. J. Clin. Invest. 130, 2237–2251 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  219. Macias, D. et al. HIF-2alpha is essential for carotid body development and function. eLife 7, e34681 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Cho, H. et al. On-target efficacy of a HIF-2alpha antagonist in preclinical kidney cancer models. Nature 539, 107–111 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  221. Watts, E. R. & Walmsley, S. R. Inflammation and hypoxia: HIF and PHD isoform selectivity. Trends Mol. Med. 25, 33–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Lee, J. W. et al. Transcription-independent induction of ERBB1 through hypoxia-inducible factor 2A provides cardioprotection during ischemia and reperfusion. Anesthesiology 132, 763–780 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Zuk, A. et al. Preclinical characterization of vadadustat (AKB-6548), an oral small molecule hypoxia-inducible factor prolyl-4-hydroxylase inhibitor, for the potential treatment of renal anemia. J. Pharmacol. Exp. Ther. 383, 11–24 (2022).

    Article  CAS  PubMed  Google Scholar 

  224. Li, J. et al. PMN-derived netrin-1 attenuates cardiac ischemia-reperfusion injury via myeloid ADORA2B signaling. J. Exp. Med. 218, e20210008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ruan, W. et al. The hypoxia-adenosine link during myocardial ischemia-reperfusion injury. Biomedicines 10, 1939 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Conrad, C. & Eltzschig, H. K. Disease mechanisms of perioperative organ injury. Anesth. Analg. 131, 1730–1750 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Hara, K., Takahashi, N., Wakamatsu, A. & Caltabiano, S. Pharmacokinetics, pharmacodynamics and safety of single, oral doses of GSK1278863, a novel HIF-prolyl hydroxylase inhibitor, in healthy Japanese and Caucasian subjects. Drug. Metab. Pharmacokinet. 30, 410–418 (2015).

    Article  CAS  PubMed  Google Scholar 

  228. Kansagra, K. A. et al. Phase I clinical study of ZYAN1, a novel prolyl-hydroxylase (PHD) inhibitor to evaluate the safety, tolerability, and pharmacokinetics following oral administration in healthy volunteers. Clin. Pharmacokinet. 57, 87–102 (2018).

    Article  CAS  PubMed  Google Scholar 

  229. Parmar, D. V. et al. Outcomes of desidustat treatment in people with anemia and chronic kidney disease: a phase 2 study. Am. J. Nephrol. 49, 470–478 (2019).

    Article  CAS  PubMed  Google Scholar 

  230. Bottcher, M. et al. First-in-man-proof of concept study with molidustat: a novel selective oral HIF-prolyl hydroxylase inhibitor for the treatment of renal anaemia. Br. J. Clin. Pharmacol. 84, 1557–1565 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Beck, H. et al. Discovery of molidustat (BAY 85-3934): a small-molecule oral HIF-prolyl hydroxylase (HIF-PH) inhibitor for the treatment of renal anemia. ChemMedChem 13, 988–1003 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Czock, D. & Keller, F. Clinical pharmacokinetics and pharmacodynamics of roxadustat. Clin. Pharmacokinet. 61, 347–362 (2022).

    Article  CAS  PubMed  Google Scholar 

  233. Provenzano, R. et al. Oral hypoxia–inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) for the treatment of anemia in patients with CKD. Clin. J. Am. Soc. Nephrol. 11, 982–991 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Shibata, T. et al. Evaluation of food and spherical carbon adsorbent effects on the pharmacokinetics of roxadustat in healthy nonelderly adult male japanese subjects. Clin. Pharmacol. Drug. Dev. 8, 304–313 (2019).

    Article  CAS  PubMed  Google Scholar 

  235. Dhillon, S. Roxadustat: first global approval. Drugs 79, 563–572 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Provenzano, R. et al. Roxadustat (FG-4592) versus epoetin alfa for anemia in patients receiving maintenance hemodialysis: a phase 2, randomized, 6-to 19-week, open-label, active-comparator, dose-ranging, safety and exploratory efficacy study. Am. J. Kidney Dis. 67, 912–924 (2016).

    Article  CAS  PubMed  Google Scholar 

  237. Chen, N., Hao, C. & Liu, B. A phase 3, randomized, open-label, active-controlled study of efficacy and safety of roxadustat for treatment of anemia in subjects with CKD on dialysis. J. Am. Soc. Nephrol. 29, B5 (2018).

    Google Scholar 

  238. Besarab, A. et al. Roxadustat (FG-4592): correction of anemia in incident dialysis patients. J. Am. Soc. Nephrol. 27, 1225–1233 (2016).

    Article  CAS  PubMed  Google Scholar 

  239. Besarab, A. et al. Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol. Dial. Transplant. 30, 1665–1673 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Chavan, A. et al. Effect of moderate hepatic impairment on the pharmacokinetics of vadadustat, an oral hypoxia-inducible factor prolyl hydroxylase inhibitor. Clin. Pharmacol. Drug. Dev. 10, 950–958 (2021).

    Article  CAS  PubMed  Google Scholar 

  241. Nwogu, J. I. et al. Inhibition of collagen synthesis with prolyl 4-hydroxylase inhibitor improves left ventricular function and alters the pattern of left ventricular dilatation after myocardial infarction. Circulation 104, 2216–2221 (2001).

    Article  CAS  PubMed  Google Scholar 

  242. Xi, L., Taher, M., Yin, C., Salloum, F. & Kukreja, R. C. Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1α and AP-1 and iNOS signaling. Am. J. Physiol. Heart Circ. Physiol. 287, H2369–H2375 (2004).

    Article  CAS  PubMed  Google Scholar 

  243. Bao, W. et al. Chronic inhibition of hypoxia-inducible factor prolyl 4-hydroxylase improves ventricular performance, remodeling, and vascularity after myocardial infarction in the rat. J. Cardiovasc. Pharmacol. 56, 147–155 (2010).

    Article  CAS  PubMed  Google Scholar 

  244. Signore, P. E. et al. A small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase improves obesity, nephropathy and cardiomyopathy in obese ZSF1 rats. PLoS ONE 16, e0255022 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Philipp, S. et al. Stabilization of hypoxia inducible factor rather than modulation of collagen metabolism improves cardiac function after acute myocardial infarction in rats. Eur. J. Heart Fail. 8, 347–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  246. Vogler, M. et al. Pre-and post-conditional inhibition of prolyl-4-hydroxylase domain enzymes protects the heart from an ischemic insult. Pflügers Arch. 467, 2141–2149 (2015).

    Article  CAS  PubMed  Google Scholar 

  247. Keränen, M. et al. Differential effects of pharmacological HIF preconditioning of donors versus recipients in rat cardiac allografts. Am. J. Transplant. 13, 600–610 (2013).

    Article  PubMed  Google Scholar 

  248. Eckle, T., Köhler, D., Lehmann, R., El Kasmi, K. C. & Eltzschig, H. K. Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 118, 166–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  249. Natarajan, R., Salloum, F. N., Fisher, B. J., Kukreja, R. C. & Fowler, A. A. III Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ. Res. 98, 133–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  250. Natarajan, R. et al. Activation of hypoxia-inducible factor-1 via prolyl-4 hydoxylase-2 gene silencing attenuates acute inflammatory responses in postischemic myocardium. Am. J. Physiol. Heart Circ. Physiol. 293, H1571–H1580 (2007).

    Article  CAS  PubMed  Google Scholar 

  251. Ockaili, R. et al. HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am. J. Physiol. Heart Circ. Physiol. 289, H542–H548 (2005).

    Article  CAS  PubMed  Google Scholar 

  252. Zhao, H.-X. et al. Attenuation of myocardial injury by postconditioning: role of hypoxia inducible factor-1α. Basic Res. Cardiol. 105, 109–118 (2010).

    Article  CAS  PubMed  Google Scholar 

  253. Huang, M. et al. Short hairpin RNA interference therapy for ischemic heart disease. Circulation 118, S226–S233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Hyvärinen, J. et al. Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia–reperfusion injury. J. Biol. Chem. 285, 13646–13657 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Kerkelä, R. et al. Activation of hypoxia response in endothelial cells contributes to ischemic cardioprotection. Mol. Cell. Biol. 33, 3321–3329 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Hölscher, M. et al. Cardiomyocyte-specific prolyl-4-hydroxylase domain 2 knock out protects from acute myocardial ischemic injury. J. Biol. Chem. 286, 11185–11194 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Adluri, R. S. et al. Disruption of hypoxia-inducible transcription factor-prolyl hydroxylase domain-1 (PHD-1−/−) attenuates ex vivo myocardial ischemia/reperfusion injury through hypoxia-inducible factor-1α transcription factor and its target genes in mice. Antioxid. Redox Signal. 15, 1789–1797 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Oriowo, B. et al. Targeted gene deletion of prolyl hydroxylase domain protein 3 triggers angiogenesis and preserves cardiac function by stabilizing hypoxia inducible factor 1 alpha following myocardial infarction. Curr. Pharm. Des. 20, 1305–1310 (2014).

    Article  CAS  PubMed  Google Scholar 

  259. Xie, L. et al. Depletion of PHD3 protects heart from ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. J. Mol. Cell. Cardiol. 80, 156–165 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Deguchi, H. et al. Roxadustat markedly reduces myocardial ischemia reperfusion injury in mice. Circ. J. 84, 1028–1033 (2020).

    Article  CAS  PubMed  Google Scholar 

  261. Zhong, Z. et al. Activation of the oxygen-sensing signal cascade prevents mitochondrial injury after mouse liver ischemia-reperfusion. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G823–G832 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Harnoss, J. M. et al. Prolyl hydroxylase inhibition mitigates allograft injury during liver transplant. Transplantation 106, e430–e440 (2022).

    Article  CAS  PubMed  Google Scholar 

  263. Harnoss, J. M. et al. Prolyl hydroxylase inhibition enhances liver regeneration without induction of tumor growth. Ann. Surg. 265, 782–791 (2017).

    Article  PubMed  Google Scholar 

  264. Schneider, M. et al. Loss or silencing of the PHD1 prolyl hydroxylase protects livers of mice against ischemia/reperfusion injury. Gastroenterology 138, 1143–1154 (2010). e1141–1142.

    Article  CAS  PubMed  Google Scholar 

  265. Liu, J. et al. Double knockdown of PHD1 and Keap1 attenuated hypoxia-induced injuries in hepatocytes. Front. Physiol. 8, 291 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Mollenhauer, M. et al. Deficiency of the oxygen sensor PHD1 augments liver regeneration after partial hepatectomy. Langenbecks Arch. Surg. 397, 1313–1322 (2012).

    Article  PubMed  Google Scholar 

  267. Matsumoto, M. et al. Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J. Am. Soc. Nephrol. 14, 1825–1832 (2003).

    Article  PubMed  Google Scholar 

  268. Bernhardt, W. M. et al. Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J. Am. Soc. Nephrol. 17, 1970–1978 (2006).

    Article  CAS  PubMed  Google Scholar 

  269. Xie, D. et al. Kidney-targeted delivery of prolyl hydroxylase domain protein 2 small interfering RNA with nanoparticles alleviated renal ischemia/reperfusion injury. J. Pharmacol. Exp. Ther. 378, 235–243 (2021).

    Article  CAS  PubMed  Google Scholar 

  270. Jamadarkhana, P. et al. Treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates ischemic acute kidney injury. Am. J. Nephrol. 36, 208–218 (2012).

    Article  CAS  PubMed  Google Scholar 

  271. Yang, Y. et al. Hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) protects against cisplatin-induced acute kidney injury. Clin. Sci. 132, 825–838 (2018).

    Article  CAS  Google Scholar 

  272. Ito, M. et al. Prolyl hydroxylase inhibition protects the kidneys from ischemia via upregulation of glycogen storage. Kidney Int. 97, 687–701 (2020).

    Article  CAS  PubMed  Google Scholar 

  273. Bernhardt, W. et al. Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. Proc. Natl Acad. Sci. USA 106, 21276–21281 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  274. Tambuwala, M. M. et al. Loss of prolyl hydroxylase-1 protects against colitis through reduced epithelial cell apoptosis and increased barrier function. Gastroenterology 139, 2093–2101 (2010).

    Article  CAS  PubMed  Google Scholar 

  275. Cummins, E. P. et al. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134, 156–165.e151 (2008).

    Article  CAS  PubMed  Google Scholar 

  276. Tambuwala, M. M. et al. Targeted delivery of the hydroxylase inhibitor DMOG provides enhanced efficacy with reduced systemic exposure in a murine model of colitis. J. Control. Release 217, 221–227 (2015).

    Article  CAS  PubMed  Google Scholar 

  277. Manresa, M. C. et al. Hydroxylase inhibition regulates inflammation-induced intestinal fibrosis through the suppression of ERK-mediated TGF-β1 signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G1076–G1090 (2016).

    Article  PubMed  Google Scholar 

  278. Halligan, D. N. et al. Hypoxia-inducible factor hydroxylase inhibition enhances the protective effects of cyclosporine in colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G90–G97 (2019).

    Article  CAS  PubMed  Google Scholar 

  279. Robinson, A. et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134, 145–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  280. Marks, E. et al. Oral delivery of prolyl hydroxylase inhibitor: AKB-4924 promotes localized mucosal healing in a mouse model of colitis. Inflamm. Bowel Dis. 21, 267–275 (2015).

    Article  PubMed  Google Scholar 

  281. Keely, S. et al. Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis. Mucosal Immunol. 7, 114–123 (2014).

    Article  CAS  PubMed  Google Scholar 

  282. Van Welden, S. et al. Haematopoietic prolyl hydroxylase‐1 deficiency promotes M2 macrophage polarization and is both necessary and sufficient to protect against experimental colitis. J. Pathol. 241, 547–558 (2017).

    Article  PubMed  Google Scholar 

  283. Okumura, C. Y. et al. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection. J. Mol. Med. 90, 1079–1089 (2012).

    Article  CAS  PubMed  Google Scholar 

  284. Zinkernagel, A. S., Peyssonnaux, C., Johnson, R. S. & Nizet, V. Pharmacologic augmentation of hypoxia-inducible factor—1α with mimosine boosts the bactericidal capacity of phagocytes. J. Infect. Dis. 197, 214–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  285. Hirota, S. A. et al. Hypoxia-inducible factor signaling provides protection in Clostridium difficile-induced intestinal injury. Gastroenterology 139, 259–269.e253 (2010).

    Article  CAS  PubMed  Google Scholar 

  286. Schaible, B. et al. Hypoxia modulates infection of epithelial cells by Pseudomonas aeruginosa. PLoS ONE 8, e56491 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  287. Hirai, K., Furusho, H., Hirota, K. & Sasaki, H. Activation of hypoxia-inducible factor 1 attenuates periapical inflammation and bone loss. Int. J. Oral Sci. 10, 12 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Wood, J. G. et al. Heme oxygenase‐1 upregulation following prolyl hydroxylase inhibition attenuates hypoxia‐induced microvascular inflammation. FASEB J. 23, 762.719 (2009).

    Article  Google Scholar 

  289. Howard, J. M. et al. Upregulation of HIF-1 attenuates hemorrhagic shock/resuscitation-induced leukocyte adherence via an iNOS-dependent pathway. J. Am. Coll. Surg. 207, S39 (2008).

    Article  Google Scholar 

  290. Figg, W. D. Jr. et al. Structural basis of prolyl hydroxylase domain inhibition by molidustat. ChemMedChem 16, 2082–2088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Wu, D. et al. Bidirectional modulation of HIF-2 activity through chemical ligands. Nat. Chem. Biol. 15, 367–376 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Wallace, E. M. et al. A small-molecule antagonist of HIF2alpha is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 76, 5491–5500 (2016).

    Article  CAS  PubMed  Google Scholar 

  293. Haase, V. H. HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism. Hemodial. Int. 21, S110–S124 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Eckle, T. et al. Crosstalk between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury. FASEB J. 27, 3078–3089 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Aherne, C. M. et al. Coordination of ENT2-dependent adenosine transport and signaling dampens mucosal inflammation. JCI Insight 3, e121521 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Ruan, W. et al. Targeting myocardial equilibrative nucleoside transporter ENT1 provides cardioprotection by enhancing myeloid Adora2b signaling. JCI Insight 8, e166011 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Wang, G. L. & Semenza, G. L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl Acad. Sci. USA 90, 4304–4308 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  298. Fraisl, P., Aragones, J. & Carmeliet, P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat. Rev. Drug. Discov. 8, 139–152 (2009).

    Article  CAS  PubMed  Google Scholar 

  299. Aragones, J. et al. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 40, 170–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  300. Ruan, W., Yuan, X. & Eltzschig, H. K. Circadian rhythm as a therapeutic target. Nat. Rev. Drug. Discov. 20, 287–307 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Semenza, G. L. HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J. Bioenerg. Biomembr. 39, 231–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  302. Carmeliet, P. et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485–490 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  303. Forsythe, J. A. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell Biol. 16, 4604–4613 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Eltzschig, H. K., Weissmuller, T., Mager, A. & Eckle, T. Nucleotide metabolism and cell-cell interactions. Methods Mol. Biol. 341, 73–87 (2006).

    CAS  PubMed  Google Scholar 

  305. Synnestvedt, K. et al. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest. 110, 993–1002 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Ahmad, A. et al. Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells. Proc. Natl Acad. Sci. USA 106, 10684–10689 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  307. Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414, 916–920 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  308. Morote-Garcia, J. C., Rosenberger, P., Kuhlicke, J. & Eltzschig, H. K. HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood 111, 5571–5580 (2008).

    Article  CAS  PubMed  Google Scholar 

  309. Yuan, X. et al. Alternative adenosine receptor activation: the netrin-Adora2b link. Front. Pharmacol. 13, 944994 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Heck-Swain, K. L. et al. Myeloid hypoxia-inducible factor HIF1A provides cardio-protection during ischemia and reperfusion via induction of netrin-1. Front. Cardiovasc. Med. 9, 970415 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Ohta, A. A metabolic immune checkpoint: adenosine in tumor microenvironment. Front. Immunol. 7, 109 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Choudhry, H. & Harris, A. L. Advances in hypoxia-inducible factor biology. Cell Metab. 27, 281–298 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.K.E. is supported by National Institute of Health Grants R01HL154720, R01HL154720-03S1, R01HL165748, R01HL169519, R01DK122796, T32GM135118, Department of Defense Grant W81XWH2110032, and sponsored contract through Akebia Therapeutics. X.Y. is supported by National Institute of Health Grants R01HL155950, R01HL155950-02S1, R01HL169519, Parker B. Francis Fellowship, and sponsored contract through Akebia Therapeutics. W.R. is supported by Natural Science Foundation of Hunan Province Grant 018JJ3736, Young Talent Foundation of Hunan Province Grant 2021RC3034, and 2022 International Anesthesia Research Society Mentored Research Award.

Author information

Authors and Affiliations

Authors

Contributions

X.Y. and W.R. equally researched data for the article, made substantial contribution to discussion of content, wrote the article and reviewed and edited the manuscript before submission. B.B. and P.C. reviewed and edited the article before submission. H.K.E. contributed substantially to conceptualization of the content of the article and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Xiaoyi Yuan or Holger K. Eltzschig.

Ethics declarations

Competing interests

H.K.E., B.B. and X.Y. received research funding through a contract between Akebia Therapeutics and UTHealth to support a clinical trial on the effect of vadadustat in hospitalized patients with COVID-19 (NCT04478071). Akebia Therapeutics is not involved in conceptualization, design, data collection, analysis, decision to publish or preparation of the manuscript. W.R. and P.C. declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Kevin Gardner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Human Protein Atlas: https://www.proteinatlas.org/

Worldwide Protein Data Bank: https://www.wwpdb.org

Glossary

ADORA2B receptor

A G-protein-coupled receptor that is activated by the signalling molecule adenosine. It has a role in regulating various physiological processes, including inflammation, angiogenesis and immune cell function.

Angiopoietin 1 (ANGPT1) and ANGPT2

Two growth factors that have crucial roles in the regulation of angiogenesis, blood vessel maturation and vascular stability. Whereas ANGPT1 generally promotes vessel stabilization and maturation, ANGPT2 is often associated with vascular destabilization and remodelling, facilitating the actions of other angiogenic factors such as vascular endothelial growth factor.

C-terminal transactivation domain

(C-TAD). A region found at the C terminus of certain transcription factors, including hypoxia-inducible factors, which is responsible for activating target gene transcription by recruiting coactivators and other components of the transcription machinery to the target gene promoter.

Erythropoiesis-stimulating agents

(ESAs). A group of medications that mimic the effects of erythropoietin, promoting the production of red blood cells in the bone marrow and used to treat conditions such as anaemia.

Erythropoietin

(EPO). A glycoprotein cytokine primarily produced by the kidneys in response to cellular hypoxia. Its main biological function is to stimulate erythropoiesis in the bone marrow.

Factor inhibiting HIF

(FIH). Also known as asparaginyl hydroxylase; hydroxylates a specific asparagine residue in the C-terminal transactivation domain of hypoxia-inducible factors (HIFs). This modification inhibits the interaction between HIFs and the transcriptional coactivators histone acetyltransferase p300 and cyclic adenosine monophosphate response element binding protein (CREB) binding protein (CBP), thereby reducing HIF-mediated gene transcription.

Hepcidin

Hepcidin is a liver-produced peptide hormone that regulates iron metabolism by inhibiting iron release from cells and decreasing dietary iron absorption, thereby maintaining iron homeostasis in the body.

Hypoxia-responsive elements

(HREs). Short DNA sequences found in the regulatory regions of hypoxia-inducible genes, which allow for their transcriptional activation by hypoxia-inducible factors when cellular oxygen levels are low, thereby promoting cellular adaptation to hypoxic conditions.

Lipopolysaccharide (LPS) treatment

The experimental administration of LPSs, molecules from the outer membrane of Gram-negative bacteria, to induce an inflammatory response in the lungs, simulating conditions such as acute respiratory distress syndrome for research purposes.

Locked nucleic acid

A modified RNA nucleotide in which the ribose ring is ‘locked’ by a methylene bridge connecting the 2′-O atom with the 4′-C atom, which enhances its thermal stability and its affinity for complementary RNA and DNA strands, making it a valuable tool in molecular biology and medical research, particularly in the fields of genomics and therapeutics.

Pacak–Zhuang syndrome

A rare condition characterized by the presence of paragangliomas, often in the head and neck region, and associated with somatic mutations in the HIF2A gene, which encodes hypoxia-inducible factor 2α. This syndrome may also be accompanied by polycythaemia and, in some cases, duodenal somatostatinomas.

Polycythaemia

A condition characterized by an increased number of red blood cells in the bloodstream, which can thicken the blood, slow its flow and increase the risk of clotting. It can be a primary disease owing to mutations in the bone marrow cells, referred to as polycythaemia vera, or secondary, often as a response to hypoxia or certain tumours.

Respiratory bursts

Rapid increases in cellular oxygen consumption, primarily in immune cells such as neutrophils and macrophages, that lead to the production of reactive oxygen species to combat pathogens during an immune response.

Von Hippel–Lindau protein

(pVHL). A tumour suppressor protein involved in regulation of cellular responses to oxygen levels by targeting hypoxia-inducible factors for degradation under normal oxygen conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Ruan, W., Bobrow, B. et al. Targeting hypoxia-inducible factors: therapeutic opportunities and challenges. Nat Rev Drug Discov 23, 175–200 (2024). https://doi.org/10.1038/s41573-023-00848-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00848-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research