Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug delivery systems for CRISPR-based genome editors

Abstract

CRISPR-based drugs can theoretically manipulate any genetic target. In practice, however, these drugs must enter the desired cell without eliciting an unwanted immune response, so a delivery system is often required. Here, we review drug delivery systems for CRISPR-based genome editors, focusing on adeno-associated viruses and lipid nanoparticles. After describing how these systems are engineered and their subsequent characterization in preclinical animal models, we highlight data from recent clinical trials. Preclinical targeting mediated by polymers, proteins, including virus-like particles, and other vehicles that may deliver CRISPR systems in the future is also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The size of commonly used gene-editing cassettes.
Fig. 2: Split AAV vector design.
Fig. 3: Generation of adeno-associated virus capsid libraries and selection of capsids with enhanced delivery ability in vivo.
Fig. 4: Single-cell nanoparticle targeting sequencing for high-throughput in vivo LNP screens with single-cell resolution.
Fig. 5: FDA-approved LNPs consist of four simple lipid components.
Fig. 6: Non-adeno-associated virus and non-lipid nanoparticle delivery systems that deliver gene editors.

Similar content being viewed by others

References

  1. Li, Y., Glass, Z., Huang, M., Chen, Z. Y. & Xu, Q. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials 234, 119711 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dong, W. & Kantor, B. Lentiviral vectors for delivery of gene-editing systems based on CRISPR/Cas: current state and perspectives. Viruses 13, 1288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Sontheimer, E. J. & Barrangou, R. The bacterial origins of the CRISPR genome-editing revolution. Hum. Gene Ther. 26, 413–424 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164, 29–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, H., La Russa, M. & Qi, L. S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85, 227–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Hille, F. et al. The biology of CRISPR-Cas: backward and forward. Cell 172, 1239–1259 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, F. Development of CRISPR-Cas systems for genome editing and beyond. Q. Rev. Biophys. 52, 1–31 (2019).

    Article  Google Scholar 

  10. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, G., Lin, Q., Jin, S. & Gao, C. The CRISPR-Cas toolbox and gene editing technologies. Mol. Cell 82, 333–347 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yeo, N. C. et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat. Methods 15, 611–616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vojta, A. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat. Methods 10, 973–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choudhury, S. R., Cui, Y., Lubecka, K., Stefanska, B. & Irudayaraj, J. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7, 46545–46556 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choi, J. et al. Precise genomic deletions using paired prime editing. Nat. Biotechnol. 40, 218–226 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Durrant, M. G. et al. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. Nat. Biotechnol. 41, 488–499 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Beyersdorf, J. P. et al. Robust, durable gene activation in vivo via mRNA-encoded activators. ACS Nano 16, 5660–5671 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Geall, A. J. et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl Acad. Sci. USA 109, 14604–14609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chahal, J. S. et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl Acad. Sci. USA 113, E4133–E4142 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Packer, M., Gyawali, D., Yerabolu, R., Schariter, J. & White, P. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat. Commun. 12, 6777 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dousis, A., Ravichandran, K., Hobert, E. M., Moore, M. J. & Rabideau, A. E. An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts. Nat. Biotechnol. 41, 560–568 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xia, H. et al. Psychrophilic phage VSW-3 RNA polymerase reduces both terminal and full-length dsRNA byproducts in in vitro transcription. RNA Biol. 19, 1130–1142 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, G. et al. mRNA produced by VSW-3 RNAP has high-level translation efficiency with low inflammatory stimulation. Cell Insight 1, 100056 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li, S. et al. Payload distribution and capacity of mRNA lipid nanoparticles. Nat. Commun. 13, 5561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Russell, S. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390, 849–860 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Day, J. W. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 20, 284–293 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Kuzmin, D. A. et al. The clinical landscape for AAV gene therapies. Nat. Rev. Drug Discov. 20, 173–174 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Wu, Z., Asokan, A. & Samulski, R. J. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther. 14, 316–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Van Vliet, K. M., Blouin, V., Brument, N., Agbandje-McKenna, M. & Snyder, R. O. The role of the adeno-associated virus capsid in gene transfer. Methods Mol. Biol. 437, 51–91 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bennett, A., Mietzsch, M. & Agbandje-McKenna, M. Understanding capsid assembly and genome packaging for adeno-associated viruses. Future Virol. 12, 283–297 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Johnson, J. S. et al. Mutagenesis of adeno-associated virus type 2 capsid protein VP1 uncovers new roles for basic amino acids in trafficking and cell-specific transduction. J. Virol. 84, 8888–8902 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sonntag, F., Schmidt, K. & Kleinschmidt, J. A. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc. Natl Acad. Sci. USA 107, 10220–10225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Earley, L. F. et al. Adeno-associated virus (AAV) assembly-activating protein is not an essential requirement for capsid assembly of AAV serotypes 4, 5, and 11. J. Virol. 91, e01980-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ogden, P. J., Kelsic, E. D., Sinai, S. & Church, G. M. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 366, 1139–1143 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Elmore, Z. C. et al. The membrane associated accessory protein is an adeno-associated viral egress factor. Nat. Commun. 12, 6239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Im, D. S. & Muzyczka, N. The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity. Cell 61, 447–457 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Weitzman, M. D., Kyöstiö, S. R., Kotin, R. M. & Owens, R. A. Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc. Natl Acad. Sci. USA 91, 5808–5812 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lamartina, S., Ciliberto, G. & Toniatti, C. Selective cleavage of AAVS1 substrates by the adeno-associated virus type 2 rep68 protein is dependent on topological and sequence constraints. J. Virol. 74, 8831–8842 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yoon-Robarts, M. et al. Residues within the B′ motif are critical for DNA binding by the superfamily 3 helicase Rep40 of adeno-associated virus type 2. J. Biol. Chem. 279, 50472–50481 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Dutheil, N. et al. Adeno-associated virus Rep represses the human integration site promoter by two pathways that are similar to those required for the regulation of the viral p5 promoter. J. Virol. 88, 8227–8241 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dong, B., Nakai, H. & Xiao, W. Characterization of genome integrity for oversized recombinant AAV vector. Mol. Ther. 18, 87–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Gray, S. J. et al. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum. Gene Ther. 22, 1143–1153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choi, J. H. et al. Optimization of AAV expression cassettes to improve packaging capacity and transgene expression in neurons. Mol. Brain 7, 17 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang, B., Li, J. & Xiao, X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc. Natl Acad. Sci. USA 97, 13714–13719 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Duan, D. Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol. Ther. 26, 2337–2356 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Edraki, A. et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73, 714–726.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Ibraheim, R. et al. Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo. Nat. Commun. 12, 6267 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, H. et al. Adenine base editing in vivo with a single adeno-associated virus vector. GEN Biotechnol. 1, 285–299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Davis, J. R. et al. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nat. Biomed. Eng. 6, 1272–1283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362, 839–842 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pausch, P. et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Karvelis, T. et al. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res. 48, 5016–5023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu, X. et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Kim, D. Y. et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol. 40, 94–102 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194–197 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Patel, A., Zhao, J., Duan, D. & Lai, Y. Design of AAV vectors for delivery of large or multiple transgenes. Methods Mol. Biol. 1950, 19–33 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Duan, D., Yue, Y. & Engelhardt, J. F. Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol. Ther. 4, 383–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Lai, Y. et al. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat. Biotechnol. 23, 1435–1439 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tornabene, P. et al. Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci. Transl Med. 11, eaav4523 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Hirsch, M. L., Wolf, S. J. & Samulski, R. J. Delivering transgenic DNA exceeding the carrying capacity of AAV vectors. Methods Mol. Biol. 1382, 21–39 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Truong, D. J. et al. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. 43, 6450–6458 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lebek, S. et al. Ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing as a therapy for cardiac disease. Science 379, 179–185 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chai, A. C. et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat. Med. 29, 401–411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Reichart, D. et al. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat. Med. 29, 412–421 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chemello, F. et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci. Adv. 7, eabg4910 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gao, Z. et al. A truncated reverse transcriptase enhances prime editing by split AAV vectors. Mol. Ther. 30, 2942–2951 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nishiyama, T. et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci. Transl Med. 14, eade1633 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Summerford, C. & Samulski, R. J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 72, 1438–1445 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kaludov, N., Brown, K. E., Walters, R. W., Zabner, J. & Chiorini, J. A. Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J. Virol. 75, 6884–6893 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Walters, R. W. et al. Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J. Biol. Chem. 276, 20610–20616 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Wu, Z., Miller, E., Agbandje-McKenna, M. & Samulski, R. J. Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J. Virol. 80, 9093–9103 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ng, R. et al. Structural characterization of the dual glycan binding adeno-associated virus serotype 6. J. Virol. 84, 12945–12957 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shen, S., Bryant, K. D., Brown, S. M., Randell, S. H. & Asokan, A. Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J. Biol. Chem. 286, 13532–13540 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ströh, L. J. & Stehle, T. Glycan engagement by viruses: receptor switches and specificity. Annu. Rev. Virol. 1, 285–306 (2014).

    Article  PubMed  Google Scholar 

  97. Srivastava, A. In vivo tissue-tropism of adeno-associated viral vectors. Curr. Opin. Virol. 21, 75–80 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Asokan, A. et al. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat. Biotechnol. 28, 79–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Wu, Z. et al. Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J. Virol. 80, 11393–11397 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shen, S. et al. Engraftment of a galactose receptor footprint onto adeno-associated viral capsids improves transduction efficiency. J. Biol. Chem. 288, 28814–28823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Girod, A. et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat. Med. 5, 1052–1056 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Grifman, M. et al. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol. Ther. 3, 964–975 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Eichhoff, A. M. et al. Nanobody-enhanced targeting of AAV gene therapy vectors. Mol. Ther. Methods Clin. Dev. 15, 211–220 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dalkara, D. et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci. Transl Med. 5, 189ra176 (2013).

    Article  Google Scholar 

  105. Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection. Neuron 92, 372–382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Davidsson, M. et al. A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism. Proc. Natl Acad. Sci. USA 116, 27053–27062 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, Y. B. et al. Directed evolution of AAV accounting for long-term and enhanced transduction of cardiovascular endothelial cells in vivo. Mol. Ther. Methods Clin. Dev. 22, 148–161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Goertsen, D., Goeden, N., Flytzanis, N. C. & Gradinaru, V. Targeting the lung epithelium after intravenous delivery by directed evolution of underexplored sites on the AAV capsid. Mol. Ther. Methods Clin. Dev. 26, 331–342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lang, J. F., Toulmin, S. A., Brida, K. L., Eisenlohr, L. C. & Davidson, B. L. Standard screening methods underreport AAV-mediated transduction and gene editing. Nat. Commun. 10, 3415 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lisowski, L. et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506, 382–386 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Vercauteren, K. et al. Superior in vivo transduction of human hepatocytes using engineered AAV3 capsid. Mol. Ther. 24, 1042–1049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. George, L. A. et al. Multiyear factor VIII expression after AAV gene transfer for hemophilia A. N. Engl. J. Med. 385, 1961–1973 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dayton, R. D., Grames, M. S. & Klein, R. L. More expansive gene transfer to the rat CNS: AAV PHP.EB vector dose-response and comparison to AAV PHP.B. Gene Ther. 25, 392–400 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Hordeaux, J. et al. The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol. Ther. 26, 664–668 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huang, Q. et al. Delivering genes across the blood-brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids. PLoS ONE 14, e0225206 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hordeaux, J. et al. The GPI-linked protein LY6A drives AAV-PHP.B transport across the blood-brain barrier. Mol. Ther. 27, 912–921 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tabebordbar, M. et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 184, 4919–4938.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Byrne, L. C. et al. In vivo-directed evolution of adeno-associated virus in the primate retina. JCI Insight 5, e135112 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gonzalez, T. J. et al. Cross-species evolution of a highly potent AAV variant for therapeutic gene transfer and genome editing. Nat. Commun. 13, 5947 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Goertsen, D. et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat. Neurosci. 25, 106–115 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Guillou, J. et al. Fatal thrombotic microangiopathy case following adeno-associated viral SMN gene therapy. Blood Adv. 6, 4266–4270 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wilton-Clark, H. & Yokota, T. Antisense and gene therapy options for duchenne muscular dystrophy arising from mutations in the N-terminal hotspot. Genes 13, 257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mendell, J. R. et al. Dystrophin immunity in Duchenne’s muscular dystrophy. N. Engl. J. Med. 363, 1429–1437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Streilein, J. W. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat. Rev. Immunol. 3, 879–889 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Butterfield, G. L. et al. Evolution of a designed protein assembly encapsulating its own RNA genome. Nature 552, 415–420 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Louis Jeune, V., Joergensen, J. A., Hajjar, R. J. & Weber, T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum. Gene Ther. Methods 24, 59–67 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Kishimoto, T. K. & Samulski, R. J. Addressing high dose AAV toxicity — ’one and done’ or ’slower and lower’? Expert Opin. Biol. Ther. 22, 1067–1071 (2022).

    Article  PubMed  Google Scholar 

  131. Nathwani, A. C. et al. Safe and efficient transduction of the liver after peripheral vein infusion of self-complementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates. Blood 109, 1414–1421 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Majowicz, A. et al. Successful repeated hepatic gene delivery in mice and non-human primates achieved by sequential administration of AAV5(ch) and AAV1. Mol. Ther. 25, 1831–1842 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Meliani, A. et al. Antigen-selective modulation of AAV immunogenicity with tolerogenic rapamycin nanoparticles enables successful vector re-administration. Nat. Commun. 9, 4098 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chen, M. et al. Immune profiling of adeno-associated virus response identifies B cell-specific targets that enable vector re-administration in mice. Gene Ther. 30, 429–442 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Leborgne, C. et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat. Med. 26, 1096–1101 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Jordan, S. C. et al. IgG endopeptidase in highly sensitized patients undergoing transplantation. N. Engl. J. Med. 377, 442–453 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Huang, E., Maldonado, A. Q., Kjellman, C. & Jordan, S. C. Imlifidase for the treatment of anti-HLA antibody-mediated processes in kidney transplantation. Am. J. Transplant. 22, 691–697 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Boutin, S. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene Ther. 21, 704–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. den Hollander, A. I. et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am. J. Hum. Genet. 79, 556–561 (2006).

    Article  Google Scholar 

  140. Maeder, M. L. et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med. 25, 229–233 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Kaminski, R. et al. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther. 23, 690–695 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mancuso, P. et al. CRISPR based editing of SIV proviral DNA in ART treated non-human primates. Nat. Commun. 11, 6065 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Angela, L. et al. Unexpected death of a Duchenne muscular dystrophy patient in an N-of-1 trial of rAAV9-delivered CRISPR-transactivator. Preprint at medRxiv https://doi.org/10.1101/2023.05.16.23289881 (2023).

  144. Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Long, C. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Tabebordbar, M. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407–411 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Bengtsson, N. E. et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat. Commun. 8, 14454 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nelson, C. E. et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat. Med. 25, 427–432 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Min, Y. L. et al. CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Sci. Adv. 5, eaav4324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang, Y. et al. Enhanced CRISPR-Cas9 scorrection of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Sci. Adv. 6, eaay6812 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ferrari, F. K., Samulski, T., Shenk, T. & Samulski, R. J. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J. Virol. 70, 3227–3234 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang, Z. et al. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther. 10, 2105–2111 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. McCarty, D. M. et al. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther. 10, 2112–2118 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Li, A. et al. AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol. Ther. 28, 1432–1441 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Aronson, S. J. et al. Prevalence and relevance of pre-existing anti-adeno-associated virus immunity in the context of gene therapy for Crigler–Najjar syndrome. Hum. Gene Ther. 30, 1297–1305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Thompson, M. G. et al. Interim estimates of vaccine effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines in preventing SARS-CoV-2 infection among health care personnel, first responders, and other essential and frontline workers—eight U.S. locations, december 2020-march 2021. MMWR Morb. Mortal. Wkly Rep. 70, 495–500 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dobrowolski, C., Paunovska, K., Hatit, M. Z. C., Lokugamage, M. P. & Dahlman, J. E. Therapeutic RNA delivery for COVID and other diseases. Adv. Healthc. Mater. 10, e2002022 (2021).

    Article  PubMed  Google Scholar 

  161. Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. Theory of self-assembly of lipid bilayers and vesicles. Biochim. Biophys. Acta 470, 185–201 (1977).

    Article  CAS  PubMed  Google Scholar 

  162. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Paunovska, K. et al. Analyzing 2000 in vivo drug delivery data points reveals cholesterol structure impacts nanoparticle delivery. ACS Nano 12, 8341–8349 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Paunovska, K. et al. Nanoparticles containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, e1807748 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Eygeris, Y., Patel, S., Jozic, A. & Sahay, G. Deconvoluting lipid nanoparticle structure for messenger RNA delivery. Nano Lett. 20, 4543–4549 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Patel, S. et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Herrera, M., Kim, J., Eygeris, Y., Jozic, A. & Sahay, G. Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. Biomater. Sci. 9, 4289–4300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hatit, M. Z. C. et al. Nanoparticle stereochemistry-dependent endocytic processing improves in vivo mRNA delivery. Nat. Chem. 15, 508–515 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ryals, R. C. et al. The effects of PEGylation on LNP based mRNA delivery to the eye. PLoS ONE 15, e0241006 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Aliakbarinodehi, N. et al. Interaction kinetics of individual mRNA-containing lipid nanoparticles with an endosomal membrane mimic: dependence on pH, protein corona formation, and lipoprotein depletion. ACS Nano 16, 20163–20173 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Miao, L. et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 11, 2424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Dilliard Sean, A., Cheng, Q. & Siegwart Daniel, J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Da Silva Sanchez, A. J. et al. Universal barcoding predicts in vivo ApoE-independent lipid nanoparticle delivery. Nano Lett. 22, 4822–4830 (2022).

    Article  PubMed  Google Scholar 

  179. Paunovska, K. et al. The extent to which lipid nanoparticles require apolipoprotein e and low-density lipoprotein receptor for delivery changes with ionizable lipid structure. Nano Lett. 22, 10025–10033 (2022).

    Article  CAS  PubMed  Google Scholar 

  180. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article  PubMed  Google Scholar 

  181. Kauffman, K. J. et al. Rapid, single-cell analysis and discovery of vectored mRNA transfection in vivo with a loxP-flanked tdTomato reporter mouse. Mol. Ther. Nucleic Acids 10, 55–63 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Qiu, M. et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e211627119 (2022).

    Article  Google Scholar 

  184. LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, K. A. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilities targeted mRNA delivery to the spleen and lungs. J. Control. Release 345, 819–831 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Chen, D., Parayath, N., Ganesh, S., Wang, W. & Amiji, M. The role of apolipoprotein- and vitronectin-enriched protein corona on lipid nanoparticles for in vivo targeted delivery and transfection of oligonucleotides in murine tumor models. Nanoscale 11, 18806–18824 (2019).

    Article  CAS  PubMed  Google Scholar 

  186. Pattipeiluhu, R. et al. Anionic lipid nanoparticles preferentially deliver mRNA to the hepatic reticuloendothelial system. Adv. Mater. 34, e2201095 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Loughrey, D. & Dahlman, J. E. Non-liver mRNA delivery. Acc. Chem. Res. 55, 13–23 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Paunovska, K. et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 18, 2148–2157 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yaari, Z. et al. Theranostic barcoded nanoparticles for personalized cancer medicine. Nat. Commun. 7, 13325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sago, C. D. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sago, C. D. et al. Nanoparticles that deliver RNA to bone marrow identified by in vivo directed evolution. J. Am. Chem. Soc. 140, 17095–17105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lokugamage, M. P., Sago, C. D., Gan, Z., Krupczak, B. R. & Dahlman, J. E. Constrained nanoparticles deliver siRNA and sgRNA to T cells in vivo without targeting ligands. Adv. Mater. 31, e1902251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Guimaraes, P. P. G. et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J. Control. Release 316, 404–417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hatit, M. Z. C. et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat. Nanotechnol. 17, 310–318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat. Nanotechnol. 17, 871–879 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Sago, C. et al. Screening of chemically distinct lipid nanoparticles in vivo using DNA barcoding technology towards effectively delivering messenger RNA to hematopoietic stem and progenitor cells. Blood 138, 2931 (2021).

    Article  Google Scholar 

  199. Tiwari, P. M. et al. Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection. Nat. Commun. 9, 3999 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Kedmi, R. et al. A modular platform for targeted RNAi therapeutics. Nat. Nanotechnol. 13, 214–219 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Veiga, N. et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Dammes, N. et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Li, Q. et al. Engineering caveolae-targeted lipid nanoparticles to deliver mRNA to the lungs. ACS Chem. Biol. 15, 830–836 (2020).

    Article  CAS  PubMed  Google Scholar 

  205. Miller, J. B. et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Ed.56, 1059–1063 (2017).

    Article  CAS  Google Scholar 

  206. Li, B. et al. An orthogonal array optimization of lipid-like nanoparticles for mRNA delivery in vivo. Nano Lett. 15, 8099–8107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Jiang, C. et al. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 27, 440–443 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhang, X. et al. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Sci. Adv. 6, eabc2315 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Qiu, M. et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc. Natl Acad. Sci. USA 118, e2020401118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hajj, K. A. et al. A potent branched-tail lipid nanoparticle enables multiplexed mRNA delivery and gene editing in vivo. Nano Lett. 20, 5167–5175 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Hashiba, K. et al. Branching ionizable lipids can enhance the stability, fusogenicity, and functional delivery of mRNA. Small Sci. 3, 2200071 (2022).

    Article  Google Scholar 

  214. Sago, C. D. et al. Augmented lipid-nanoparticle-mediated in vivo genome editing in the lungs and spleen by disrupting Cas9 activity in the liver. Nat. Biomed. Eng. 6, 157–167 (2022).

    Article  CAS  PubMed  Google Scholar 

  215. Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Kenjo, E. et al. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat. Commun. 12, 7101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Rosenblum, D. et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv. 6, eabc9450 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Farbiak, L. et al. All-in-one dendrimer-based lipid nanoparticles enable precise HDR-mediated gene editing in vivo. Adv. Mater. 33, e2006619 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Levine-Tiefenbrun, M. et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat. Med. 27, 790–792 (2021).

    Article  CAS  PubMed  Google Scholar 

  220. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2020).

    Article  PubMed  Google Scholar 

  221. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  222. Barouch, D. H. Covid-19 vaccines—immunity, variants, boosters. N. Engl. J. Med. 387, 1011–1020 (2022).

    Article  CAS  PubMed  Google Scholar 

  223. Schoenmaker, L. et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int. J. Pharm. 601, 120586 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Zhang, X. et al. Patisiran pharmacokinetics, pharmacodynamics, and exposure-response analyses in the phase 3 APOLLO trial in patients with hereditary transthyretin-mediated (hATTR) amyloidosis. J. Clin. Pharmacol. 60, 37–49 (2020).

    Article  PubMed  Google Scholar 

  225. Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 21, 1570–1578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article  CAS  PubMed  Google Scholar 

  227. Belliveau, N. M. et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids 1, e37 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Deleavey, G. F. & Damha, M. J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 19, 937–954 (2012).

    Article  CAS  PubMed  Google Scholar 

  229. Banerji, A. et al. Inhibiting plasma kallikrein for hereditary angioedema prophylaxis. N. Engl. J. Med. 376, 717–728 (2017).

    Article  CAS  PubMed  Google Scholar 

  230. Lagace, T. A. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Curr. Opin. Lipidol. 25, 387–393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    Article  CAS  PubMed  Google Scholar 

  232. Robinson, J. G. et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372, 1489–1499 (2015).

    Article  CAS  PubMed  Google Scholar 

  233. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  234. Ray, K. K. et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med. 382, 1507–1519 (2020).

    Article  CAS  PubMed  Google Scholar 

  235. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    Article  CAS  PubMed  Google Scholar 

  236. Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Lee, R. G. et al. Efficacy and safety of an investigational single-course CRISPR base editing therapy targeting PCSK9 in non-human primate and mouse models. Circulation 147, 242–253 (2022).

    Article  PubMed  Google Scholar 

  238. Khera, A. et al. An in vivo CRISPR base editing therapy to inactivate the ANGPTL3 gene: nomination of a development candidate for VERVE-201. Eur. Heart J. 43, ehac544.3087 (2022).

    Article  Google Scholar 

  239. Dewey, F. E. et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl. J. Med. 377, 211–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Kasiewicz, L. N. et al. GalNAc-lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat. Commun. 14, 2776 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).

    Article  CAS  PubMed  Google Scholar 

  242. Cedervall, T. et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Zhang, P. & Wagner, E. History of polymeric gene delivery systems. Top. Curr. Chem. 375, 26 (2017).

    Article  Google Scholar 

  244. Begines, B. et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials 10, 1403 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Rui, Y., Wilson, D. R., Sanders, K. & Green, J. J. Reducible branched ester-amine quadpolymers (rBEAQs) codelivering plasmid DNA and RNA oligonucleotides enable CRISPR/Cas9 genome editing. ACS Appl. Mater. Interfaces 11, 10472–10480 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Wang, H. X. et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc. Natl Acad. Sci. USA 115, 4903–4908 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Grun, M. K. et al. PEGylation of poly(amine-co-ester) polyplexes for tunable gene delivery. Biomaterials 272, 120780 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Sun, X. & Zhang, N. Cationic polymer optimization for efficient gene delivery. Mini Rev. Med. Chem. 10, 108–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  249. Van Bruggen, C., Hexum, J. K., Tan, Z., Dalal, R. J. & Reineke, T. M. Nonviral gene delivery with cationic glycopolymers. Acc. Chem. Res. 52, 1347–1358 (2019).

    Article  PubMed  Google Scholar 

  250. Breunig, M., Lungwitz, U., Liebl, R. & Goepferich, A. Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc. Natl Acad. Sci. USA 104, 14454–14459 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Ke, X. et al. Surface-functionalized PEGylated nanoparticles deliver messenger RNA to pulmonary immune cells. ACS Appl. Mater. Interfaces 12, 35835–35844 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. White, K. et al. Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension. EMBO Mol. Med. 7, 695–713 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Sager, H. B. et al. Proliferation and recruitment contribute to myocardial macrophage expansion in chronic heart failure. Circ. Res. 119, 853–864 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Sager, H. B. et al. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci. Transl Med. 8, 342ra380 (2016).

    Article  Google Scholar 

  256. Khan, O. F. et al. Endothelial siRNA delivery in nonhuman primates using ionizable low-molecular weight polymeric nanoparticles. Sci. Adv. 4, eaar8409 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Pan, Y. et al. Near-infrared upconversion-activated CRISPR-Cas9 system: a remote-controlled gene editing platform. Sci. Adv. 5, eaav7199 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Lyu, Y. et al. A photolabile semiconducting polymer nanotransducer for near-infrared regulation of CRISPR/Cas9 gene editing. Angew. Chem. Int. Ed. 58, 18197–18201 (2019).

    Article  CAS  Google Scholar 

  259. Karlsson, J., Rhodes, K. R., Green, J. J. & Tzeng, S. Y. Poly(beta-amino ester)s as gene delivery vehicles: challenges and opportunities. Expert Opin. Drug Deliv. 17, 1395–1410 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Blanchard, E. L. et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat. Biotechnol. 39, 717–726 (2020).

    Article  Google Scholar 

  261. Rotolo, L. et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat. Mater. 22, 369–379 (2022).

    Article  PubMed  Google Scholar 

  262. Patel, A. K. et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 31, e1805116 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Carrasco-Hernandez, R., Jácome, R., López Vidal, Y. & Ponce de León, S. Are RNA viruses candidate agents for the next global pandemic? A review. ILAR J. 58, 343–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  264. Rui, Y. et al. Carboxylated branched poly(β-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 5, eaay3255 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Nguyen, D. N. et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat. Biotechnol. 38, 44–49 (2020).

    Article  CAS  PubMed  Google Scholar 

  266. Chen, G. et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat. Nanotechnol. 14, 974–980 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Krishnamurthy, S. et al. Engineered amphiphilic peptides enable delivery of proteins and CRISPR-associated nucleases to airway epithelia. Nat. Commun. 10, 4906 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Guo, J. et al. Rational design of poly(disulfide)s as a universal platform for delivery of CRISPR-Cas9 machineries toward therapeutic genome editing. ACS Cent. Sci. 7, 990–1000 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Tan, Z. et al. Block polymer micelles enable CRISPR/Cas9 ribonucleoprotein delivery: physicochemical properties affect packaging mechanisms and gene editing efficiency. Macromolecules 52, 8197–8206 (2019).

    Article  CAS  Google Scholar 

  270. Lee, K. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Lee, B. et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat. Biomed. Eng. 2, 497–507 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Saydaminova, K. et al. Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation. Mol. Ther. Methods Clin. Dev. 1, 14057 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Li, C. et al. In vivo HSC gene therapy using a bi-modular HDAd5/35++ vector cures sickle cell disease in a mouse model. Mol. Ther. 29, 822–837 (2021).

    Article  CAS  PubMed  Google Scholar 

  274. Li, C. et al. In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YAC mice. Blood Adv. 5, 1122–1135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Li, C. et al. In vivo base editing by a single i.v. vector injection for treatment of hemoglobinopathies. JCI Insight 7, e162939 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Li, C. et al. Safe and efficient in vivo hematopoietic stem cell transduction in nonhuman primates using HDAd5/35++ vectors. Mol. Ther. 24, 127–141 (2022).

    Google Scholar 

  277. Wang, H. et al. In vivo HSC transduction in rhesus macaques with an HDAd5/3+ vector targeting desmoglein 2 and transiently overexpressing cxcr4. Blood Adv. 6, 4360–4372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Segel, M. et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Gheysen, D. et al. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 59, 103–112 (1989).

    Article  CAS  PubMed  Google Scholar 

  280. Nooraei, S. et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 19, 59 (2021).

    Article  CAS  Google Scholar 

  281. Cai, Y., Bak, R. O. & Mikkelsen, J. G. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. eLife 3, e01911 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Choi, J. G. et al. Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther. 23, 627–633 (2016).

    Article  CAS  PubMed  Google Scholar 

  284. Campbell, L. A. et al. Gesicle-mediated delivery of CRISPR/Cas9 ribonucleoprotein complex for inactivating the HIV provirus. Mol. Ther. 27, 151–163 (2019).

    Article  CAS  PubMed  Google Scholar 

  285. Hamilton, J. R. et al. Targeted delivery of CRISPR-Cas9 and transgenes enables complex immune cell engineering. Cell Rep. 35, 109207 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Gee, P. et al. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat. Commun. 11, 1334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Yao, X. et al. Engineered extracellular vesicles as versatile ribonucleoprotein delivery vehicles for efficient and safe CRISPR genome editing. J. Extracell. Vesicles 10, e12076 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250–265.e16 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Huayamares, S. G., Lokugamage, M. P., Da Silva Sanchez, A. J. & Dahlman, J. E. A systematic analysis of biotech startups that went public in the first half of 2021. Curr. Res. Biotechnol. 4, 392–401 (2022).

    Article  CAS  Google Scholar 

  290. Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R. & Tsourkas, A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338, 903–910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Radmand, A. et al. The transcriptional response to lung-targeting lipid nanoparticles in vivo. Nano Lett. 23, 993–1002 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Gordon, S. M. et al. A comparison of the mouse and human lipoproteome: suitability of the mouse model for studies of human lipoproteins. J. Proteome Res. 14, 2686–2695 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Tao, W. et al. Mechanistically probing lipid-siRNA nanoparticle-associated toxicities identifies Jak inhibitors effective in mitigating multifaceted toxic responses. Mol. Ther. 19, 567–575 (2011).

    Article  CAS  PubMed  Google Scholar 

  294. Abrams, M. T. et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment. Mol. Ther. 18, 171–180 (2010).

    Article  CAS  PubMed  Google Scholar 

  295. US Food and Drug Administration, Center for Drug Evaluation and Research. Application number: 210922Orig1s000 (FDA, 2019).

  296. Besin, G. et al. Accelerated blood clearance of lipid nanoparticles entails a biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties. Immunohorizons 3, 282–293 (2019).

    Article  CAS  PubMed  Google Scholar 

  297. Adams, D. et al. HELIOS-A: results from the phase 3 study of vutrisiran in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. Neurology 98, 2974 (2022).

    Google Scholar 

  298. Esrick, E. B. et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N. Engl. J. Med. 384, 205–215 (2021).

    Article  CAS  PubMed  Google Scholar 

  299. Thompson, A. A. et al. Northstar-2: updated safety and efficacy analysis of lentiglobin gene therapy in patients with transfusion-dependent β-thalassemia and non-β0/β0 genotypes. Blood 134, 3543–3543 (2019).

    Article  Google Scholar 

  300. Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  301. Kamdar, M. et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet 399, 2294–2308 (2022).

    Article  CAS  PubMed  Google Scholar 

  302. Berdeja, J. G. et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 398, 314–324 (2021).

    Article  CAS  PubMed  Google Scholar 

  303. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Locke, F. L. et al. Axicabtagene ciloleucel as second-line therapy for large b-cell lymphoma. N. Engl. J. Med. 386, 640–654 (2022).

    Article  CAS  PubMed  Google Scholar 

  306. Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR–Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Loughrey and K. Tiegren at the Emory University School of Medicine as well as R. Macrae at the Broad Institute for copyediting the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to James E. Dahlman.

Ethics declarations

Competing interests

V.M. declares no competing interests. F.Z. is a scientific adviser and cofounder of Editas Medicine, Beam Therapeutics, Pairwise Plants, Arbor Biotechnologies and Proof Diagnostics. F.Z. is also a scientific adviser for Octant. J.E.D. is an adviser to GV.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

4D Molecular Therapeutics phase I/II cystic fibrosis: https://4dmoleculartherapeutics.com/wp-content/uploads/S01_2_Update-on-AAV-mediated-CFTR-gene-delivery-4D-710_Final-Read-Only.pdf

4D Molecular Therapeutics phase I/II wet age-related macular degeneration: https://ir.4dmoleculartherapeutics.com/news-releases/news-release-details/4d-molecular-therapeutics-announces-interim-clinical-data-going

Beam Therapeutics T cell delivery: https://beamtx.com/media/gilagd0d/lnp-poster_asgct2022_t-and-nk.pdf

BioMarin phase III hemophilia A: https://investors.biomarin.com/2021-01-10-BioMarin-Announces-Positive-Phase-3-Gene-Therapy-Trial-Results-in-Adults-with-Severe-Hemophilia-A-Study-Met-All-Primary-and-Secondary-Efficacy-Endpoints-in-One-Year-Data-Set

Editas Medicine LCA10 phase I/II: https://editasmedicine.gcs-web.com/static-files/1c856be7-13b8-4db1-b6b9-d6e19589239c

European Medicines Agency Zolgensma: https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-risk-assessment-committee-prac-9-12-january-2023

Excision BioTherapeutics doses first patient: https://www.globenewswire.com/news-release/2022/09/15/2516733/0/en/Excision-BioTherapeutics-Doses-First-Participant-in-EBT-101-Phase-1-2-Trial-Evaluating-EBT-101-as-a-Potential-Cure-for-HIV.html

FDA Cellular, Tissue, and Gene Therapies Advisory Committee briefing document: https://www.fda.gov/media/151599/download

FDA cell and gene therapy guidelines: https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/cellular-gene-therapy-guidances

FDA human gene therapy draft guidance for industry: https://www.fda.gov/media/156894/download

Hansa Biopharma and Asklepios BioPharmaceutical imlifidase: https://www.hansabiopharma.com/media/press-releases/2022/hansa-biopharma-enters-into-agreement-with-askbio-to-evaluate-feasibility-of-imlifidase-as-pre-treatment-ahead-of-gene-therapy-in-pompe-disease/

Hansa Biopharma and Sarepta Therapeutics imlifidase: https://www.hansabiopharma.com/media/press-releases/2022/hansa-biopharma-and-partner-sarepta-therapeutics-plan-to-initiate-a-clinical-study-with-imlifidase-as-a-pre-treatment-to-sareptas-srp-9001-gene-therapy-in-dmd-in-2023/

Intellia Therapeutics clinical data: https://www.intelliatx.com/wp-content/uploads/PNS-Oral-Pres_Gillmore_062621.pdf

Intellia Therapeutics HAE phase I: https://ir.intelliatx.com/static-files/a57908a6-aaca-404d-9072-32471cd3d41e

Intellia Therapeutics updated interim clinical data: https://ir.intelliatx.com/news-releases/news-release-details/intellia-therapeutics-present-updated-interim-clinical-data

Intellia Therapeutics/Regeneron clinical update: https://ir.intelliatx.com/news-releases/news-release-details/intellia-and-regeneron-announce-updated-phase-1-data

Pfizer DMD phase III: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-open-first-us-sites-phase-3-trial-investigational

Sarepta Therapeutics Biologics License Application: https://investorrelations.sarepta.com/news-releases/news-release-details/sarepta-therapeutics-submits-biologics-license-application-srp

Sarepta Therapeutics licenses MyoAAV: https://investorrelations.sarepta.com/news-releases/news-release-details/sarepta-therapeutics-announces-progress-myoaav-program-and

Solid Biosciences next-generation AAV: https://www.solidbio.com/about/media/news/letter-to-the-duchenne-community-strategic-update

Spark Therapeutics/Pfizer hemophilia B phase III: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-announces-positive-top-line-results-phase-3-study

uniQure hemophilia B phase III: https://www.uniqure.com/assets/uploads/doc/eahad2022-hope-b-oral-presentation-20220204.pdf

Verve Therapeutics doses first patient: https://ir.vervetx.com/news-releases/news-release-details/verve-therapeutics-doses-first-human-investigational-vivo-base

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madigan, V., Zhang, F. & Dahlman, J.E. Drug delivery systems for CRISPR-based genome editors. Nat Rev Drug Discov 22, 875–894 (2023). https://doi.org/10.1038/s41573-023-00762-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00762-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research