Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Type 2 chronic inflammatory diseases: targets, therapies and unmet needs

Abstract

Over the past two decades, significant progress in understanding of the pathogenesis of type 2 chronic inflammatory diseases has enabled the identification of compounds for more than 20 novel targets, which are approved or at various stages of development, finally facilitating a more targeted approach for the treatment of these disorders. Most of these newly identified pathogenic drivers of type 2 inflammation and their corresponding treatments are related to mast cells, eosinophils, T cells, B cells, epithelial cells and sensory nerves. Epithelial barrier defects and dysbiotic microbiomes represent exciting future drug targets for chronic type 2 inflammatory conditions. Here, we review common targets, current treatments and emerging therapies for the treatment of five major type 2 chronic inflammatory diseases — atopic dermatitis, chronic prurigo, chronic urticaria, asthma and chronic rhinosinusitis with nasal polyps — with a high need for targeted therapies. Unmet needs and future directions in the field are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Environmental triggers of type 2 chronic inflammatory diseases.
Fig. 2: Interaction between cells involved in the pathogenesis of type 2 inflammatory diseases and targets for available and future therapy.
Fig. 3: Targeted treatments approved or in clinical trials for type 2 chronic inflammatory diseases.

References

  1. Chensue, S. W. et al. Role of monocyte chemoattractant protein-1 (MCP-1) in TH1 (mycobacterial) and TH2 (schistosomal) antigen-induced granuloma formation: relationship to local inflammation, TH cell expression, and IL-12 production. J. Immunol. 157, 4602–4608 (1996).

    CAS  PubMed  Google Scholar 

  2. Akdis, C. A. et al. Type 2 immunity in the skin and lungs. Allergy 75, 1582–1605 (2020).

    CAS  PubMed  Google Scholar 

  3. Akdis, C. A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat. Rev. Immunol. 21, 739–751 (2021). This comprehensive review discusses how the immune responses to dysbiotic microbiota that cross the damaged epithelial barrier may be involved in the development of type 2 diseases and other conditions.

    CAS  PubMed  Google Scholar 

  4. Zuberbier, T. et al. The international EAACI/GA²LEN/EuroGuiDerm/APAAACI guideline for the definition, classification, diagnosis, and management of urticaria. Allergy 77, 734–766 (2022).

    PubMed  Google Scholar 

  5. Global Initiative for Asthma. 2022 GINA report, global strategy for asthma management and prevention (2022 Update). Global Initiative for Asthma https://ginasthma.org/gina-reports (2022).

  6. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).

    Google Scholar 

  7. Kolkhir, P. et al. Urticaria. Nat. Rev. Dis. Prim. 8, 61 (2022). This Primer presents an overview of the epidemiology, pathogenesis, diagnosis and treatment of urticaria including the recent development of targeted treatments.

    PubMed  Google Scholar 

  8. Zuberbier, T., Lötvall, J., Simoens, S., Subramanian, S. V. & Church, M. K. Economic burden of inadequate management of allergic diseases in the European Union: a GA2 LEN review. Allergy 69, 1275–1279 (2014).

    CAS  PubMed  Google Scholar 

  9. Bantz, S. K., Zhu, Z. & Zheng, T. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. J. Clin. Cell. Immunol. 5, 202 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Gough, H. et al. Allergic multimorbidity of asthma, rhinitis and eczema over 20 years in the German birth cohort MAS. Pediatr. Allergy Immunol. 26, 431 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Maurer, M. et al. The burden of chronic spontaneous urticaria is substantial: real-world evidence from ASSURE-CSU. Allergy 72, 2005–2016 (2017).

    CAS  PubMed  Google Scholar 

  12. Ariëns, L. F. M. et al. Economic burden of adult patients with moderate to severe atopic dermatitis indicated for systemic treatment. Acta Derm. Venereol. 99, 762–768 (2019).

    PubMed  Google Scholar 

  13. Weidinger, S., Beck, L. A., Bieber, T., Kabashima, K. & Irvine, A. D. Atopic dermatitis. Nat. Rev. Dis. Prim. 4, 1 (2018).

    PubMed  Google Scholar 

  14. Bieber, T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat. Rev. Drug Discov. 21, 21–40 (2022). This Review focuses on novel targeted treatments and strategies in development in AD.

    CAS  PubMed  Google Scholar 

  15. Agache, I. et al. EAACI Biologicals Guidelines — dupilumab for children and adults with moderate-to-severe atopic dermatitis. Allergy 76, 988–1009 (2021).

    PubMed  Google Scholar 

  16. Ständer, S. et al. IFSI-guideline on chronic prurigo including prurigo nodularis. Itch 5, e42 (2020).

    Google Scholar 

  17. Labib, A., Ju, T., Vander Does, A. & Yosipovitch, G. Immunotargets and therapy for prurigo nodularis. Immunotargets Ther. 11, 11–21 (2022).

    PubMed  PubMed Central  Google Scholar 

  18. Elmariah, S. et al. Practical approaches for diagnosis and management of prurigo nodularis: United States expert panel consensus. J. Am. Acad. Dermatol. 84, 747–760 (2021).

    PubMed  Google Scholar 

  19. Agache, I. et al. EAACI Biologicals Guidelines — recommendations for severe asthma. Allergy 76, 14–44 (2021).

    PubMed  Google Scholar 

  20. Annunziato, F., Romagnani, C. & Romagnani, S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol. 135, 626–635 (2015).

    CAS  PubMed  Google Scholar 

  21. Busse, W. W. et al. Understanding the key issues in the treatment of uncontrolled persistent asthma with type 2 inflammation. Eur. Respir. J. 58, 2003393 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Agache, I. et al. Efficacy and safety of treatment with biologicals for severe chronic rhinosinusitis with nasal polyps: a systematic review for the EAACI guidelines. Allergy 76, 2337–2353 (2021).

    CAS  PubMed  Google Scholar 

  23. Bachert, C., Maurer, M., Palomares, O. & Busse, W. W. What is the contribution of IgE to nasal polyposis? J. Allergy Clin. Immunol. 147, 1997–2008 (2021).

    CAS  PubMed  Google Scholar 

  24. Stevens, W. W. et al. Associations between inflammatory endotypes and clinical presentations in chronic rhinosinusitis. J. Allergy Clin. Immunol. Pract. 7, 2812–2820.e3 (2019).

    PubMed  PubMed Central  Google Scholar 

  25. Sanchez-Collado, I. et al. Prevalence of chronic rhinosinusitis with nasal polyps in catalonia (Spain): a retrospective, large-scale population-based study. Rhinology 60, 384–396 (2022).

    CAS  PubMed  Google Scholar 

  26. Tomassen, P. et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J. Allergy Clin. Immunol. 137, 1449–14564 (2016).

    CAS  PubMed  Google Scholar 

  27. Orlandi, R. R. et al. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Int. Forum Allergy Rhinol. 11, 213–739 (2021).

    PubMed  Google Scholar 

  28. Wollenberg, A. et al. European guideline (EuroGuiDerm) on atopic eczema — part II: non-systemic treatments and treatment recommendations for special AE patient populations. J. Eur. Acad. Dermatol. Venereol. 36, 1904–1926 (2022).

    CAS  PubMed  Google Scholar 

  29. Wollenberg, A. et al. European guideline (EuroGuiDerm) on atopic eczema: part I — systemic therapy. J. Eur. Acad. Dermatol. Venereol. 36, 1409–1431 (2022).

    CAS  PubMed  Google Scholar 

  30. Gandhi, N. A. et al. Targeting key proximal drivers of type 2 inflammation in disease. Nat. Rev. Drug Discov. 15, 35–50 (2016). This publication reviews key proximal drivers of type 2 inflammation and treatments that target them focusing mostly on asthma, AD and CRSwNP.

    CAS  PubMed  Google Scholar 

  31. Galli, S. J. & Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 18, 693 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Giménez-Arnau, A. M. et al. The pathogenesis of chronic spontaneous urticaria: the role of infiltrating cells. J. Allergy Clin. Immunol. Pract. 9, 2195–2208 (2021).

    PubMed  Google Scholar 

  33. Roan, F., Obata-Ninomiya, K. & Ziegler, S. F. Epithelial cell-derived cytokines: more than just signaling the alarm. J. Clin. Invest. 129, 1441–1451 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Akdis, M. et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 138, 984–1010 (2016). This paper extensively discusses developments on interleukins, TNF, TGFβ and interferons including cellular sources, targets, receptors, signalling pathways and roles in immune regulation in patients with inflammatory diseases.

    CAS  PubMed  Google Scholar 

  35. Gauvreau, G. M., Sehmi, R., Ambrose, C. S. & Griffiths, J. M. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert. Opin. Ther. Targets 24, 777–792 (2020).

    CAS  PubMed  Google Scholar 

  36. Sozener, Z. C. et al. Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy 77, 1418–1449 (2022).

    Google Scholar 

  37. Palomares, O., Akdis, M., Martin-Fontecha, M. & Akdis, C. A. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol. Rev. 278, 219–236 (2017).

    CAS  PubMed  Google Scholar 

  38. Reginald, K. et al. Immunoglobulin E antibody reactivity to bacterial antigens in atopic dermatitis patients. Clin. Exp. Allergy 41, 357–369 (2011).

    CAS  PubMed  Google Scholar 

  39. Zhong, W. et al. Aberrant expression of histamine-independent pruritogenic mediators in keratinocytes may be involved in the pathogenesis of prurigo nodularis. Acta Derm. Venereol. 99, 579–586 (2019).

    CAS  PubMed  Google Scholar 

  40. Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680 (2002).

    CAS  PubMed  Google Scholar 

  41. Kay, A. B., Clark, P., Maurer, M. & Ying, S. Elevations in T-helper-2-initiating cytokines (interleukin-33, interleukin-25 and thymic stromal lymphopoietin) in lesional skin from chronic spontaneous (‘idiopathic’) urticaria. Br. J. Dermatol. 172, 1294–1302 (2015).

    CAS  PubMed  Google Scholar 

  42. Sugita, K. et al. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J. Allergy Clin. Immunol. 141, 300–310.e11 (2018).

    CAS  PubMed  Google Scholar 

  43. Kast, J. I. et al. Respiratory syncytial virus infection influences tight junction integrity. Clin. Exp. Immunol. 190, 351–359 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan, H. T. et al. Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy 74, 294–307 (2019).

    CAS  PubMed  Google Scholar 

  45. Wang, M. et al. Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. J. Allergy Clin. Immunol. 143, 1892–1903 (2019).

    CAS  PubMed  Google Scholar 

  46. Palomares, O. et al. dIvergEnt: how IgE axis contributes to the continuum of allergic asthma and anti-IgE therapies. Int. J. Mol. Sci. 18, 1328 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Toki, S. et al. TSLP and IL-33 reciprocally promote each other’s lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy 75, 1606–1617 (2020).

    CAS  PubMed  Google Scholar 

  48. An, G. et al. Combined blockade of IL-25, IL-33 and TSLP mediates amplified inhibition of airway inflammation and remodelling in a murine model of asthma. Respirology 25, 603–612 (2020).

    PubMed  Google Scholar 

  49. Li, Y. et al. Elevated expression of IL-33 and TSLP in the airways of human asthmatics in vivo: a potential biomarker of severe refractory disease. J. Immunol. 200, 2253–2262 (2018).

    CAS  PubMed  Google Scholar 

  50. Soyka, M. B. et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4. J. Allergy Clin. Immunol. 130, 1087–1096.e10 (2012).

    CAS  PubMed  Google Scholar 

  51. Jiao, J. et al. Transforming growth factor-β1 decreases epithelial tight junction integrity in chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 141, 1160–1163.e9 (2018).

    CAS  PubMed  Google Scholar 

  52. Altunbulakli, C. et al. Staphylococcus aureus enhances the tight junction barrier integrity in healthy nasal tissue, but not in nasal polyps. J. Allergy Clin. Immunol. 142, 665–668.e8 (2018).

    PubMed  Google Scholar 

  53. Liao, B. et al. Interaction of thymic stromal lymphopoietin, IL-33, and their receptors in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Allergy 70, 1169–1180 (2015).

    CAS  PubMed  Google Scholar 

  54. Nagarkar, D. R. et al. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. J. Allergy Clin. Immunol. 132, 593–600.e12 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zielińska-Bliźniewska, H. et al. Serum IL-5, POSTN and IL-33 levels in chronic rhinosinusitis with nasal polyposis correlate with clinical severity. BMC Immunol. 23, 33 (2022).

    PubMed  PubMed Central  Google Scholar 

  56. Pelaia, C. et al. Interleukins 4 and 13 in asthma: key pathophysiologic cytokines and druggable molecular targets. Front. Pharmacol. 13, 851940 (2022).

    CAS  PubMed  Google Scholar 

  57. Yosipovitch, G., Rosen, J. D. & Hashimoto, T. Itch: from mechanism to (novel) therapeutic approaches. J. Allergy Clin. Immunol. 142, 1375–1390 (2018).

    CAS  PubMed  Google Scholar 

  58. Humeau, M., Boniface, K. & Bodet, C. Cytokine-mediated crosstalk between keratinocytes and T cells in atopic dermatitis. Front. Immunol. 13, 801579 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chiricozzi, A., Maurelli, M., Peris, K. & Girolomoni, G. Targeting IL-4 for the treatment of atopic dermatitis. Immunotargets Ther. 9, 151–156 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Honzke, S. et al. Influence of TH2 cytokines on the cornified envelope, tight junction proteins, and β-defensins in filaggrin-deficient skin equivalents. J. Invest. Dermatol. 136, 631–639 (2016).

    PubMed  Google Scholar 

  61. Meisser, S. S. et al. Skin barrier damage after exposure to paraphenylenediamine. J. Allergy Clin. Immunol. 145, 619–631.e2 (2020).

    CAS  PubMed  Google Scholar 

  62. Renert-Yuval, Y. et al. Tape strips capture atopic dermatitis-related changes in nonlesional skin throughout maturation. Allergy 77, 3445–3447 (2022).

    PubMed  Google Scholar 

  63. De Benedetto, A. et al. Tight junction defects in patients with atopic dermatitis. J. Allergy Clin. Immunol. 127, 773–786.e1–e7 (2011).

    PubMed  Google Scholar 

  64. Sugita, K. et al. Human type 2 innate lymphoid cells disrupt skin keratinocyte tight junction barrier by IL-13. Allergy 74, 2534–2537 (2019).

    PubMed  Google Scholar 

  65. Berdyshev, E. et al. Lipid abnormalities in atopic skin are driven by type 2 cytokines. JCI Insight 3, e98006 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Berdyshev, E. et al. Dupilumab significantly improves skin barrier function in patients with moderate-to-severe atopic dermatitis. Allergy 77, 3388–3397 (2022).

    CAS  PubMed  Google Scholar 

  67. Altunbulakli, C. et al. Relations between epidermal barrier dysregulation and Staphylococcus species-dominated microbiome dysbiosis in patients with atopic dermatitis. J. Allergy Clin. Immunol. 142, 1643–1647.e12 (2018).

    CAS  PubMed  Google Scholar 

  68. Trautmann, A. et al. T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J. Clin. Invest. 106, 25–35 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Brunner, P. M. et al. Early-onset pediatric atopic dermatitis is characterized by TH2/TH17/TH22-centered inflammation and lipid alterations. J. Allergy Clin. Immunol. 141, 2094–2106 (2018).

    CAS  PubMed  Google Scholar 

  70. Sanyal, R. D. et al. Atopic dermatitis in African American patients is TH2/TH22-skewed with TH1/TH17 attenuation. Ann. Allergy Asthma Immunol. 122, 99–110.e6 (2019).

    CAS  PubMed  Google Scholar 

  71. Noda, S. et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J. Allergy Clin. Immunol. 136, 1254–1264 (2015).

    CAS  PubMed  Google Scholar 

  72. Zimmermann, M. et al. TWEAK and TNF-α cooperate in the induction of keratinocyte apoptosis. J. Allergy Clin. Immunol. 127, 200–207 (2011).

    CAS  PubMed  Google Scholar 

  73. Mashiko, S. et al. Human mast cells are major IL−22 producers in patients with psoriasis and atopic dermatitis. J. Allergy Clin. Immunol. 136, 351–391 (2015).

    CAS  PubMed  Google Scholar 

  74. Sutaria, N. et al. Cutaneous transcriptomics identifies fibroproliferative and neurovascular gene dysregulation in prurigo nodularis compared with psoriasis and atopic dermatitis. J. Invest. Dermatol. 142, 2537–2540 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Park, K., Mori, T., Nakamura, M. & Tokura, Y. Increased expression of mRNAs for IL-4, IL-17, IL-22 and IL-31 in skin lesions of subacute and chronic forms of prurigo. Eur. J. Dermatol. 21, 135–136 (2011).

    PubMed  Google Scholar 

  76. Parthasarathy, V. et al. Circulating plasma IL-13 and periostin are dysregulated type 2 inflammatory biomarkers in prurigo nodularis: a cluster analysis. Front. Med. 9, 1011142 (2022).

    Google Scholar 

  77. Fukushi, S., Yamasaki, K. & Aiba, S. Nuclear localization of activated STAT6 and STAT3 in epidermis of prurigo nodularis. Br. J. Dermatol. 165, 990–996 (2011).

    CAS  PubMed  Google Scholar 

  78. Oetjen, L. K. et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell 171, 217–228.e13 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chiricozzi, A. et al. Dupilumab improves clinical manifestations, symptoms, and quality of life in adult patients with chronic nodular prurigo. J. Am. Acad. Dermatol. 83, 39–45 (2020).

    CAS  PubMed  Google Scholar 

  80. Campion, M. et al. Interleukin-4 and interleukin-13 evoke scratching behaviour in mice. Exp. Dermatol. 28, 1501–1504 (2019).

    CAS  PubMed  Google Scholar 

  81. Nguyen, J. K., Austin, E., Huang, A., Mamalis, A. & Jagdeo, J. The IL-4/IL-13 axis in skin fibrosis and scarring: mechanistic concepts and therapeutic targets. Arch. Dermatol. Res. 312, 81–92 (2020).

    CAS  PubMed  Google Scholar 

  82. Manson, M. L. et al. IL-13 and IL-4, but not IL−5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. J. Allergy Clin. Immunol. 145, 808–817.e2 (2020).

    CAS  PubMed  Google Scholar 

  83. Yee, K. K. et al. Neuropathology of the olfactory mucosa in chronic rhinosinusitis. Am. J. Rhinol. Allergy 24, 110–120 (2010).

    PubMed  Google Scholar 

  84. Maina, I. W., Patel, N. N. & Cohen, N. A. Understanding the role of biofilms and superantigens in chronic rhinosinusitis. Curr. Otorhinolaryngol. Rep. 6, 253–262 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. Takabayashi, T. et al. Increased expression of factor XIII-A in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 132, 584–592.e4 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Takabayashi, T. & Schleimer, R. P. Formation of nasal polyps: the roles of innate type 2 inflammation and deposition of fibrin. J. Allergy Clin. Immunol. 145, 740–750 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Pelaia, C. et al. Interleukin-5 in the pathophysiology of severe asthma. Front. Physiol. 10, 1514 (2019).

    PubMed  PubMed Central  Google Scholar 

  88. Motojima, S., Akutsu, I., Fukuda, T., Makino, S. & Takatsu, K. Clinical significance of measuring levels of sputum and serum ECP and serum IL-5 in bronchial asthma. Allergy 48, 98–106 (1993).

    CAS  PubMed  Google Scholar 

  89. Li, W. et al. Periostin: its role in asthma and its potential as a diagnostic or therapeutic target. Respir. Res. 16, 57 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Flood-Page, P. et al. Anti-IL−5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J. Clin. Invest. 112, 1029–1036 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bachert, C., Wagenmann, M., Hauser, U. & Rudack, C. IL-5 synthesis is upregulated in human nasal polyp tissue. J. Allergy Clin. Immunol. 99, 837–842 (1997).

    CAS  PubMed  Google Scholar 

  92. Gevaert, P. et al. The roles of eosinophils and interleukin-5 in the pathophysiology of chronic rhinosinusitis with nasal polyps. Int. Forum Allergy Rhinol. 12, 1413–1423 (2022).

    PubMed  PubMed Central  Google Scholar 

  93. Barretto, K. T. et al. Human airway epithelial cells express a functional IL-5 receptor. Allergy 75, 2127–2130 (2020).

    PubMed  Google Scholar 

  94. Saitoh, T. et al. Relationship between epithelial damage or basement membrane thickness and eosinophilic infiltration in nasal polyps with chronic rhinosinusitis. Rhinology 47, 275–279 (2009).

    CAS  PubMed  Google Scholar 

  95. Huang, I. H., Chung, W. H., Wu, P. C. & Chen, C. B. JAK–STAT signaling pathway in the pathogenesis of atopic dermatitis: an updated review. Front. Immunol. 13, 1068260 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Philips, R. L. et al. The JAK–STAT pathway at 30: much learned, much more to do. Cell 185, 3857–3876 (2022). This publication summarizes the current state of knowledge of the JAK–STAT pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mendes-Bastos, P. et al. Bruton’s tyrosine kinase inhibition — an emerging therapeutic strategy in immune-mediated dermatological conditions. Allergy 77, 2355–2366 (2022).

    CAS  PubMed  Google Scholar 

  98. Phillips, J. E. et al. Btk inhibitor RN983 delivered by dry powder nose-only aerosol inhalation inhibits bronchoconstriction and pulmonary inflammation in the ovalbumin allergic mouse model of asthma. J. Aerosol Med. Pulm. Drug Deliv. 29, 233–241 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Leung, D. Y. Role of IgE in atopic dermatitis. Curr. Opin. Immunol. 5, 956–962 (1993).

    CAS  PubMed  Google Scholar 

  100. Altrichter, S. et al. Serum IgE autoantibodies target keratinocytes in patients with atopic dermatitis. J. Invest. Dermatol. 128, 2232–2239 (2008).

    CAS  PubMed  Google Scholar 

  101. Müller, S., Bieber, T. & Ständer, S. Therapeutic potential of biologics in prurigo nodularis. Expert. Opin. Biol. Ther. 22, 47–58 (2022).

    PubMed  Google Scholar 

  102. Xiang, Y.-K. et al. Most patients with autoimmune chronic spontaneous urticaria also have autoallergic urticaria, but not vice versa. J. Allergy Clin. Immunol. Pract. S2213-2198, 00184–00188 (2023).

    Google Scholar 

  103. Schoepke, N. et al. Biomarkers and clinical characteristics of autoimmune chronic spontaneous urticaria: results of the PURIST study. Allergy 74, 2427–2436 (2019).

    CAS  PubMed  Google Scholar 

  104. Kolkhir, P. et al. Autoimmune chronic spontaneous urticaria. J. Allergy Clin. Immunol. 149, 1819–1831 (2022).

    CAS  PubMed  Google Scholar 

  105. Schmetzer, O. et al. IL-24 is a common and specific autoantigen of IgE in patients with chronic spontaneous urticaria. J. Allergy Clin. Immunol. 142, 876–882 (2018).

    CAS  PubMed  Google Scholar 

  106. Shen, Y., Zhang, N., Yang, Y., Hong, S. & Bachert, C. Local immunoglobulin E in nasal polyps: role and modulation. Front. Immunol. 13, 961503 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Shamji, M. H. et al. Broad IgG repertoire in patients with chronic rhinosinusitis with nasal polyps regulates proinflammatory IgE responses. J. Allergy Clin. Immunol. 143, 2086–2094.e2 (2019).

    CAS  PubMed  Google Scholar 

  108. Altrichter, S. et al. The role of eosinophils in chronic spontaneous urticaria. J. Allergy Clin. Immunol. 145, 1510–1516 (2020).

    CAS  PubMed  Google Scholar 

  109. Kolkhir, P., Elieh-Ali-Komi, D., Metz, M., Siebenhaar, F. & Maurer, M. Understanding human mast cells: lesson from therapies for allergic and non-allergic diseases. Nat. Rev. Immunol. 22, 294–308 (2022). This Review discusses mast cell-targeted treatments and how these therapies can help us understand mast cell functions in disease.

    CAS  PubMed  Google Scholar 

  110. Fujisawa, D. et al. Expression of mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria. J. Allergy Clin. Immunol. 134, 622–633.e9 (2014).

    CAS  PubMed  Google Scholar 

  111. Yanase, Y., Takahagi, S., Ozawa, K. & Hide, M. The role of coagulation and complement factors for mast cell activation in the pathogenesis of chronic spontaneous urticaria. Cells 10, 1759 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Maric, J. et al. Cytokine-induced endogenous production of prostaglandin D2 is essential for human group 2 innate lymphoid cell activation. J. Allergy Clin. Immunol. 143, 2202–2214.e5 (2019).

    CAS  PubMed  Google Scholar 

  113. Xue, L. et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133, 1184–1194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Takabayashi, T. et al. Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 130, 410–412.e5 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hashimoto, T. et al. Itch intensity in prurigo nodularis is closely related to dermal interleukin-31, oncostatin M, IL-31 receptor α and oncostatin M receptor β. Exp. Dermatol. 30, 804–810 (2021).

    CAS  PubMed  Google Scholar 

  116. Wang, F., Yang, T. B. & Kim, B. S. The return of the mast cell: new roles in neuroimmune itch. Biol. J. Invest. Dermatol. 140, 945–951 (2020).

    CAS  Google Scholar 

  117. Kolkhir, P. et al. Mast cells, cortistatin, and its receptor, MRGPRX2, are linked to the pathogenesis of chronic prurigo. J. Allergy Clin. Immunol. 149, 1998–2009.e5 (2022).

    CAS  PubMed  Google Scholar 

  118. Kabata, H. & Artis, D. Neuro-immune crosstalk and allergic inflammation. J. Clin. Invest. 129, 1475–1482 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. Ohanyan, T. et al. Role of substance P and its receptor neurokinin 1 in chronic prurigo: a randomized, proof-of-concept, controlled trial with topical aprepitant. Acta Derm. Venereol. 98, 26–31 (2018).

    CAS  PubMed  Google Scholar 

  120. Nakashima, C., Ishida, Y., Kitoh, A., Otsuka, A. & Kabashima, K. Interaction of peripheral nerves and mast cells, eosinophils, and basophils in the development of pruritus. Exp. Dermatol. 28, 1405–1411 (2019).

    CAS  PubMed  Google Scholar 

  121. Konstantinou, G. N., Gerasimos, N. K., Koulias, C., Petalas, K. & Makris, M. Further understanding of neuro-immune interactions in allergy: implications in pathophysiology and role in disease progression. J. Asthma Allergy 15, 1273–1291 (2022).

    PubMed  PubMed Central  Google Scholar 

  122. Coffey, C. S., Mulligan, R. M. & Schlosser, R. J. Mucosal expression of nerve growth factor and brain-derived neurotrophic factor in chronic rhinosinusitis. Am. J. Rhinol. Allergy 23, 571–574 (2009).

    PubMed  Google Scholar 

  123. Renert-Yuval, Y. et al. Biomarkers in atopic dermatitis — a review on behalf of the International Eczema Council. J. Allergy Clin. Immunol. 147, 1174–11901 (2021).

    CAS  PubMed  Google Scholar 

  124. Matsuo, K. et al. CCR4 is critically involved in skin allergic inflammation of BALB/c mice. J. Invest. Dermatol. 138, 1764–1773 (2018).

    CAS  PubMed  Google Scholar 

  125. Perros, F., Hoogsteden, H. C., Coyle, A. J., Lambrecht, B. N. & Hammad, H. Blockade of CCR4 in a humanized model of asthma reveals a critical role for DC-derived CCL17 and CCL22 in attracting TH2 cells and inducing airway inflammation. Allergy 64, 995–1002 (2009).

    CAS  PubMed  Google Scholar 

  126. Liu, Y. J. Thymic stromal lymphopoietin and OX40 ligand pathway in the initiation of dendritic cell-mediated allergic inflammation. J. Allergy Clin. Immunol. 120, 238–244 (2007); quiz 245–236.

    CAS  PubMed  Google Scholar 

  127. Salek-Ardakani, S. et al. OX40 (CD134) controls memory T helper 2 cells that drive lung inflammation. J. Exp. Med. 198, 315–324 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Seshasayee, D. et al. In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J. Clin. Invest. 117, 3868–3878 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Menzies-Gow, A. et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N. Engl. J. Med. 384, 1800–1809 (2021).

    CAS  PubMed  Google Scholar 

  130. Corren, J. et al. Tezepelumab in adults with uncontrolled asthma. N. Engl. J. Med. 377, 936–946 (2017). This publication reports the results of a clinical trial of tezepelumab in asthma including decreased rates of exacerbations in patients with asthma independently of type 2 markers.

    CAS  PubMed  Google Scholar 

  131. Corren, J. et al. Effects of combination treatment with tezepelumab and allergen immunotherapy on nasal responses to allergen: a randomized controlled trial. J. Allergy Clin. Immunol. 151, 192–201 (2023).

    CAS  PubMed  Google Scholar 

  132. Simpson, E. L. et al. Tezepelumab, an anti-thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: a randomized phase 2a clinical trial. J. Am. Acad. Dermatol. 80, 1013–1021 (2019).

    CAS  PubMed  Google Scholar 

  133. Wechsler, M. E. et al. Efficacy and safety of itepekimab in patients with moderate-to-severe asthma. N. Engl. J. Med. 385, 1656–1668 (2021).

    CAS  PubMed  Google Scholar 

  134. Kelsen, S. G. et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: a randomized clinical trial. J. Allergy Clin. Immunol. 148, 790–798 (2021).

    CAS  PubMed  Google Scholar 

  135. Chen, Y. L. et al. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci. Transl. Med. 11, eaax2945 (2019).

    CAS  PubMed  Google Scholar 

  136. Maurer, M. et al. Phase 2 randomized clinical trial of astegolimab in patients with moderate to severe atopic dermatitis. J. Allergy Clin. Immunol. 150, 1517–1524 (2022).

    CAS  PubMed  Google Scholar 

  137. Silverberg, J. I. et al. Dupilumab treatment results in early and sustained improvements in itch in adolescents and adults with moderate to severe atopic dermatitis: analysis of the randomized phase 3 studies SOLO 1 and SOLO 2, AD ADOL, and CHRONOS. J. Am. Acad. Dermatol. 82, 1328–1336 (2020).

    CAS  PubMed  Google Scholar 

  138. Castro, M. et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N. Engl. J. Med. 378, 2486–2496 (2018).

    CAS  PubMed  Google Scholar 

  139. Rabe, K. F. et al. Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N. Engl. J. Med. 378, 2475–2485 (2018).

    CAS  PubMed  Google Scholar 

  140. Bachert, C. et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet 394, 1638–1650 (2019).

    CAS  PubMed  Google Scholar 

  141. Yosipovitch, G. et al. Dupilumab in patients with prurigo nodularis: two randomized, double-blind, placebo-controlled phase 3 trials. Nat. Med. 29, 1180–1190 (2023). This publication reports the results of the phase III trials of dupilumab in adult patients with CPG showing significant improvements in itch and skin lesions.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Lee, S. J., Kim, S. E., Shin, K. O., Park, K. & Lee, S. E. Dupilumab therapy improves stratum corneum hydration and skin dysbiosis in patients with atopic dermatitis. Allergy Asthma Immunol. Res. 13, 762–775 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Guttman-Yassky, E. et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J. Allergy Clin. Immunol. 143, 155–172 (2019).

    CAS  PubMed  Google Scholar 

  144. Paller, A. S. et al. Dupilumab in children aged 6 months to younger than 6 years with uncontrolled atopic dermatitis: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 400, 908–919 (2022). This paper demonstrates dupilumab efficacy and safety in children aged <6 years with AD.

    CAS  PubMed  Google Scholar 

  145. Hoshino, M., Akitsu, K., Kubota, K. & Ohtawa, J. Efficacy of a house dust mite sublingual immunotherapy tablet as add-on dupilumab in asthma with rhinitis. Allergol. Int. 71, 490–497 (2022).

    CAS  PubMed  Google Scholar 

  146. Peters, A. T. et al. Indirect treatment comparison of biologics in chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. Pract. 9, 2461–24715 (2021).

    CAS  PubMed  Google Scholar 

  147. Oykhman, P. et al. Comparative efficacy and safety of monoclonal antibodies and aspirin desensitization for chronic rhinosinusitis with nasal polyposis: a systematic review and network meta-analysis. J. Allergy Clin. Immunol. 149, 1286–1295 (2022).

    CAS  PubMed  Google Scholar 

  148. Boechat, J. L., Silva, D., Sousa-Pinto, B. & Delgado, L. Comparing biologicals for severe chronic rhinosinusitis with nasal polyps: a network meta-analysis. Allergy 77, 1299–1306 (2022).

    PubMed  Google Scholar 

  149. Maurer, M. et al. Dupilumab significantly reduces itch and hives in patients with chronic spontaneous urticaria: results from a phase 3 trial (LIBERTY-CSU CUPID Study A). J. Allergy Clin. Immunol. 149, AB312 (2022).

    Google Scholar 

  150. Sirufo, M. M. et al. Cholinergic urticaria, an effective and safe “off label” use of dupilumab: a case report with literature review. Clin. Cosmet. Investig. Dermatol. 15, 253–260 (2022).

    PubMed  PubMed Central  Google Scholar 

  151. Goodman, B. & Jariwala, S. Dupilumab as a novel therapy to treat adrenergic urticaria. Ann. Allergy Asthma Immunol. 126, 205–206 (2021).

    CAS  PubMed  Google Scholar 

  152. Ferrucci, S., Benzecry, V., Berti, E. & Asero, R. Rapid disappearance of both severe atopic dermatitis and cold urticaria following dupilumab treatment. Clin. Exp. Dermatol. 45, 345–346 (2020).

    CAS  PubMed  Google Scholar 

  153. Key Med Biosciences. Primary study endpoints from phase III clinical trial of CM310 for the treatment of moderate to severe atopic dermatitis in adults. Key Med Biosciences. https://en.keymedbio.com/show-132-194-1.html (2023).

  154. Strober, B. et al. Efficacy and safety of CBP-201 in adults with moderate-to-severe atopic dermatitis (AD): a phase 2b, randomized, double-blind, placebo-controlled trial (CBP-201-WW001). Presented at Maui Derm Conference. https://www.connectbiopharm.com/wp-content/uploads/Maui-derm-2022_CBP-201_Poster-1_FINAL_10th-January-2022.pdf (2022).

  155. AkesoBio. IL-4Rα monoclonal antibody (AK120) initiates a global phase II clinical trial for the treatment of moderate-to-severe atopic dermatitis. AkesoBio. https://www.akesobio.com/en/media/akeso-news/210927/ (2021).

  156. Silverberg, J. I. et al. Tralokinumab plus topical corticosteroids for the treatment of moderate-to-severe atopic dermatitis: results from the double-blind, randomized, multicentre, placebo-controlled phase III ECZTRA 3 trial. Br. J. Dermatol. 184, 450–463 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Beck, L. A. et al. Tralokinumab treatment improves the skin microbiota by increasing the microbial diversity in adults with moderate-to-severe atopic dermatitis: analysis of microbial diversity in ECZTRA 1, a randomized controlled trial. J. Am. Acad. Dermatol. 88, 816–823 (2023).

    CAS  PubMed  Google Scholar 

  158. Stolzl, D., Weidinger, S. & Drerup, K. A new era has begun: treatment of atopic dermatitis with biologics. Allergol. Sel. 5, 265–273 (2021).

    Google Scholar 

  159. Eli Lilly. Majority of patients treated with lebrikizumab achieved skin clearance in Lilly’s pivotal phase 3 atopic dermatitis studies. Lilly https://investor.lilly.com/news-releases/news-release-details/majority-patients-treated-lebrikizumab-achieved-skin-clearance (2022).

  160. Eli Lilly. Lebrikizumab dosed every four weeks maintained durable skin clearance in Lilly’s phase 3 monotherapy atopic dermatitis trials. Lilly. https://investor.lilly.com/news-releases/news-release-details/lebrikizumab-dosed-every-four-weeks-maintained-durable-skin (2022).

  161. Dellon, E. S. et al. Long-term efficacy and tolerability of RPC4046 in an open-label extension trial of patients with eosinophilic esophagitis. Clin. Gastroenterol. Hepatol. 19, 473–483.e17 (2021).

    CAS  PubMed  Google Scholar 

  162. Lucendo, A. J. & López-Sánchez, P. Targeted therapies for eosinophilic gastrointestinal disorders. BioDrugs 34, 477–493 (2020).

    PubMed  Google Scholar 

  163. Blauvelt, A. Eblasakimab, a human IL-13 Rα1 monoclonal antibody, in adult patients with moderate-to-severe dermatitis: a randomized double-blind, placebo-controlled proof-of-concept study. In American Academy of Dermatology Annual Meeting, Boston, MA, USA, 26 March 2022 Oral presentation at session S026 (AAD. 2022).

  164. Hanania, N. A. et al. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir. Med. 4, 781–796 (2016).

    CAS  PubMed  Google Scholar 

  165. Panettieri, J. et al. Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials. Lancet Respir. Med. 6, 511–525 (2018).

    CAS  PubMed  Google Scholar 

  166. Pavord, I. D. et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 380, 651–659 (2012).

    CAS  PubMed  Google Scholar 

  167. Ortega, H. G. et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 371, 1198–1207 (2014).

    PubMed  Google Scholar 

  168. Bachert, C. et al. Mepolizumab improves quality of life and reduces activity impairments in patients with CRSwNP. Rhinology 60, 474–478 (2022).

    CAS  PubMed  Google Scholar 

  169. Castro, M. et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir. Med. 3, 355–366 (2015).

    CAS  PubMed  Google Scholar 

  170. Bachert, C. et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: randomized trial. J. Allergy Clin. Immunol. 140, 1024–1031.e14 (2017).

    CAS  PubMed  Google Scholar 

  171. Han, J. K. et al. Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 9, 1141–1153 (2021).

    CAS  PubMed  Google Scholar 

  172. Magerl, M. et al. Benefit of mepolizumab treatment in a patient with chronic spontaneous urticaria. J. Dtsch. Dermatol. Ges. 16, 477–478 (2018).

    PubMed  Google Scholar 

  173. Antonicelli, L., Tontini, C., Garritani, M. S., Piga, M. A. & Bilò, M. B. Efficacy of mepolizumab in patients with concomitant severe eosinophilic asthma and severe chronic urticaria: an example of personalized medicine? J. Investig. Allergol. Clin. Immunol. 33, 54–56 (2023).

    CAS  PubMed  Google Scholar 

  174. Maurer, M. et al. Benefit from reslizumab treatment in a patient with chronic spontaneous urticaria and cold urticaria. J. Eur. Acad. Dermatol. Venereol. 32, 112–113 (2018).

    Google Scholar 

  175. Gevaert, P. et al. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps. J. Allergy Clin. Immunol. 118, 1133–1141 (2006).

    CAS  PubMed  Google Scholar 

  176. Oldhoff, J. M. et al. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy 60, 693–696 (2005).

    CAS  PubMed  Google Scholar 

  177. Bleecker, E. R. et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet 388, 2115–2127 (2016).

    CAS  PubMed  Google Scholar 

  178. FitzGerald, J. M. et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 388, 2128–2141 (2016).

    CAS  PubMed  Google Scholar 

  179. Nair, P. et al. Oral glucocorticoid-sparing effect of benralizumab in severe asthma. N. Engl. J. Med. 376, 2448–2458 (2017).

    CAS  PubMed  Google Scholar 

  180. Bernstein, J. A. et al. Benralizumab for chronic spontaneous urticaria. N. Engl. J. Med. 383, 1389–1391 (2020).

    PubMed  Google Scholar 

  181. Bernstein, J. A. et al. Treatment of chronic spontaneous urticaria with benralizumab: report of primary endpoint per-protocol analysis and exploratory endpoints. Allergy 76, 1277–1280 (2021).

    PubMed  Google Scholar 

  182. Bergmann, K. C., Altrichter, S. & Maurer, M. Benefit of benralizumab treatment in a patient with chronic symptomatic dermographism. J. Eur. Acad. Dermatol. Venereol. 33, 413–415 (2019).

    Google Scholar 

  183. Bachert, C. et al. Efficacy and safety of benralizumab in chronic rhinosinusitis with nasal polyps: a randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 149, 1309–1317.e12 (2022).

    CAS  PubMed  Google Scholar 

  184. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 17, 78 (2017).

    PubMed  PubMed Central  Google Scholar 

  185. He, H. & Guttman-Yassky, E. JAK inhibitors for atopic dermatitis: an update. Am. J. Clin. Dermatol. 20, 181–192 (2019).

    PubMed  Google Scholar 

  186. Bieber, T. et al. Abrocitinib versus placebo or dupilumab for atopic dermatitis. N. Engl. J. Med. 384, 1101–1112 (2021).

    CAS  PubMed  Google Scholar 

  187. Stölzl, D. et al. Real-world data on the effectiveness, safety and drug survival of dupilumab: an analysis from the TREATgermany registry. Br. J. Dermatol. 187, 1022–1024 (2022).

    PubMed  Google Scholar 

  188. Simpson, E. L. et al. Efficacy and safety of upadacitinib in patients with moderate to severe atopic dermatitis: analysis of follow-up data from the Measure Up 1 and Measure Up 2 randomized clinical trials. JAMA Dermatol. 158, 404–413 (2022).

    PubMed  PubMed Central  Google Scholar 

  189. Simpson, E. L. et al. Safety of tralokinumab in adult patients with moderate-to-severe atopic dermatitis: pooled analysis of five randomized, double-blind, placebo-controlled phase II and phase III trials. Br. J. Dermatol. 187, 888–899 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Reich, K. et al. Efficacy and safety of abrocitinib versus dupilumab in adults with moderate-to-severe atopic dermatitis: a randomised, double-blind, multicentre phase 3 trial. Lancet 400, 273–282 (2022).

    CAS  PubMed  Google Scholar 

  191. Guttman-Yassky, E. et al. Safety of upadacitinib in moderate-to-severe atopic dermatitis: an integrated analysis of phase 3 studies. J. Allergy Clin. Immunol. 151, 172–181 (2023).

    CAS  PubMed  Google Scholar 

  192. Reich, K. et al. Safety and efficacy of upadacitinib in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis (AD Up): results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 397, 2169–2181 (2021).

    CAS  PubMed  Google Scholar 

  193. Silverberg, J. I. et al. Comparative efficacy of targeted systemic therapies for moderate to severe atopic dermatitis without topical corticosteroids: systematic review and network meta-analysis. Dermatol. Ther. 12, 1181–1196 (2022).

    Google Scholar 

  194. Papp, K. et al. Efficacy and safety of ruxolitinib cream for the treatment of atopic dermatitis: results from 2 phase 3, randomized, double-blind studies. J. Am. Acad. Dermatol. 85, 863–872 (2021).

    CAS  PubMed  Google Scholar 

  195. Nakagawa, H. et al. Phase 2 clinical study of delgocitinib ointment in pediatric patients with atopic dermatitis. J. Allergy Clin. Immunol. 144, 1575–1583 (2019).

    CAS  PubMed  Google Scholar 

  196. Piscitelli, S. C. et al. A phase 1b, randomized, single-center trial of topical cerdulatinib (DMVT-502) in patients with mild-to-moderate atopic dermatitis. J. Invest. Dermatol. 141, 1847–1851 (2021).

    CAS  PubMed  Google Scholar 

  197. Bonnekoh, H., Butze, M. & Metz, M. Characterization of the effects on pruritus by novel treatments for atopic dermatitis. J. Dtsch. Dermatol. Ges. 20, 150–156 (2022).

    PubMed  Google Scholar 

  198. He, Y., Ji, S. & Yu, Q. Effectiveness of baricitinib in prurigo-type atopic dermatitis: a case report. Dermatol. Ther. 34, e14878 (2021).

    PubMed  Google Scholar 

  199. Pereira, M. P., Zeidler, C. & Stander, S. Improvement of chronic nodular prurigo with baricitinib. J. Eur. Acad. Dermatol. Venereol. 36, e486–e488 (2022).

    CAS  PubMed  Google Scholar 

  200. Yin, M., Wu, R., Chen, J. & Dou, X. Successful treatment of refractory prurigo nodularis with baricitinib. Dermatol. Ther. 35, e15642 (2022).

    CAS  PubMed  Google Scholar 

  201. Mansouri, P., Mozafari, N., Chalangari, R. & Martits-Chalangari, K. Efficacy of oral tofacitinib in refractory chronic spontaneous urticaria and urticarial vasculitis. Dermatol. Ther. 35, e15932 (2022).

    CAS  PubMed  Google Scholar 

  202. Fukunaga, A., Ito, M. & Nishigori, C. Efficacy of oral ruxolitinib in a patient with refractory chronic spontaneous urticaria. Acta Derm. Venereol. 98, 904–905 (2018).

    PubMed  Google Scholar 

  203. Agache, I. et al. EAACI Biologicals Guidelines — omalizumab for the treatment of chronic spontaneous urticaria in adults and in the paediatric population 12–17 years old. Allergy 77, 17–38 (2022).

    CAS  PubMed  Google Scholar 

  204. Wedi, B. & Traidl, S. Anti-IgE for the treatment of chronic urticaria. Immunotargets Ther. 10, 27–45 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Gevaert, P. et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. J. Allergy Clin. Immunol. 146, 595–605 (2020).

    CAS  PubMed  Google Scholar 

  206. Lopez-Abente, J. et al. Omalizumab restores the ability of human plasmacytoid dendritic cells to induce Foxp3+Tregs. Eur. Respir. J. 57, 2000751 (2021).

    CAS  PubMed  Google Scholar 

  207. Benito-Villalvilla, C. et al. Ligelizumab impairs IgE-binding to plasmacytoid dendritic cells more potently than omalizumab and restores IFN-α production and FOXP3+Treg generation. Allergy 78, 1060–1072 (2023).

    CAS  PubMed  Google Scholar 

  208. Palomares, O., Elewaut, D., Irving, P. M., Jaumont, X. & Tassinari, P. Regulatory T cells and immunoglobulin E: a new therapeutic link for autoimmunity? Allergy 77, 3293–3308 (2022).

    PubMed  Google Scholar 

  209. De Filippo, M. et al. Omalizumab and allergen immunotherapy for respiratory allergies: a mini-review from the Allergen-Immunotherapy Committee of the Italian Society of Pediatric Allergy and Immunology (SIAIP). Allergol. Immunopathol. 50, 47–52 (2022).

    Google Scholar 

  210. Malipiero, G. et al. Allergen immunotherapy and biologics in respiratory allergy: friends or foes? Curr. Opin. Allergy Clin. Immunol. 21, 16–23 (2021).

    CAS  PubMed  Google Scholar 

  211. Chan, S., Cornelius, V., Cro, S., Harper, J. I. & Lack, G. Treatment effect of omalizumab on severe pediatric atopic dermatitis: the ADAPT randomized clinical trial. JAMA Pediatr. 174, 29–37 (2020).

    PubMed  Google Scholar 

  212. Maurer, M. et al. Omalizumab for the treatment of chronic idiopathic or spontaneous urticaria. N. Engl. J. Med. 368, 924–935 (2013). This work is a key study of efficacy of omalizumab in CSU.

    CAS  PubMed  Google Scholar 

  213. Gasser, P. et al. The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab. Nat. Commun. 11, 165 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Maurer, M. et al. Ligelizumab for chronic spontaneous urticaria. N. Engl. J. Med. 381, 1321–1332 (2019).

    CAS  PubMed  Google Scholar 

  215. Novartis. Novartis provides an update on phase III ligelizumab (QGE031) studies in chronic spontaneous urticaria (CSU). Novartis. https://www.novartis.com/news/media-releases/novartis-provides-update-phase-iii-ligelizumab-qge031-studies-chronic-spontaneous-urticaria-csu (2021).

  216. Trischler, J. et al. Ligelizumab treatment for severe asthma: learnings from the clinical development programme. Clin. Transl. Immunol. 10, e1255 (2021).

    CAS  Google Scholar 

  217. Liour, S. S., Tom, A., Chan, Y.-H. & Chang, T. W. Treating IgE-mediated diseases via targeting IgE-expressing B cells using an anti-CεmX antibody. Pediatr. Allergy Immunol. 27, 446–451 (2016).

    PubMed  Google Scholar 

  218. Kuo, B.-S. et al. IgE-neutralizing UB-221 mAb, distinct from omalizumab and ligelizumab, exhibits CD23-mediated IgE downregulation and relieves urticaria symptoms. J. Clin. Invest. 132, e157765 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Metz, M. et al. Fenebrutinib in H1 antihistamine-refractory chronic spontaneous urticaria: a randomized phase 2 trial. Nat. Med. 27, 1961–1969 (2021). This work presents the first study reporting the efficacy of BTK inhibition in patients with antihistamine-refractory CSU, with additional benefit for patients with autoimmune urticaria.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Maurer, M. et al. Remibrutinib, a novel BTK inhibitor, demonstrates promising efficacy and safety in chronic spontaneous urticaria. J. Allergy Clin. Immunol. 150, 1498–1506.e92 (2022).

    CAS  PubMed  Google Scholar 

  221. Kaul, M. et al. Remibrutinib (LOU064): a selective potent oral BTK inhibitor with promising clinical safety and pharmacodynamics in a randomized phase I trial. Clin. Transl. Sci. 14, 1756–1768 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Rymut, S. M. et al. Dose-dependent inactivation of airway tryptase with a novel dissociating anti-tryptase antibody (MTPS9579A) in healthy participants: a randomized trial. Clin. Transl. Sci. 15, 451–463 (2022).

    CAS  PubMed  Google Scholar 

  223. Oliver, E. T. et al. Effects of an oral CRTh2 antagonist (AZD1981) on eosinophil activity and symptoms in chronic spontaneous urticaria. Int. Arch. Allergy Immunol. 179, 21–30 (2019).

    CAS  PubMed  Google Scholar 

  224. Castro, M. et al. Efficacy and safety of fevipiprant in patients with uncontrolled asthma: two replicate, phase 3, randomised, double-blind, placebo-controlled trials (ZEAL-1 and ZEAL-2). eClinicalMedicine 35, 100847 (2021).

    PubMed  PubMed Central  Google Scholar 

  225. Asano, K. et al. A phase 2a study of DP2 antagonist GB001 for asthma. J. Allergy Clin. Immunol. Pract. 8, 1275–12831 (2020).

    PubMed  Google Scholar 

  226. Altrichter, S. et al. An open-label, proof-of-concept study of lirentelimab for antihistamine-resistant chronic spontaneous and inducible urticaria. J. Allergy Clin. Immunol. 149, 1683–1690 (2022). This work presents a proof-of-concept study of mast cell sliencing with the anti-Siglec-8 antibody lirentelimab, in CSU and CIndU.

    CAS  PubMed  Google Scholar 

  227. Terhorst-Molawi, D. et al. Anti-KIT antibody, barzolvolimab, reduces skin mast cells and disease activity in chronic inducible urticaria. Allergy 78, 1269–1279 (2022). This work presents the first study showing efficacy of mast cell depletion with the anti-KIT monoclonal antibody barzolvolimab in CIndU.

    PubMed  Google Scholar 

  228. Bernstein, J. et al. Effects of multiple dose treatment with an anti-KIT antibody, CDX-0159, in chronic spontaneous urticaria [abstract 100097]. Allergy 78, 416 (2023).

    Google Scholar 

  229. Davidescu, L. et al. Efficacy and safety of masitinib in corticosteroid-dependent severe asthma: a randomized placebo-controlled trial. J. Asthma Allergy 15, 737–747 (2022).

    PubMed  PubMed Central  Google Scholar 

  230. Silverberg, J. I. et al. Phase 2B randomized study of nemolizumab in adults with moderate-to-severe atopic dermatitis and severe pruritus. J. Allergy Clin. Immunol. 145, 173–182 (2020).

    CAS  PubMed  Google Scholar 

  231. Ruzicka, T. et al. Anti-interleukin-31 receptor a antibody for atopic dermatitis. N. Engl. J. Med. 376, 826–835 (2017).

    CAS  PubMed  Google Scholar 

  232. Kabashima, K., Matsumura, T., Komazaki, H., Kawashima, M. & Nemolizumab, J. P. S. G. Trial of nemolizumab and topical agents for atopic dermatitis with pruritus. N. Engl. J. Med. 383, 141–150 (2020).

    CAS  PubMed  Google Scholar 

  233. Galderma. Galderma delivers strong FY 2022 growth driven by innovation and commercial performance. Galderma. https://www.galderma.com/news/galderma-delivers-strong-fy-2022-growth-driven-innovation-and-commercial-performance (2023).

  234. Ständer, S. et al. Trial of nemolizumab in moderate-to-severe prurigo nodularis. N. Engl. J. Med. 382, 706–716 (2020).

    PubMed  Google Scholar 

  235. Ständer, S. et al. Nemolizumab efficacy in prurigo nodularis: onset of action on itch and sleep disturbances. J. Eur. Acad. Dermatol. Venereol. 36, 1820–1825 (2022).

    PubMed  PubMed Central  Google Scholar 

  236. Galderma. AAD 2023: late-breaking phase III results demonstrate nemolizumab’s significant impact on prurigo nodularis. Galderma. https://www.galderma.com/news/aad-2023-late-breaking-phase-iii-results-demonstrate-nemolizumabs-significant-impact-prurigo-1 (2023).

  237. Sofen, H. et al. Efficacy and safety of vixarelimab, a human monoclonal oncostatin M receptor β antibody, in moderate-to-severe prurigo nodularis: a randomised, double-blind, placebo-controlled, phase 2a study. eClinicalMedicine 57, 101826 (2023).

    PubMed  PubMed Central  Google Scholar 

  238. Mikhak, Z. et al. KPL-716, anti-oncostatin M receptor β antibody, reduced pruritus in atopic dermatitis [abstract 560]. J. Invest. Dermatol. 139, S96 (2019).

    Google Scholar 

  239. Ständer, S. et al. Serlopitant reduced pruritus in patients with prurigo nodularis in a phase 2, randomized, placebo-controlled trial. J. Am. Acad. Dermatol. 80, 1395–1402 (2019).

    PubMed  Google Scholar 

  240. Ogasawara, H., Furuno, M., Edamura, K. & Noguchi, M. Novel MRGPRX2 antagonists inhibit IgE-independent activation of human umbilical cord blood-derived mast cells. J. Leukoc. Biol. 106, 1069–1077 (2019).

    CAS  PubMed  Google Scholar 

  241. Guttman-Yassky, E. et al. GBR 830, an anti-OX40, improves skin gene signatures and clinical scores in patients with atopic dermatitis. J. Allergy Clin. Immunol. 144, 482–493.e7 (2019).

    CAS  PubMed  Google Scholar 

  242. Nakagawa, H. et al. Safety, tolerability and efficacy of repeated intravenous infusions of KHK4083, a fully human anti-OX40 monoclonal antibody, in Japanese patients with moderate to severe atopic dermatitis. J. Dermatol. Sci. 99, 82–89 (2020).

    CAS  PubMed  Google Scholar 

  243. Saghari, M. et al. OX40L inhibition suppresses KLH-driven immune responses in healthy volunteers: a randomized controlled trial demonstrating proof-of-pharmacology for KY1005. Clin. Pharmacol. Ther. 111, 1121–1132 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Sher, L. et al. 472 Telazorlimab in atopic dermatitis: phase 2b study shows improvement at 16 weeks. J. Invest. Dermatol. 141, S82 (2021).

    Google Scholar 

  245. Guttman-Yassky, E. et al. An anti-OX40 antibody to treat moderate-to-severe atopic dermatitis: a multicentre, double-blind, placebo-controlled phase 2b study. Lancet 401, 204–214 (2023). The results of this phase IIb study show progressive improvements in AD maintained in most patients even after discontinuation of treatment with rocatinlimab.

    CAS  PubMed  Google Scholar 

  246. Sanofi. New, late-breaking data at EADV highlights emerging clinical profile of amlitelimab (formerly KY1005) in adults with inadequately controlled moderate-to-severe atopic dermatitis. Sanofi. https://www.sanofi.com/en/media-room/press-releases/2021/2021-09-30-12-30-00-2306183 (2021).

  247. Laulajainen-Hongisto, A. et al. Genomics of asthma, allergy and chronic rhinosinusitis: novel concepts and relevance in airway mucosa. Clin. Transl. Allergy 10, 45 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Holloway, J. W., Yang, I. A. & Holgate, S. T. Genetics of allergic disease. J. Allergy Clin. Immunol. 125 (Suppl. 2), S81–S94 (2010).

    PubMed  Google Scholar 

  249. Bellinghausen, I., Khatri, R. & Saloga, J. Current strategies to modulate regulatory T cell activity in allergic inflammation. Front. Immunol. 13, 912529S (2022).

    Google Scholar 

  250. Godar, M. et al. A bispecific antibody strategy to target multiple type 2 cytokines in asthma. J. Allergy Clin. Immunol. 142, 1185 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Barnes, P. J. Role of GATA-3 in allergic diseases. Curr. Mol. Med. 8, 330–334 (2008).

    CAS  PubMed  Google Scholar 

  252. Potaczek, D. P., Garn, H., Unger, S. D. & Renz, H. Antisense molecules: a new class of drugs. J. Allergy Clin. Immunol. 137, 1334–1346 (2016).

    CAS  PubMed  Google Scholar 

  253. Krug, N. et al. Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N. Engl. J. Med. 372, 1987–1995 (2015). This report evaluates the safety and efficacy of SB010, a novel DNAzyme targeted against GATA3 mRNA in patients with allergic asthma.

    PubMed  Google Scholar 

  254. Jansson, Å. et al. Efficient anti-IgE vaccination without anaphylactogenic properties. J. Allergy Clin. Immunol. 113, S254 (2004).

    Google Scholar 

  255. Conde, E. et al. Dual vaccination against IL-4 and IL-13 protects against chronic allergic asthma in mice. Nat. Commun. 12, 2574 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Chen, S. et al. Treatment of allergic eosinophilic asthma through engineered IL-5-anchored chimeric antigen receptor T cells. Cell Discov. 8, 80 (2022).

    PubMed  PubMed Central  Google Scholar 

  257. Nettis, E. et al. Effectiveness and safety of dupilumab in patients with chronic rhinosinusitis with nasal polyps and associated comorbidities: a multicentric prospective study in real life. Clin. Mol. Allergy 20, 6 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Nnane, I. et al. The first-in-human study of CNTO 7160, an anti-interleukin-33 receptor monoclonal antibody, in healthy subjects and patients with asthma or atopic dermatitis. Br. J. Clin. Pharmacol. 86, 2507–2518 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Simpson, E. L. et al. Efficacy and safety of lebrikizumab in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis: a randomized clinical trial (ADhere). JAMA Dermatol. 159, 182–191 (2023).

    PubMed  PubMed Central  Google Scholar 

  260. Silverberg, J. I. et al. Two phase 3 trials of lebrikizumab for moderate-to-severe atopic dermatitis. N. Engl. J. Med. 388, 1080–1091 (2023). This publication describes the results of two phase III trials of lebrikizumab efficacy in adolescents and adults with moderate to severe AD.

    CAS  PubMed  Google Scholar 

  261. Whetstone, C. et al. Effect of benralizumab on skin responses to intradermal allergen challenge in patients with moderate-to-severe atopic dermatitis. J. Allergy Clin. Immunol. 149, AB322 (2022).

    Google Scholar 

  262. Zhao, Y. et al. Efficacy and safety of SHR0302, a highly selective Janus kinase 1 inhibitor, in patients with moderate to severe atopic dermatitis: a phase II randomized clinical trial. Am. J. Clin. Dermatol. 22, 877–889 (2021).

    PubMed  PubMed Central  Google Scholar 

  263. Landis, M. N. et al. Efficacy and safety of topical brepocitinib for the treatment of mild-to-moderate atopic dermatitis: a phase IIb, randomized, double-blind, vehicle-controlled, dose-ranging and parallel-group study. Br. J. Dermatol. 187, 878–887 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Weidinger, S. et al. 33781 Sustained and durable response up to 24 weeks after last dose observed in a phase 2a study (NCT03754309) of amlitelimab (KY1005, SAR445229) a novel nondepleting anti-OX40Ligand (OX40L) mAb in patients with moderate to severe atopic dermatitis (AD). J. Am. Acad. Dermatol. 87, AB206 (2022).

    Google Scholar 

  265. Maurer, M. et al. Sustained safety and efficacy of ligelizumab in patients with chronic spontaneous urticaria: a one-year extension study. Allergy 77, 2175–2184 (2022).

    CAS  PubMed  Google Scholar 

  266. Dickson, M. C. et al. Effects of a topical treatment with spleen tyrosine kinase inhibitor in healthy subjects and patients with cold urticaria or chronic spontaneous urticaria: results of a phase 1a/b randomised double-blind placebo-controlled study. Br. J. Clin. Pharmacol. 87, 4797–4808 (2021).

    CAS  PubMed  Google Scholar 

  267. Shinkai, M. et al. One-year safety and tolerability of tezepelumab in Japanese patients with severe uncontrolled asthma: results of the NOZOMI study. J. Asthma 60, 616–624 (2023).

    CAS  PubMed  Google Scholar 

  268. Wechsler, M. E. et al. Evaluation of the oral corticosteroid-sparing effect of tezepelumab in adults with oral corticosteroid-dependent asthma (SOURCE): a randomised, placebo-controlled, phase 3 study. Lancet Resp. Med. 10, 650–660 (2022).

    CAS  Google Scholar 

  269. Menzies-Gow, A. et al. Long-term safety and efficacy of tezepelumab in people with severe, uncontrolled asthma (DESTINATION): a randomised, placebo-controlled extension study. Lancet Respir. Med. 11, 425–438 (2023).

    CAS  PubMed  Google Scholar 

  270. Gauvreau, G. M. et al. Inhaled anti-TSLP antibody fragment, ecleralimab, blocks responses to allergen in mild asthma. Eur. Respir. J. 61, 2201193 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Maintz, L., Bieber, T., Simpson, H. D. & Demessant-Flavigny, A. L. From skin barrier dysfunction to systemic impact of atopic dermatitis: implications for a precision approach in dermocosmetics and medicine. J. Pers. Med. 12, 893 (2022).

    PubMed  PubMed Central  Google Scholar 

  272. Hox, V. et al. Benefits and harm of systemic steroids for short- and long-term use in rhinitis and rhinosinusitis: an EAACI position paper. Clin. Transl. Allergy 10, 1 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Alsharif, S. et al. Endoscopic sinus surgery for type-2 CRS wNP: an endotype-based retrospective study. Laryngoscope 129, 1286–1292 (2019).

    PubMed  Google Scholar 

  274. Gevaert, P. et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J. Allergy Clin. Immunol. 131, 110–116.e1 (2013).

    CAS  PubMed  Google Scholar 

  275. Gevaert, P. et al. Long-term efficacy and safety of omalizumab for nasal polyposis in an open-label extension study. J. Allergy Clin. Immunol. 149, 957–965.e3 (2022).

    CAS  PubMed  Google Scholar 

  276. Gevaert, P. et al. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J. Allergy Clin. Immunol. 128, 989–995.e1–e8 (2011).

    CAS  PubMed  Google Scholar 

  277. Bachert, C. et al. Effect of subcutaneous dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis: a randomized clinical trial. J. Am. Med. Assoc. 315, 469–479 (2016). This paper reports the efficacy of dupilumab in adults with symptomatic chronic sinusitis and nasal polyposis refractory to intranasal corticosteroids.

    CAS  Google Scholar 

  278. Yew, Y. W., Thyssen, J. P. & Silverberg, J. I. A systematic review and meta-analysis of the regional and age-related differences in atopic dermatitis clinical characteristics. J. Am. Acad. Dermatol. 80, 390–401 (2019).

    PubMed  Google Scholar 

  279. Boozalis, E. et al. Ethnic differences and comorbidities of 909 prurigo nodularis patients. J. Am. Acad. Dermatol. 79, 714–719.e3 (2018).

    PubMed  PubMed Central  Google Scholar 

  280. Huang, A. H., Canner, J. K., Khanna, R., Kang, S. & Kwatra, S. G. Real-world prevalence of prurigo nodularis and burden of associated diseases. J. Invest. Dermatol. 140, 480–483.e4 (2020).

    CAS  PubMed  Google Scholar 

  281. De Bruin-Weller, M. et al. Treat-to-target in atopic dermatitis: an international consensus on a set of core decision points for systemic therapies. Acta Derm. Venereol. 101, adv00402 (2021).

    PubMed  Google Scholar 

  282. Porsbjerg, C., Melén, E., Lehtimäki, L. & Shaw, D. Asthma. Lancet 401, 858–873 (2023).

    PubMed  Google Scholar 

  283. Galli, S. J. Toward precision medicine and health: opportunities and challenges in allergic diseases. J. Allergy Clin. Immunol. 137, 1289 (2016).

    PubMed  PubMed Central  Google Scholar 

  284. Asero, R. et al. Co-occurrence of IgE and IgG autoantibodies in patients with chronic spontaneous urticaria. Clin. Exp. Immunol. 200, 242–249 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Farzan, N., Vijverberg, S. J. H., Arets, H. G., Raaijmakers, J. A. M. & Maitland-van der Zee, A. H. Pharmacogenomics of inhaled corticosteroids and leukotriene modifiers: a systematic review. Clin. Exp. Allergy 47, 271–293 (2017).

    CAS  PubMed  Google Scholar 

  286. Agache, I. & Akdis, C. A. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes allergic diseases. J. Clin. Invest. 129, 1493–1503 (2019). This publication scrutinizes and discusses a precision medicine approach that stratifies patients based on disease mechanisms to optimize management of allergic diseases.

    PubMed  PubMed Central  Google Scholar 

  287. Settipane, R. A., Kreindler, J. L., Chung, Y. & Tkacz, J. Evaluating direct costs and productivity losses of patients with asthma receiving GINA 4/5 therapy in the United States. Ann. Allergy Asthma Immunol. 123, 564–572.e3 (2019).

    CAS  PubMed  Google Scholar 

  288. Pereira, M. P. et al. Chronic nodular prurigo: a European cross-sectional study of patient perspectives on therapeutic goals and satisfaction. Acta Derm. Venereol. 101, adv00403 (2021).

    PubMed  Google Scholar 

  289. Guillen-Aguinaga, S., Jauregui Presa, I., Aguinaga-Ontoso, E., Guillen-Grima, F. & Ferrer, M. Updosing nonsedating antihistamines in patients with chronic spontaneous urticaria: a systematic review and meta-analysis. Br. J. Dermatol. 175, 1153–1165 (2016).

    CAS  PubMed  Google Scholar 

  290. Tharp, M. D. et al. Benefits and harms of omalizumab treatment in adolescent and adult patients with chronic idiopathic (spontaneous) urticaria: a meta-analysis of “real-world” evidence. JAMA Dermatol. 155, 29–38 (2019).

    PubMed  Google Scholar 

  291. Maurer, M. et al. Unmet clinical needs in chronic spontaneous urticaria. A GA²LEN task force report. Allergy 66, 317–330 (2011).

    CAS  PubMed  Google Scholar 

  292. Alves, F., Calado, R., Relvas, M., Gomes, T. & Gonçalo, M. Short courses of ciclosporin can induce long remissions in chronic spontaneous urticaria. J. Eur. Acad. Dermatol. Venereol. 36, 645–646 (2022).

    Google Scholar 

  293. Maurer, M. et al. Efficacy and safety of omalizumab in patients with chronic urticaria who exhibit IgE against thyroperoxidase. J. Allergy Clin. Immunol. 128, 202–209.e5 (2011).

    CAS  PubMed  Google Scholar 

  294. Kolkhir, P. et al. The benefit of complete response to treatment in patients with chronic spontaneous urticaria — CURE results. J. Allergy Clin. Immunol. Pract. 11, 610–620.e5 (2023).

    CAS  PubMed  Google Scholar 

  295. Lommatzsch, M. et al. Disease-modifying anti-asthmatic drugs. Lancet 399, 1664–1668 (2022).

    PubMed  Google Scholar 

  296. Wangberg, H. & Woessner, K. Choice of biologics in asthma endotypes. Curr. Opin. Allergy Clin. Immunol. 21, 79–85 (2021).

    CAS  PubMed  Google Scholar 

  297. Manka, L. A. & Wechsler, M. E. Selecting the right biologic for your patients with severe asthma. Ann. Allergy Asthma Immunol. 121, 406–413 (2018).

    PubMed  Google Scholar 

  298. Jackson, D. J. et al. Characterisation of patients with severe asthma in the UK Severe Asthma Registry in the biologic era. Thorax 76, 220–227 (2021).

    PubMed  Google Scholar 

  299. Pfaller, B. et al. Biologicals in atopic disease in pregnancy: an EAACI position paper. Allergy 76, 71–89 (2021).

    PubMed  Google Scholar 

  300. Middleton, P. G. et al. ERS/TSANZ Task Force Statement on the management of reproduction and pregnancy in women with airways diseases. Eur. Respir. J. 55, 1901208 (2020).

    PubMed  Google Scholar 

  301. Samedy-Bates, L.-A. et al. Racial/ethnic-specific differences in the effects of inhaled corticosteroid use on bronchodilator response in patients with asthma. Clin. Pharmacol. Ther. 106, 1133–1140 (2019).

    CAS  PubMed  Google Scholar 

  302. Oh, S. S., White, M. J., Gignoux, C. R. & Burchard, E. G. Making precision medicine socially precise. take a deep breath. Am. J. Respir. Crit. Care Med. 193, 348–350 (2016).

    PubMed  PubMed Central  Google Scholar 

  303. Chan, R., Stewart, K., Misirovs, R. & Lipworth, B. J. Targeting downstream type 2 cytokines or upstream epithelial alarmins for severe asthma. J. Allergy Clin. Immunol. Pract. 10, 1497–1505 (2022).

    CAS  PubMed  Google Scholar 

  304. Varricchi, G. et al. Biologics and airway remodeling in severe asthma. Allergy 77, 3538–3552 (2022).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pavel Kolkhir or Marcus Maurer.

Ethics declarations

Competing interests

P.K. received speaker’s fees, honoraria or travel support from Novartis, ValenzaBio, Roche and Takeda. C.A.A. has received research grants from the Swiss National Science Foundation, European Union (EU CURE, EU SynAir-G), Novartis Research Institutes (Basel, Switzerland), Stanford University (Redwood City, CA, USA), Seed Health (Boston, MA, USA) and SciBase (Stockholm, Sweden); is the Co-Chair for European Academy of Allergy and Clinical Immunology (EAACI) Guidelines on Environmental Science in Allergic diseases and Asthma; is Chair of the EAACI Epithelial Cell Biology Working Group; is on the Advisory Boards of Sanofi/Regeneron (Bern, Switzerland, New York, USA), Stanford University Sean Parker Asthma Allergy Center (CA, USA), Novartis (Basel, Switzerland), Glaxo Smith Kline (Zurich, Switzerland), Bristol-Myers Squibb (New York, USA), Seed Health (Boston, MA, USA) and SciBase (Stockholm, Sweden); and is Editor-in-Chief of Allergy. M.A. received research grants from Swiss National Foundation Sean Parker allergy centre Seed grant, Leading House Swiss-Columbia research grant, Horizon 2020 and EU Grant SynAir-G; and is on the advisory board for LEO foundation, SIC Copenhagen, Denmark and Sean Parker Allergy Center (Stanford, CA, USA). C.B. is an Advisory Board member and speaker for Novartis, GSK, AstraZeneca, Sanofi, ALK, Bionorica and Mylan. T.B. was speaker and/or consultant and/or investigator for AbbVie, Affibody, Almirall, AnaptysBio, AOBiom, Arena, Aristea, Asana Biosciences, ASLAN Pharma, Bayer Health, BioVerSys, Böhringer-Ingelheim, Bristol-Myers Squibb, Connect Pharma, Daichi-Sanyko, Dermavant, DIECE Therapeutics, Domain Therapeutics, DS Pharma, EQRx, Galderma, Galapagos, Glenmark, GSK, Incyte, Innovaderm, Janssen, Kirin, Kymab, LEO, LG Chem, Lilly, L’Oréal, MSD, Medac, Novartis, Numab, OM Pharma, Pfizer, Pierre Fabre, Q32bio, RAPT, Sanofi/Regeneron, UCB and Union Therapeutics; and is founder and chairman of the board of the non-profit biotech ‘Davos Biosciences’ within the international Kühne-Foundation. G.W.C. received research grants from as well as being a lecturer for or having received advisory board fees from A. Menarini, Anallergo, Allergy Therapeutics, AstraZeneca, Chiesi Farmaceutici, Faes, Firma, Genentech, Guidotti-Malesci, Glaxo Smith Kline, Hal Allergy, Innovacaremd, Novartis, Om Pharma, RedMaple, Sanofi-Aventis, Sanofi-Genzyme, Stallergenes-Greer, Uriach Pharma, ThermoFisher and Valeas. E.G.-Y. received research grants (paid to the institution) from Boerhinger-Ingelhiem, Leo Pharma, Pfizer, Cara Therapeutics, UCB, Kyowa Kirin, RAPT, Amgen, GSK, Incyte, Sanofi, Bristol Meyers Squibb, Aslan, Regeneron, Anaptysbio, Concert and Janssen. M. Metz has honoraria as a speaker and/or consultant for AbbVie, Amgen, ArgenX, AstraZeneca, Bayer, Celldex, Celgene, Escient, Galderma, Grünenthal, GSK, Menlo, Novartis, Pfizer, Pharvaris, Regeneron, Roche, Sanofi-Aventis, Teva, Third Harmonic Bio and Viforpharma. J.M. is or has been a member of national and international scientific advisory boards, consulted and received fees for lectures and grants for research projects or clinical trials from AstraZeneca, Genentech-Roche, GSK, LETI, Menarini, MSD, Mitsubishi-Tanabe, Viatris/MEDA Pharma, Novartis, OPTINOSE, Proctor & Gamble, Sanofi-Genzyme & Regeneron, UCB Pharma and NOUCOR/Uriach Group; received financial support from AGAUR and ISCiii; and is Editor-in-Chief of Current Treatment Options in Allergy. O.P. has received fees for lectures or participation in Advisory Boards from AstraZeneca, GSK, Inmunotek SL, Novartis, Pfizer, Sanofi-Genzyme and Regeneron; and has received research grants from MINECO, MICINNIN and CAM and research unrestricted grants from Inmunotek SL, Novartis SL and AstraZeneca. H.R. is supported by the German Lung Center (DZL) and the Universities Giessen and Marburg Lung Center (UGLMC), the MIRACUM Consortium of the Medical Informatics Initiative, the Stiftung Pathobiochemistry and DAAD and GIZ Hospital Partnership Programme, the DFG, BMBF, EU and Land Hessen; has received speakers’ honorarium from Allergopharma, Novartis, ThermoFisher, Danone, Bencard and Stallergenes; has consulted for Sterna-biologicals (co-founder); and is Associate Editor of Journal of Allergy and Clinical Immunology (JACI). S.S. was speaker and/or consultant and/or investigator for and/or has received research funding from Abbvie, Almirall, Beiersdorf, BMS, Clexio, Eli Lilly, FomF, Galderma, German Research Foundation (DFG), Integrity CE, Kiniksa, Leo Pharma, L’Oréal, MEDahead, Moroscience, NACCME, Novartis, Omnicuris, P.G. Unna Academy, Pfizer, Sanofi, TouchIME, UCB, Vifor and WebMD. T.Z. has received industry consulting, research grants and/or honoraria from Abivax, Allakos, AImmune, Ajanta Pharma, AstraZeneca, AbbVie, ALK, Almirall, Astellas, Bayer Health Care, Bencard, Berlin Chemie, BioCryst, Celldex, FAES, HAL, Henkel, Kryolan, Leti, Lofarma, L’Oreal, Meda, Medi Wound, Menarini, Merck, MibeTec, MMV Medicines for Malaria Venture, MSD, Novartis, PCM Scientific, Pfizer, Sanofi, Sanoflore, Stallergenes, Takeda, Teva and UCB. M. Maurer is or recently was a speaker and/or adviser for and/or has received research funding from Astria, Allakos, Alnylam, Amgen, Aralez, ArgenX, AstraZeneca, BioCryst, Blueprint, Celldex, Centogene, CSL Behring, Dyax, FAES, Genentech, GIInnovation, GSK, Innate Pharma, Kalvista, Kyowa Kirin, Leo Pharma, Lilly, Menarini, Moxie, Novartis, Pfizer, Pharming, Pharvaris, Roche, Sanofi/Regeneron, Shire/Takeda, Third Harmonic Bio, UCB and Uriach.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Biomarkers

Measurable indicators linking disease endotypes with phenotypes.

Disease-modifying treatments

Therapies that affect the disease course — for example, delay or slow the progression of the disease or lead to a long-term reduction in symptoms — by targeting its underlying mechanism.

Endotypes

Subtypes of a disease, which are characterized by a distinct pathophysiologic mechanism at a cellular and a molecular level.

Phenotypes

Clusters of visible properties, attempting to individualize disease expression in a group of patients.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolkhir, P., Akdis, C.A., Akdis, M. et al. Type 2 chronic inflammatory diseases: targets, therapies and unmet needs. Nat Rev Drug Discov 22, 743–767 (2023). https://doi.org/10.1038/s41573-023-00750-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00750-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing