Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Disease modification in inflammatory skin disorders: opportunities and challenges

An Author Correction to this article was published on 21 August 2023

This article has been updated

Abstract

Progress in understanding of the mechanisms underlying chronic inflammatory skin disorders, such as atopic dermatitis and psoriasis vulgaris, has led to new treatment options with the primary goal of alleviating symptoms. In addition, this knowledge has the potential to inform on new strategies aimed at inducing deep and therapy-free remission, that is, disease modification, potentially impacting on associated comorbidities. However, to reach this goal, key areas require further exploration, including the definitions of disease modification and disease activity index, further understanding of disease mechanisms and systemic spillover effects, potential windows of opportunity, biomarkers for patient stratification and successful intervention, as well as appropriate study design. This Perspective article assesses the opportunities and challenges in the discovery and development of disease-modifying therapies for chronic inflammatory skin disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Developmental stages of atopic dermatitis and psoriasis vulgaris and candidate pharmacological targets for disease-modifying interventions.
Fig. 2: Typical trajectories of atopic dermatitis and psoriasis vulgaris with their respective comorbidities and the expected outcomes on successful disease-modifying interventions.

Similar content being viewed by others

Change history

References

  1. Hay, R. J. et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J. Invest. Dermatol. 134, 1527–1534 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Plewig, G., French, L. E., Ruzicka, T., Kaufman, R. & Hertl, M. Braun-Falco’s Dermatology (Springer, 2022).

  3. Boch, K. et al. Lichen planus. Front. Med. 8, 737813 (2021).

    Article  Google Scholar 

  4. Kolkhir, P. et al. Urticaria. Nat. Rev. Dis. Prim. 8, 61 (2022).

    Article  PubMed  Google Scholar 

  5. Kolkhir, P. et al. Autoimmune chronic spontaneous urticaria. J. Allergy Clin. Immunol. 149, 1819–1831 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Sabat, R. et al. Hidradenitis suppurativa. Nat. Rev. Dis. Prim. 6, 18 (2020).

    Article  PubMed  Google Scholar 

  7. Boehncke, W. H. & Schon, M. P. Psoriasis. Lancet 386, 983–994 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Conrad, C. & Gilliet, M. Psoriasis: from pathogenesis to targeted therapies. Clin. Rev. Allergy Immunol. 54, 102–113 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Dainichi, T. et al. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat. Immunol. 19, 1286–1298 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Bieber, T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat. Rev. Drug Discov. 21, 21–40 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Armstrong, A. W. et al. Comparison of biologics and oral treatments for plaque psoriasis: a meta-analysis. JAMA Dermatol. 156, 258–269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Weidinger, S. & Novak, N. Atopic dermatitis. Lancet 387, 1109–1122 (2016).

    Article  PubMed  Google Scholar 

  13. Stander, S. Atopic dermatitis. N. Engl. J. Med. 384, 1136–1143 (2021).

    Article  PubMed  Google Scholar 

  14. Bieber, T. Atopic dermatitis. N. Engl. J. Med. 358, 1483–1494 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Griffiths, C. E. M., Armstrong, A. W., Gudjonsson, J. E. & Barker, J. Psoriasis. Lancet 397, 1301–1315 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Andersen, Y. M. F., Egeberg, A., Skov, L. & Thyssen, J. P. Comorbidities of atopic dermatitis: beyond rhinitis and asthma. Curr. Dermatol. Rep. 6, 35–41 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Eckert, L. et al. The burden of atopic dermatitis in US adults: health care resource utilization data from the 2013 National Health and Wellness Survey. J. Am. Acad. Dermatol. 78, 54–61.e51 (2018).

    Article  PubMed  Google Scholar 

  18. Sandhu, J. K., Salame, N., Ehsani-Chimeh, N. & Armstrong, A. W. Economic burden of cutaneous infections in children and adults with atopic dermatitis. Pediatr. Dermatol. 36, 303–310 (2019).

    Article  PubMed  Google Scholar 

  19. Eckert, L., Gupta, S., Gadkari, A., Mahajan, P. & Gelfand, J. M. Burden of illness in adults with atopic dermatitis: analysis of National Health and Wellness Survey data from France, Germany, Italy, Spain, and the United Kingdom. J. Am. Acad. Dermatol. 81, 187–195 (2019).

    Article  PubMed  Google Scholar 

  20. Ismail, N. & Bray, N. Atopic dermatitis: economic burden and strategies for high-quality care. Br. J. Dermatol. 182, 1087–1088 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Weil, C. et al. Epidemiology and economic burden of atopic dermatitis: real-world retrospective data from a large nationwide Israeli healthcare provider database. Adv. Ther. 39, 2502–2514 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vanderpuye-Orgle, J. et al. Evaluating the economic burden of psoriasis in the United States. J. Am. Acad. Dermatol. 72, 961–967.e5 (2015).

    Article  PubMed  Google Scholar 

  23. Wu, J. J. et al. Economic burden of comorbidities in patients with psoriasis in the USA. Dermatol. Ther. 13, 207–219 (2023).

    Article  Google Scholar 

  24. Maintz, L. et al. Machine learning-based deep phenotyping of atopic dermatitis: severity-associated factors in adolescent and adult patients. JAMA Dermatol. 157, 1414–1424 (2021).

    Article  PubMed  Google Scholar 

  25. Silverberg, J. I. Comorbidities and the impact of atopic dermatitis. Ann. Allergy Asthma Immunol. 124, 144–151 (2019).

    Article  Google Scholar 

  26. Kok, W. L., Yew, Y. W. & Thng, T. G. Comorbidities associated with severity of atopic dermatitis in young adult males: a national cohort study. Acta Derm. Venereol. 99, 652–656 (2019).

    Article  PubMed  Google Scholar 

  27. Thyssen, J. P., Skov, L., Hamann, C. R., Gislason, G. H. & Egeberg, A. Assessment of major comorbidities in adults with atopic dermatitis using the Charlson comorbidity index. J. Am. Acad. Dermatol. 76, 1088–1092.e1 (2017).

    Article  PubMed  Google Scholar 

  28. Davidson, W. F. et al. Report from the National Institute of Allergy and Infectious Diseases workshop on ‘Atopic dermatitis and the atopic march: mechanisms and interventions’. J. Allergy Clin. Immunol. 143, 894–913 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Takeshita, J. et al. Atopic dermatitis and the atopic march: considering racial and ethnic diversity in atopic disease progression. J. Allergy Clin. Immunol. 149, 1590–1591 (2022).

    Article  PubMed  Google Scholar 

  30. Han, H., Roan, F. & Ziegler, S. F. The atopic march: current insights into skin barrier dysfunction and epithelial cell-derived cytokines. Immunol. Rev. 278, 116–130 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khan, S. J., Dharmage, S. C., Matheson, M. C. & Gurrin, L. C. Is the atopic march related to confounding by genetics and early-life environment? A systematic review of sibship and twin data. Allergy 73, 17–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Egeberg, A., Andersen, Y. M., Gislason, G. H., Skov, L. & Thyssen, J. P. Prevalence of comorbidity and associated risk factors in adults with atopic dermatitis. Allergy 72, 783–791 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Andersen, Y. M. F. et al. Poor agreement in questionnaire-based diagnostic criteria for adult atopic dermatitis is a challenge when examining cardiovascular comorbidity. Allergy 73, 923–931 (2017).

    Article  PubMed  Google Scholar 

  34. Villani, A. P. et al. Vascular inflammation in moderate-to-severe atopic dermatitis is associated with enhanced Th2 response. Allergy 76, 3107–3121 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Ivert, L. U. et al. Association between atopic dermatitis and cardiovascular disease: a nationwide register-based case–control study from Sweden. Acta Derm. Venereol. 99, 865–870 (2019).

    Article  PubMed  Google Scholar 

  36. Mohan, G. C. & Silverberg, J. I. Association of vitiligo and alopecia areata with atopic dermatitis: a systematic review and meta-analysis. JAMA Dermatol. 151, 522–528 (2015).

    Article  PubMed  Google Scholar 

  37. Drucker, A. M. et al. Incident alopecia areata and vitiligo in adult women with atopic dermatitis: nurses’ health study 2. Allergy 72, 831–834 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Silverberg, J. I. Selected comorbidities of atopic dermatitis: atopy, neuropsychiatric, and musculoskeletal disorders. Clin. Dermatol. 35, 360–366 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thyssen, J. P. et al. Atopic dermatitis is associated with anxiety, depression, and suicidal ideation, but not with psychiatric hospitalization or suicide. Allergy 73, 214–220 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Ayasse, M. T., Buddenkotte, J., Alam, M. & Steinhoff, M. Role of neuroimmune circuits and pruritus in psoriasis. Exp. Dermatol. 29, 414–426 (2020).

    Article  PubMed  Google Scholar 

  41. Mendonca, J. A., Aydin, S. Z. & D’Agostino, M. A. The use of ultrasonography in the diagnosis of nail disease among patients with psoriasis and psoriatic arthritis: a systematic review. Adv. Rheumatol. 59, 41 (2019).

    Article  PubMed  Google Scholar 

  42. Gisondi, P., Bellinato, F., Girolomoni, G. & Albanesi, C. Pathogenesis of chronic plaque psoriasis and its intersection with cardio-metabolic comorbidities. Front. Pharmacol. 11, 117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saleem, M. D., Kesty, C. & Feldman, S. R. Relative versus absolute risk of comorbidities in patients with psoriasis. J. Am. Acad. Dermatol. 76, 531–537 (2017).

    Article  PubMed  Google Scholar 

  44. Boehncke, W. H. Systemic inflammation and cardiovascular comorbidity in psoriasis patients: causes and consequences. Front. Immunol. 9, 579 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Armstrong, A. W. & Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis: a review. J. Am. Med. Assoc. 323, 1945–1960 (2020).

    Article  CAS  Google Scholar 

  46. Boehncke, W. H., Boehncke, S., Tobin, A. M. & Kirby, B. The ‘psoriatic march’: a concept of how severe psoriasis may drive cardiovascular comorbidity. Exp. Dermatol. 20, 303–307 (2011).

    Article  PubMed  Google Scholar 

  47. Su, Y. S. et al. Psoriasis as initiator or amplifier of the systemic inflammatory march: impact on development of severe vascular events and implications for treatment strategy. J. Eur. Acad. Dermatol. Venereol. 27, 876–883 (2013).

    Article  PubMed  Google Scholar 

  48. Boehner, A., Navarini, A. A. & Eyerich, K. Generalized pustular psoriasis — a model disease for specific targeted immunotherapy, systematic review. Exp. Dermatol. 27, 1067–1077 (2018).

    Article  PubMed  Google Scholar 

  49. Navarini, A. A. et al. European consensus statement on phenotypes of pustular psoriasis. J. Eur. Acad. Dermatol. Venereol. 31, 1792–1799 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Misiak-Galazka, M., Wolska, H. & Rudnicka, L. Is palmoplantar pustulosis simply a variant of psoriasis or a distinct entity? J. Eur. Acad. Dermatol. Venereol. 31, e342–e343 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. de Waal, A. C. & van de Kerkhof, P. C. Pustulosis palmoplantaris is a disease distinct from psoriasis. J. Dermatol. Treat. 22, 102–105 (2011).

    Article  Google Scholar 

  52. Puig, L. et al. Generalized pustular psoriasis: a global Delphi consensus on clinical course, diagnosis, treatment goals, and disease management. J. Eur. Acad. Dermatol. Venereol. 37, 737–752 (2023).

    Article  PubMed  Google Scholar 

  53. Zheng, M., Jullien, D. & Eyerich, K. The prevalence and disease characteristics of generalized pustular psoriasis. Am. J. Clin. Dermatol. 23, 5–12 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Reynolds, K. A. et al. Generalized pustular psoriasis: a review of the pathophysiology, clinical manifestations, diagnosis, and treatment. Cutis 110, 19–25 (2022).

    Article  PubMed  Google Scholar 

  55. van de Kerkhof, P. C. Biologics for psoriasis: maintenance treatment and true disease modification. J. Dermatol. Treat. 28, 281 (2017).

    Article  Google Scholar 

  56. Bieber, T., Cork, M. & Reitamo, S. Atopic dermatitis: a candidate for disease-modifying strategy. Allergy 67, 969–975 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Heath, W. R. & Carbone, F. R. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat. Immunol. 14, 978–985 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Pasparakis, M., Haase, I. & Nestle, F. O. Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol. 14, 289–301 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Weidinger, S., Beck, L. A., Bieber, T., Kabashima, K. & Irvine, A. D. Atopic dermatitis. Nat. Rev. Dis. Prim. 4, 1 (2018).

    Article  PubMed  Google Scholar 

  60. Nosbaum, A. et al. Psoriasis is a disease of the entire skin: non-lesional skin displays a prepsoriasis phenotype. Eur. J. Dermatol. 31, 143–154 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, Q. & Cao, X. Epigenetic remodeling in innate immunity and inflammation. Annu. Rev. Immunol. 39, 279–311 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Crowl, J. T. et al. Tissue-resident memory CD8(+) T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments. Nat. Immunol. 23, 1121–1131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Luong, T. M. H. & Buggert, M. Tissue-specific epigenomics of resident memory CD8(+) T cells. Nat. Rev. Immunol. 22, 533 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Naik, S. & Fuchs, E. Inflammatory memory and tissue adaptation in sickness and in health. Nature 607, 249–255 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brunner, P. M. et al. Increasing comorbidities suggest that atopic dermatitis is a systemic disorder. J. Invest. Dermatol. 137, 18–25 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Thijs, J. L. et al. Serum biomarker profiles suggest that atopic dermatitis is a systemic disease. J. Allergy Clin. Immunol. 141, 1523–1526 (2018).

    Article  PubMed  Google Scholar 

  67. Ryan, C. & Kirby, B. Psoriasis is a systemic disease with multiple cardiovascular and metabolic comorbidities. Dermatol. Clin. 33, 41–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Christophers, E. & van de Kerkhof, P. C. M. Severity, heterogeneity and systemic inflammation in psoriasis. J. Eur. Acad. Dermatol. Venereol. 33, 643–647 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Korman, N. J. Management of psoriasis as a systemic disease: what is the evidence? Br. J. Dermatol. 182, 840–848 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Demehri, S., Morimoto, M., Holtzman, M. J. & Kopan, R. Skin-derived TSLP triggers progression from epidermal-barrier defects to asthma. PLoS Biol. 7, e1000067 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Siracusa, M. C. et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477, 229–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhu, Z., Oh, M. H., Yu, J., Liu, Y. J. & Zheng, T. The role of TSLP in IL-13-induced atopic march. Sci. Rep. 1, 23 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yamanaka, K. & Mizutani, H. ‘Inflammatory skin march’: IL-1-mediated skin inflammation, atopic dermatitis, and psoriasis to cardiovascular events. J. Allergy Clin. Immunol. 136, 823–824 (2015).

    Article  PubMed  Google Scholar 

  74. Saunders, S. P. et al. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J. Allergy Clin. Immunol. 137, 482–491 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yi, L. et al. Intelectin contributes to allergen-induced IL-25, IL-33, and TSLP expression and type 2 response in asthma and atopic dermatitis. Mucosal Immunol. 10, 1491–1503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Furue, M. & Kadono, T. ‘Inflammatory skin march’ in atopic dermatitis and psoriasis. Inflamm. Res. 66, 833–842 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. He, H. et al. Mild atopic dermatitis lacks systemic inflammation and shows reduced nonlesional skin abnormalities. J. Allergy Clin. Immunol. 147, 1369–1380 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Maintz, L., Bieber, T., Simpson, H. D. & Demessant-Flavigny, A. L. From skin barrier dysfunction to systemic impact of atopic dermatitis: implications for a precision approach in dermocosmetics and medicine. J. Pers. Med. 12, 893 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Neimann, A. L. et al. Prevalence of cardiovascular risk factors in patients with psoriasis. J. Am. Acad. Dermatol. 55, 829–835 (2006).

    Article  PubMed  Google Scholar 

  80. Gelfand, J. M. et al. Risk of myocardial infarction in patients with psoriasis. J. Am. Med. Assoc. 296, 1735–1741 (2006).

    Article  CAS  Google Scholar 

  81. Mehta, N. N. et al. Attributable risk estimate of severe psoriasis on major cardiovascular events. Am. J. Med. 124, 775.e1–6 (2011).

    Article  PubMed  Google Scholar 

  82. Egeberg, A. et al. The relationship between duration of psoriasis, vascular inflammation, and cardiovascular events. J. Am. Acad. Dermatol. 77, 650–656.e3 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Buffum, W. P. & Settipane, G. A. Prognosis of asthma in childhood. Am. J. Dis. Child. 112, 214–217 (1966).

    CAS  PubMed  Google Scholar 

  84. Gordon, B. R. The allergic march: can we prevent allergies and asthma? Otolaryngol. Clin. North Am. 44, 765–777 (2011).

    Article  PubMed  Google Scholar 

  85. van der Hulst, A. E., Klip, H. & Brand, P. L. Risk of developing asthma in young children with atopic eczema: a systematic review. J. Allergy Clin. Immunol. 120, 565–569 (2007).

    Article  PubMed  Google Scholar 

  86. Gustafsson, D., Sjoberg, O. & Foucard, T. Development of allergies and asthma in infants and young children with atopic dermatitis — a prospective follow-up to 7 years of age. Allergy 55, 240–245 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Suarez-Farinas, M. et al. Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J. Allergy Clin. Immunol. 127, 954–964 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Brunner, P. M. et al. Nonlesional atopic dermatitis skin shares similar T-cell clones with lesional tissues. Allergy 72, 2017–2025 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Leung, D. Y. M. et al. The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Sci. Transl. Med. 11, eaav2685 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pavel, A. B. et al. Tape strips from early-onset pediatric atopic dermatitis highlight disease abnormalities in nonlesional skin. Allergy 76, 314–325 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Renert-Yuval, Y. et al. Tape strips capture atopic dermatitis-related changes in nonlesional skin throughout maturation. Allergy 77, 3445–3447 (2022).

    Article  PubMed  Google Scholar 

  92. Renert-Yuval, Y. et al. Biomarkers in atopic dermatitis — a review on behalf of the International Eczema Council. J. Allergy Clin. Immunol. 147, 1174–1190.e1 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Maintz, L. et al. IL-13, periostin and dipeptidyl-peptidase-4 reveal endotype–phenotype associations in atopic dermatitis. Allergy https://doi.org/10.1111/all.15647 (2023).

    Article  PubMed  Google Scholar 

  94. Cummings, J. L. Measuring disease modification in Alzheimer’s disease. CNS Spectr. 12, 11–14 (2007).

    PubMed  Google Scholar 

  95. Vellas, B., Andrieu, S., Sampaio, C. & Wilcock, G., European Task Force Group. Disease-modifying trials in Alzheimer’s disease: a European task force consensus. Lancet Neurol. 6, 56–62 (2007).

    Article  PubMed  Google Scholar 

  96. Citron, M. Alzheimer’s disease: strategies for disease modification. Nat. Rev. Drug Discov. 9, 387–398 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Cummings, J. Disease modification and neuroprotection in neurodegenerative disorders. Transl. Neurodegener. 6, 25 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liu-Seifert, H. et al. Disease modification in Alzheimer’s disease: current thinking. Ther. Innov. Regul. Sci. 54, 396–403 (2020).

    Article  PubMed  Google Scholar 

  99. Smedinga, M., Darweesh, S. K. L., Bloem, B. R., Post, B. & Richard, E. Towards early disease modification of Parkinson’s disease: a review of lessons learned in the Alzheimer field. J. Neurol. 268, 724–733 (2021).

    Article  PubMed  Google Scholar 

  100. Vijiaratnam, N., Simuni, T., Bandmann, O., Morris, H. R. & Foltynie, T. Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol. 20, 559–572 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Cross, J. H. & Lagae, L. The concept of disease modification. Eur. J. Paediatr. Neurol. 24, 43–46 (2020).

    Article  PubMed  Google Scholar 

  102. Russo, E. & Citraro, R. Disease modification in epilepsy: behavioural accompaniments. Curr. Top. Behav. Neurosci. 55, 145–167 (2022).

    Article  PubMed  Google Scholar 

  103. Klitgaard, H. & Pitkanen, A. Antiepileptogenesis, neuroprotection, and disease modification in the treatment of epilepsy: focus on levetiracetam. Epileptic Disord. 5, S9–S16 (2003).

    PubMed  Google Scholar 

  104. French, J. A. et al. Antiepileptogenesis and disease modification: clinical and regulatory issues. Epilepsia Open 6, 483–492 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hanly, J. G. & Lethbridge, L. Use of disease-modifying antirheumatic drugs, biologics, and corticosteroids in older patients with rheumatoid arthritis over 20 years. J. Rheumatol. 48, 977–984 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Abramson, S. B., Attur, M. & Yazici, Y. Prospects for disease modification in osteoarthritis. Nat. Clin. Pract. Rheumatol. 2, 304–312 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Oo, W. M. & Hunter, D. J. Disease modification in osteoarthritis: are we there yet? Clin. Exp. Rheumatol. 37, 135–140 (2019).

    PubMed  Google Scholar 

  108. Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet 393, 1745–1759 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Nagaraja, V. et al. Current and future outlook on disease modification and defining low disease activity in systemic sclerosis. Arthritis Rheumatol. 72, 1049–1058 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Segaert, S. et al. Long-term topical management of psoriasis: the road ahead. J. Dermatol. Treat. 33, 111–120 (2022).

    Article  Google Scholar 

  111. Yasmeen, N. et al. Targeted therapies for patients with moderate-to-severe psoriasis: a systematic review and network meta-analysis of PASI response at 1 year. J. Dermatol. Treat. 33, 204–218 (2022).

    Article  Google Scholar 

  112. Solmaz, D. et al. Evidence that systemic therapies for psoriasis may reduce psoriatic arthritis occurrence. Clin. Exp. Rheumatol. 38, 257–261 (2020).

    Article  PubMed  Google Scholar 

  113. Magina, S. & Filipe, P. Pathophysiology of moderate to severe plaque psoriasis: anti-IL-17 towards disease modification. Drugs Today 57, 347–357 (2021).

    Article  CAS  Google Scholar 

  114. Ghoreschi, K., Balato, A., Enerback, C. & Sabat, R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 397, 754–766 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Iversen, L. et al. Secukinumab treatment in new-onset psoriasis: aiming to understand the potential for disease modification — rationale and design of the randomized, multicenter STEPIn study. J. Eur. Acad. Dermatol. Venereol. 32, 1930–1939 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Mahler, V. et al. Allergen immunotherapy (AIT) in children: a vulnerable population with its own rights and legislation — summary of EMA-initiated multi-stakeholder meeting on Allergen Immunotherapy (AIT) for children, held at Paul-Ehrlich-Institut, Langen, Germany, 16.1.2019. Clin. Transl. Allergy 10, 28 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bieber, T. Interleukin-13: targeting an underestimated cytokine in atopic dermatitis. Allergy 75, 54–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Tsoi, L. C. et al. Atopic dermatitis is an IL-13-dominant disease with greater molecular heterogeneity compared to psoriasis. J. Invest. Dermatol. 139, 1480–1489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Czarnowicki, T. et al. Evolution of pathologic T-cell subsets in patients with atopic dermatitis from infancy to adulthood. J. Allergy Clin. Immunol. 145, 215–228 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Bieber, T. et al. Clinical phenotypes and endophenotypes of atopic dermatitis: where are we, and where should we go? J. Allergy Clin. Immunol. 139, S58–S64 (2017).

    Article  PubMed  Google Scholar 

  121. Yew, Y. W., Thyssen, J. P. & Silverberg, J. I. A systematic review and meta-analysis of the regional and age-related differences in atopic dermatitis clinical characteristics. J. Am. Acad. Dermatol. 80, 390–401 (2019).

    Article  PubMed  Google Scholar 

  122. Wollenberg, A., Zoch, C., Wetzel, S., Plewig, G. & Przybilla, B. Predisposing factors and clinical features of eczema herpeticum: a retrospective analysis of 100 cases. J. Am. Acad. Dermatol. 49, 198–205 (2003).

    Article  PubMed  Google Scholar 

  123. Hinz, T. et al. Atopic dermo-respiratory syndrome is a correlate of eczema herpeticum. Allergy 66, 925–933 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Belgrave, D. C. et al. Developmental profiles of eczema, wheeze, and rhinitis: two population-based birth cohort studies. PLoS Med. 11, e1001748 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lee, E. et al. Atopic dermatitis phenotype with early onset and high serum IL-13 is linked to the new development of bronchial hyperresponsiveness in school children. Allergy 71, 692–700 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Wan, J. et al. Variations in risk of asthma and seasonal allergies between early- and late-onset pediatric atopic dermatitis: a cohort study. J. Am. Acad. Dermatol. 77, 634–640 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Roduit, C. et al. Phenotypes of atopic dermatitis depending on the timing of onset and progression in childhood. JAMA Pediatr. 171, 655–662 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Paternoster, L. et al. Identification of atopic dermatitis subgroups in children from 2 longitudinal birth cohorts. J. Allergy Clin. Immunol. 141, 964–971 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Berna, R., Mitra, N., Hoffstad, O., Wan, J. & Margolis, D. J. Identifying phenotypes of atopic dermatitis in a longitudinal United States cohort using unbiased statistical clustering. J. Invest. Dermatol. 140, 477–479 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Garmhausen, D. et al. Characterization of different courses of atopic dermatitis in adolescent and adult patients. Allergy 68, 498–506 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Irvine, A. D., McLean, W. H. & Leung, D. Y. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 365, 1315–1327 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Margolis, D. J. Atopic dermatitis: filaggrin and skin barrier dysfunction. Br. J. Dermatol. 186, 396 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Moitinho-Silva, L. et al. Host genetic factors related to innate immunity, environmental sensing and cellular functions are associated with human skin microbiota. Nat. Commun. 13, 6204 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Beaziz, J., Bouaziz, J. D., Jachiet, M., Fite, C. & Lons-Danic, D. Dupilumab-induced psoriasis and alopecia areata: case report and review of the literature. Ann. Dermatol. Venereol. 148, 198–201 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Brumfiel, C. M., Patel, M. H. & Zirwas, M. J. Development of psoriasis during treatment with dupilumab: a systematic review. J. Am. Acad. Dermatol. 86, 708–709 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Bridgewood, C. et al. T helper 2 IL-4/IL-13 dual blockade with dupilumab is linked to some emergent T helper 17-type diseases, including seronegative arthritis and enthesitis/enthesopathy, but not to humoral autoimmune diseases. J. Invest. Dermatol. 142, 2660–2667 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Geba, G. P. et al. Attenuating the atopic march: meta-analysis of the dupilumab atopic dermatitis database for incident allergic events. J. Allergy Clin. Immunol. 151, 756–766 (2023).

    Article  CAS  PubMed  Google Scholar 

  138. Bieber, T. In search of the Holy Grail in atopic dermatitis: will dupilumab become the first disease-modifying atopic dermatitis drug? J. Allergy Clin. Immunol. 151, 694–696 (2023).

    Article  PubMed  Google Scholar 

  139. Bantz, S. K., Zhu, Z. & Zheng, T. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. J. Clin. Cell Immunol. 5, 202 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Westman, M., Asarnoj, A., Hamsten, C., Wickman, M. & van Hage, M. Windows of opportunity for tolerance induction for allergy by studying the evolution of allergic sensitization in birth cohorts. Semin. Immunol. 30, 61–66 (2017).

    Article  PubMed  Google Scholar 

  141. Renz, H. et al. The neonatal window of opportunity-early priming for life. J. Allergy Clin. Immunol. 141, 1212–1214 (2018).

    Article  PubMed  Google Scholar 

  142. Noda, S. et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J. Allergy Clin. Immunol. 136, 1254–1264 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Wen, H. C. et al. Serum from Asian patients with atopic dermatitis is characterized by T(H)2/T(H)22 activation, which is highly correlated with nonlesional skin measures. J. Allergy Clin. Immunol. 142, 324–328.e11 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Chan, T. C. et al. Atopic dermatitis in Chinese patients shows T(H)2/T(H)17 skewing with psoriasiform features. J. Allergy Clin. Immunol. 142, 1013–1017 (2018).

    Article  PubMed  Google Scholar 

  145. Brunner, P. M. & Guttman-Yassky, E. Racial differences in atopic dermatitis. Ann. Allergy Asthma Immunol. 122, 449–455 (2019).

    Article  PubMed  Google Scholar 

  146. Lang, C. C. V. et al. Evidence for different immune signatures and sensitization patterns in sub-Saharan African vs. Central European atopic dermatitis patients. J. Eur. Acad. Dermatol. Venereol. 35, e140–e142 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Biagini, J. M. et al. Longitudinal atopic dermatitis endotypes: an atopic march paradigm that includes Black children. J. Allergy Clin. Immunol. 149, 1702–1710.e4 (2022).

    Article  PubMed  Google Scholar 

  148. Illi, S. et al. The natural course of atopic dermatitis from birth to age 7 years and the association with asthma. J. Allergy Clin. Immunol. 113, 925–931 (2004).

    Article  PubMed  Google Scholar 

  149. Peters, A. S. et al. Prediction of the incidence, recurrence, and persistence of atopic dermatitis in adolescence: a prospective cohort study. J. Allergy Clin. Immunol. 126, 590–595 (2010).

    Article  PubMed  Google Scholar 

  150. Ballardini, N. et al. Development and comorbidity of eczema, asthma and rhinitis to age 12: data from the BAMSE birth cohort. Allergy 67, 537–544 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Margolis, D. J. et al. Filaggrin-2 variation is associated with more persistent atopic dermatitis in African American subjects. J. Allergy Clin. Immunol. 133, 784–789 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Berna, R. et al. Uncommon variants in FLG2 and TCHHL1 are associated with remission of atopic dermatitis in a large longitudinal US cohort. Arch. Dermatol. Res. 314, 953–959 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Nedoszytko, B. et al. Genetic and epigenetic aspects of atopic dermatitis. Int. J. Mol. Sci. 21, 6484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rindler, K. et al. Spontaneously resolved atopic dermatitis shows melanocyte and immune cell activation distinct from healthy control skin. Front. Immunol. 12, 630892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bangert, C. et al. Persistence of mature dendritic cells, T(H)2A, and Tc2 cells characterize clinically resolved atopic dermatitis under IL-4Ralpha blockade. Sci. Immunol. 6, eabe2749 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Briot, A. et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J. Exp. Med. 206, 1135–1147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kennedy, E. A. et al. Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J. Allergy Clin. Immunol. 139, 166–172 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Geoghegan, J. A., Irvine, A. D. & Foster, T. J. Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship. Trends Microbiol. 26, 484–497 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Paller, A. S. et al. The microbiome in patients with atopic dermatitis. J. Allergy Clin. Immunol. 143, 26–35 (2019).

    Article  PubMed  Google Scholar 

  160. Harkins, C. P., Kong, H. H. & Segre, J. A. Manipulating the human microbiome to manage disease. J. Am. Med. Assoc. 323, 303–304 (2019).

    Article  Google Scholar 

  161. Tham, E. H., Koh, E., Common, J. E. A. & Hwang, I. Y. Biotherapeutic approaches in atopic dermatitis. Biotechnol. J. 15, e1900322 (2020).

    Article  PubMed  Google Scholar 

  162. Cully, M. Microbiome therapeutics go small molecule. Nat. Rev. Drug Discov. 18, 569–572 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Myles, I. A. et al. Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight 1, e86955 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Nakatsuji, T. et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat. Med. 27, 700–709 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Maura, D., Elmekki, N. & Goddard, C. A. The ammonia oxidizing bacterium Nitrosomonas eutropha blocks T helper 2 cell polarization via the anti-inflammatory cytokine IL-10. Sci. Rep. 11, 14162 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Nakatsuji, T. et al. Use of autologous bacteriotherapy to treat Staphylococcus aureus in patients with atopic dermatitis: a randomized double-blind clinical trial. JAMA Dermatol. 157, 978–982 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Brown, S. J., Elias, M. S. & Bradley, M. Genetics in atopic dermatitis: historical perspective and future prospects. Acta Derm. Venereol. 100, adv00163 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Simpson, E. L. et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J. Allergy Clin. Immunol. 134, 818–823 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Horimukai, K. et al. Application of moisturizer to neonates prevents development of atopic dermatitis. J. Allergy Clin. Immunol. 134, 824–830.e6 (2014).

    Article  PubMed  Google Scholar 

  170. Kvenshagen, B. K., Carlsen, K. H., Mowinckel, P., Berents, T. L. & Carlsen, K. C. Can early skin care normalise dry skin and possibly prevent atopic eczema? A pilot study in young infants. Allergol. Immunopathol. 42, 539–543 (2014).

    Article  CAS  Google Scholar 

  171. Chalmers, J. R. et al. Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial. Lancet 395, 962–972 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Skjerven, H. O. et al. Skin emollient and early complementary feeding to prevent infant atopic dermatitis (PreventADALL): a factorial, multicentre, cluster-randomised trial. Lancet 395, 951–961 (2020).

    Article  PubMed  Google Scholar 

  173. Perrett, K. P. & Peters, R. L. Emollients for prevention of atopic dermatitis in infancy. Lancet 395, 923–924 (2020).

    Article  PubMed  Google Scholar 

  174. Lack, G. Update on risk factors for food allergy. J. Allergy Clin. Immunol. 129, 1187–1197 (2012).

    Article  PubMed  Google Scholar 

  175. Siegfried, E. C. et al. Developing drugs for treatment of atopic dermatitis in children (≥3 months to <18 years of age): draft guidance for industry. Pediatr. Dermatol. 35, 303–322 (2018).

    Article  PubMed  Google Scholar 

  176. Schneider, L. et al. Study of the atopic march: development of atopic comorbidities. Pediatr. Dermatol. 33, 388–398 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Arkin, M. R., Tang, Y. & Wells, J. A. Small-molecule inhibitors of protein–protein interactions: progressing toward the reality. Chem. Biol. 21, 1102–1114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Scott, D. E., Bayly, A. R., Abell, C. & Skidmore, J. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat. Rev. Drug Discov. 15, 533–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Majumdar, S., Ghosh, A. & Saha, S. Modulating interleukins and their receptors interactions with small chemicals using in silico approach for asthma. Curr. Top. Med. Chem. 18, 1123–1134 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Leyva-Castillo, J. M., Hener, P., Jiang, H. & Li, M. TSLP produced by keratinocytes promotes allergen sensitization through skin and thereby triggers atopic march in mice. J. Invest. Dermatol. 133, 154–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Yang, N., Chen, Z., Zhang, X. & Shi, Y. Novel targeted biological agents for the treatment of atopic dermatitis. BioDrugs 35, 401–415 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Maurer, M. et al. Phase 2 randomized clinical trial of astegolimab in patients with moderate to severe atopic dermatitis. J. Allergy Clin. Immunol. 150, 1517–1524 (2022).

    Article  CAS  PubMed  Google Scholar 

  183. Schuler, C. F. T. & Gudjonsson, J. E. IL-33 antagonism does not improve chronic atopic dermatitis: what can we learn? J. Allergy Clin. Immunol. 150, 1410–1411 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Spergel, J. M. et al. Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. J. Clin. Invest. 101, 1614–1622 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Brown, S. J. et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J. Allergy Clin. Immunol. 127, 661–667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Guttman-Yassky, E. et al. An anti-OX40 antibody to treat moderate-to-severe atopic dermatitis: a multicentre, double-blind, placebo-controlled phase 2b study. Lancet 401, 204–214 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Le, A. M. & Torres, T. OX40-OX40L inhibition for the treatment of atopic dermatitis — focus on rocatinlimab and amlitelimab. Pharmaceutics 14, 2753 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Blom, L. H. et al. The immunoglobulin superfamily member CD200R identifies cells involved in type 2 immune responses. Allergy 72, 1081–1090 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. Kotwica-Mojzych, K., Jodlowska-Jedrych, B. & Mojzych, M. CD200:CD200R interactions and their importance in immunoregulation. Int. J. Mol. Sci. 22, 1602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Dixit, N. et al. NKTR-358: a novel regulatory T-cell stimulator that selectively stimulates expansion and suppressive function of regulatory T cells for the treatment of autoimmune and inflammatory diseases. J. Transl. Autoimmun. 4, 100103 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Czarnowicki, T. et al. Early pediatric atopic dermatitis shows only a cutaneous lymphocyte antigen (CLA)(+) TH2/TH1 cell imbalance, whereas adults acquire CLA(+) TH22/TC22 cell subsets. J. Allergy Clin. Immunol. 136, 941–951.e943 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Esaki, H. et al. Early-onset pediatric atopic dermatitis is TH2 but also TH17 polarized in skin. J. Allergy Clin. Immunol. 138, 1639–1651 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Brunner, P. M. et al. Distinct transcriptomic profiles of early-onset atopic dermatitis in blood and skin of pediatric patients. Ann. Allergy Asthma Immunol. 122, 318–330.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Zhou, L. et al. Age-specific changes in the molecular phenotype of patients with moderate-to-severe atopic dermatitis. J. Allergy Clin. Immunol. 144, 144–156 (2019).

    Article  CAS  PubMed  Google Scholar 

  195. Bieber, T. Interleukin-13: targeting an underestimated cytokine in atopic dermatitis. Allergy 75, 54–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Bao, K. & Reinhardt, R. L. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine 75, 25–37 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Brunner, P. M. et al. Baseline IL-22 expression in patients with atopic dermatitis stratifies tissue responses to fezakinumab. J. Allergy Clin. Immunol. 143, 142–154 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Padhi, A. et al. IL-22 downregulates peptidylarginine deiminase-1 in human keratinocytes: adding another piece to the IL-22 puzzle in epidermal barrier formation. J. Invest. Dermatol. 142, 333–342.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Nakajima, S. et al. IL-17A as an inducer for Th2 immune responses in murine atopic dermatitis models. J. Invest. Dermatol. 134, 2122–2130 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Floudas, A. et al. IL-17 receptor a maintains and protects the skin barrier to prevent allergic skin inflammation. J. Immunol. 199, 707–717 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. Topal, F. A., Zuberbier, T., Makris, M. P. & Hofmann, M. The role of IL-17, IL-23 and IL-31, IL-33 in allergic skin diseases. Curr. Opin. Allergy Clin. Immunol. 20, 367–373 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Hofmann, M. A. et al. Role of IL-17 in atopy — a systematic review. Clin. Transl. Allergy 11, e12047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sims, J. T. et al. Insights into adult atopic dermatitis heterogeneity derived from circulating biomarker profiling in patients with moderate-to-severe disease. Exp. Dermatol. 30, 1650–1661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 16, 843–862 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Gadina, M. et al. Janus kinases to jakinibs: from basic insights to clinical practice. Rheumatology 58, i4–i16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Tanaka, Y., Luo, Y., O’Shea, J. J. & Nakayamada, S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat. Rev. Rheumatol. 18, 133–145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ogawa, K. & Okada, Y. The current landscape of psoriasis genetics in 2020. J. Dermatol. Sci. 99, 2–8 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Tsai, Y. C. & Tsai, T. F. Overlapping features of psoriasis and atopic dermatitis: from genetics to immunopathogenesis to phenotypes. Int. J. Mol. Sci. 23, 5518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Luo, Y. et al. Epigenetics in psoriasis: perspective of DNA methylation. Mol. Genet. Genom. 296, 1027–1040 (2021).

    Article  CAS  Google Scholar 

  210. Shao, S. & Gudjonsson, J. E. Epigenetics of psoriasis. Adv. Exp. Med. Biol. 1253, 209–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Greb, J. E. et al. Psoriasis. Nat. Rev. Dis. Prim. 2, 16082 (2016).

    Article  PubMed  Google Scholar 

  212. Dand, N. et al. HLA-C*06:02 genotype is a predictive biomarker of biologic treatment response in psoriasis. J. Allergy Clin. Immunol. 143, 2120–2130 (2019).

    Article  CAS  PubMed  Google Scholar 

  213. Nair, R. P. et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat. Genet. 41, 199–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Tang, H. et al. A large-scale screen for coding variants predisposing to psoriasis. Nat. Genet. 46, 45–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Cargill, M. et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 80, 273–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  216. Dand, N. et al. Psoriasis and genetics. Acta Derm. Venereol. 100, adv00030 (2020).

    Article  CAS  PubMed  Google Scholar 

  217. Schon, M. P. & Erpenbeck, L. The interleukin-23/interleukin-17 axis links adaptive and innate immunity in psoriasis. Front. Immunol. 9, 1323 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Bridgewood, C., Newton, D., Bragazzi, N., Wittmann, M. & McGonagle, D. Unexpected connections of the IL-23/IL-17 and IL-4/IL-13 cytokine axes in inflammatory arthritis and enthesitis. Semin. Immunol. 58, 101520 (2021).

    Article  CAS  PubMed  Google Scholar 

  219. Bugaut, H. & Aractingi, S. Major role of the IL17/23 axis in psoriasis supports the development of new targeted therapies. Front. Immunol. 12, 621956 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Iznardo, H. & Puig, L. Dual inhibition of IL-17A and IL-17F in psoriatic disease. Ther. Adv. Chron. Dis. 12, 20406223211037846 (2021).

    CAS  Google Scholar 

  221. Blauvelt, A. & Chiricozzi, A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin. Rev. Allergy Immunol. 55, 379–390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Cheuk, S. et al. Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J. Immunol. 192, 3111–3120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ryan, G. E., Harris, J. E. & Richmond, J. M. Resident memory T cells in autoimmune skin diseases. Front. Immunol. 12, 652191 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Matos, T. R. et al. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing alphabeta T cell clones. J. Clin. Invest. 127, 4031–4041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Tokura, Y., Phadungsaksawasdi, P., Kurihara, K., Fujiyama, T. & Honda, T. Pathophysiology of skin resident memory T cells. Front. Immunol. 11, 618897 (2020).

    Article  CAS  PubMed  Google Scholar 

  226. Suarez-Farinas, M., Fuentes-Duculan, J., Lowes, M. A. & Krueger, J. G. Resolved psoriasis lesions retain expression of a subset of disease-related genes. J. Invest. Dermatol. 131, 391–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  227. Oliver, R. et al. Bimekizumab for the treatment of moderate-to-severe plaque psoriasis: efficacy, safety, pharmacokinetics, pharmacodynamics and transcriptomics from a phase IIa, randomized, double-blind multicentre study. Br. J. Dermatol. 186, 652–663 (2022).

    Article  CAS  PubMed  Google Scholar 

  228. Whitley, S. K. et al. Local IL-23 is required for proliferation and retention of skin-resident memory T(H)17 cells. Sci. Immunol. 7, eabq3254 (2022).

    Article  CAS  PubMed  Google Scholar 

  229. Conrad, C. et al. Alpha1beta1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat. Med. 13, 836–842 (2007).

    Article  CAS  PubMed  Google Scholar 

  230. Patrick, M. T. et al. Causal relationship and shared genetic loci between psoriasis and type 2 diabetes through trans-disease meta-analysis. J. Invest. Dermatol. 141, 1493–1502 (2021).

    Article  CAS  PubMed  Google Scholar 

  231. Papp, K. A., Gooderham, M. J., Girard, G., Raman, M. & Strout, V. Phase I randomized study of KHK4083, an anti-OX40 monoclonal antibody, in patients with mild to moderate plaque psoriasis. J. Eur. Acad. Dermatol. Venereol. 31, 1324–1332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. van de Kerkhof, P. C. From empirical to pathogenesis-based treatments for psoriasis. J. Invest. Dermatol. 142, 1778–1785 (2022).

    Article  PubMed  Google Scholar 

  233. Gordon, K. B. et al. Guselkumab efficacy after withdrawal is associated with suppression of serum IL-23-regulated IL-17 and IL-22 in psoriasis: VOYAGE 2 study. J. Invest. Dermatol. 139, 2437–2446.e1 (2019).

    Article  CAS  PubMed  Google Scholar 

  234. Blauvelt, A. et al. Secukinumab administration by pre-filled syringe: efficacy, safety and usability results from a randomized controlled trial in psoriasis (FEATURE). Br. J. Dermatol. 172, 484–493 (2015).

    Article  CAS  PubMed  Google Scholar 

  235. Strober, B. et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 program for evaluation of TYK2 inhibitor psoriasis second trial. J. Am. Acad. Dermatol. 88, 40–51 (2023).

    Article  CAS  PubMed  Google Scholar 

  236. Eyerich, S. et al. Mutual antagonism of T cells causing psoriasis and atopic eczema. N. Engl. J. Med. 365, 231–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  237. Bose, R. & Beecker, J. Dyshidrotic eczema in two patients on secukinumab for plaque psoriasis: a case report. SAGE Open. Med. Case Rep. 8, 2050313X20904561 (2020).

    PubMed  PubMed Central  Google Scholar 

  238. Al-Janabi, A. et al. Phenotypic switch to eczema in patients receiving biologics for plaque psoriasis: a systematic review. J. Eur. Acad. Dermatol. Venereol. 34, 1440–1448 (2020).

    Article  CAS  PubMed  Google Scholar 

  239. Cohen, J. N., Bowman, S., Laszik, Z. G. & North, J. P. Clinicopathologic overlap of psoriasis, eczema, and psoriasiform dermatoses: a retrospective study of T helper type 2 and 17 subsets, interleukin 36, and beta-defensin 2 in spongiotic psoriasiform dermatitis, sebopsoriasis, and tumor necrosis factor alpha inhibitor-associated dermatitis. J. Am. Acad. Dermatol. 82, 430–439 (2020).

    Article  CAS  PubMed  Google Scholar 

  240. Strober, B. et al. One-year safety and efficacy of tapinarof cream for the treatment of plaque psoriasis: results from the PSOARING 3 trial. J. Am. Acad. Dermatol. 87, 800–806 (2022).

    Article  CAS  PubMed  Google Scholar 

  241. Mooney, N. et al. Tapinarof inhibits the formation, cytokine production, and persistence of resident memory T cells in vitro. J. Investig. Dermatol. 142, B26 (2022).

    Article  Google Scholar 

  242. Golbari, N. M. et al. Psoriasis severity: commonly used clinical thresholds may not adequately convey patient impact. J. Eur. Acad. Dermatol. Venereol. 35, 417–421 (2021).

    Article  CAS  PubMed  Google Scholar 

  243. Pinter, A., Gerdes, S., Papavassilis, C. & Reinhardt, M. Characterization of responder groups to secukinumab treatment in moderate to severe plaque psoriasis. J. Dermatol. Treat. 31, 769–775 (2020).

    Article  CAS  Google Scholar 

  244. Girolomoni, G. et al. Early intervention in psoriasis and immune-mediated inflammatory diseases: a hypothesis paper. J. Dermatol. Treat. 26, 103–112 (2015).

    Article  CAS  Google Scholar 

  245. Nell, V. P. et al. Benefit of very early referral and very early therapy with disease-modifying anti-rheumatic drugs in patients with early rheumatoid arthritis. Rheumatology 43, 906–914 (2004).

    Article  CAS  PubMed  Google Scholar 

  246. Quinn, M. A. & Cox, S. The evidence for early intervention. Rheum. Dis. Clin. North Am. 31, 575–589 (2005).

    Article  PubMed  Google Scholar 

  247. Anderson, J. J., Wells, G., Verhoeven, A. C. & Felson, D. T. Factors predicting response to treatment in rheumatoid arthritis: the importance of disease duration. Arthritis Rheum. 43, 22–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  248. D’Haens, G. et al. Early combined immunosuppression or conventional management in patients with newly diagnosed Crohn’s disease: an open randomised trial. Lancet 371, 660–667 (2008).

    Article  PubMed  Google Scholar 

  249. Trojano, M. et al. Real-life impact of early interferon beta therapy in relapsing multiple sclerosis. Ann. Neurol. 66, 513–520 (2009).

    Article  CAS  PubMed  Google Scholar 

  250. Eyerich, K. et al. IL-23 blockade with guselkumab potentially modifies psoriasis pathogenesis: rationale and study protocol of a phase 3b, randomised, double-blind, multicentre study in participants with moderate-to-severe plaque-type psoriasis (GUIDE). BMJ Open 11, e049822 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Simon, D. et al. Association of structural entheseal lesions with an increased risk of progression from psoriasis to psoriatic arthritis. Arthritis Rheumatol. 74, 253–262 (2022).

    Article  PubMed  Google Scholar 

  252. Garshick, M. S. et al. Inflammasome signaling and impaired vascular health in psoriasis. Arterioscler. Thromb. Vasc. Biol. 39, 787–798 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Gottlieb, A. & Merola, J. F. Psoriatic arthritis for dermatologists. J. Dermatol. Treat. 31, 662–679 (2020).

    Article  Google Scholar 

  254. Gisondi, P. et al. Reducing the risk of developing psoriatic arthritis in patients with psoriasis. Psoriasis 12, 213–220 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Rosenthal, Y. S., Schwartz, N., Sagy, I. & Pavlovsky, L. Incidence of psoriatic arthritis among patients receiving biologic treatments for psoriasis: a nested case–control study. Arthritis Rheumatol. 74, 237–243 (2022).

    Article  PubMed  Google Scholar 

  256. Acosta Felquer, M. L. et al. Treating the skin with biologics in patients with psoriasis decreases the incidence of psoriatic arthritis. Ann. Rheum. Dis. 81, 74–79 (2022).

    Article  PubMed  Google Scholar 

  257. Haroon, M., Gallagher, P. & FitzGerald, O. Diagnostic delay of more than 6 months contributes to poor radiographic and functional outcome in psoriatic arthritis. Ann. Rheum. Dis. 74, 1045–1050 (2015).

    Article  CAS  PubMed  Google Scholar 

  258. Creamer, J. D. & Barker, J. N. Vascular proliferation and angiogenic factors in psoriasis. Clin. Exp. Dermatol. 20, 6–9 (1995).

    Article  CAS  PubMed  Google Scholar 

  259. Weber, B. et al. Psoriasis and cardiovascular disease: novel mechanisms and evolving therapeutics. Curr. Atheroscler. Rep. 23, 67 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Kimball, A. B. et al. Cardiovascular disease and risk factors among psoriasis patients in two US healthcare databases, 2001–2002. Dermatology 217, 27–37 (2008).

    Article  CAS  PubMed  Google Scholar 

  261. Garshick, M. S., Ward, N. L., Krueger, J. G. & Berger, J. S. Cardiovascular risk in patients with psoriasis: JACC review topic of the week. J. Am. Coll. Cardiol. 77, 1670–1680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Rose, S. et al. A comparison of vascular inflammation in psoriasis, rheumatoid arthritis, and healthy subjects by FDG-PET/CT: a pilot study. Am. J. Cardiovasc. Dis. 3, 273–278 (2013).

    PubMed  PubMed Central  Google Scholar 

  263. Zhou, W. et al. Association among noncalcified coronary burden, fractional flow reserve, and myocardial injury in psoriasis. J. Am. Heart Assoc. 9, e017417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Ahlehoff, O. et al. Myocardial function and effects of biologic therapy in patients with severe psoriasis: a prospective echocardiographic study. J. Eur. Acad. Dermatol. Venereol. 30, 819–823 (2016).

    Article  CAS  PubMed  Google Scholar 

  265. Wu, J. J. et al. Cardiovascular event risk assessment in psoriasis patients treated with tumor necrosis factor-alpha inhibitors versus methotrexate. J. Am. Acad. Dermatol. 76, 81–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  266. Armstrong, A. W. Do TNF inhibitors reduce the risk of myocardial infarction in psoriasis patients? J. Am. Med. Assoc. 309, 2043–2044 (2013).

    Article  CAS  Google Scholar 

  267. Gelfand, J. M. et al. A phase IV, randomized, double-blind, placebo-controlled crossover study of the effects of ustekinumab on vascular inflammation in psoriasis (the VIP-U Trial). J. Invest. Dermatol. 140, 85–93.e2 (2020).

    Article  CAS  PubMed  Google Scholar 

  268. Garshick, M. S. et al. A randomized open-label clinical trial of lipid-lowering therapy in psoriasis to reduce vascular endothelial inflammation. J. Invest. Dermatol. 142, 1749–1752.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  269. Garshick, M. S. & Berger, J. S. Psoriasis and cardiovascular disease — an ounce of prevention is worth a pound of cure. JAMA Dermatol. 158, 239–241 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Dyjack, N. et al. Minimally invasive skin tape strip RNA sequencing identifies novel characteristics of the type 2-high atopic dermatitis disease endotype. J. Allergy Clin. Immunol. 141, 1298–1309 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Ungar, B. et al. An integrated model of atopic dermatitis biomarkers highlights the systemic nature of the disease. J. Invest. Dermatol. 137, 603–613 (2017).

    Article  CAS  PubMed  Google Scholar 

  272. He, H. et al. Tape strips detect distinct immune and barrier profiles in atopic dermatitis and psoriasis. J. Allergy Clin. Immunol. 147, 199–212 (2021).

    Article  CAS  PubMed  Google Scholar 

  273. Maintz, L., Bieber, T., Bissonnette, R. & Jack, C. Measuring atopic dermatitis disease severity: the potential for electronic tools to benefit clinical care. J. Allergy Clin. Immunol. Pract. 9, 1473–1486.e2 (2021).

    Article  PubMed  Google Scholar 

  274. Peyrin-Biroulet, L., Loftus, E. V. Jr, Colombel, J. F. & Sandborn, W. J. Early Crohn disease: a proposed definition for use in disease-modification trials. Gut 59, 141–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  275. Colombel, J. F., Louis, E., Peyrin-Biroulet, L., Sandborn, W. J. & Panaccione, R. Deep remission: a new concept? Dig. Dis. 30, 107–111 (2012).

    Article  PubMed  Google Scholar 

  276. Allen, P. B. & Peyrin-Biroulet, L. Moving towards disease modification in inflammatory bowel disease therapy. Curr. Opin. Gastroenterol. 29, 397–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  277. Hanauer, S. B. Disease modification in inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 10, 954–955 (2012).

    Article  PubMed  Google Scholar 

  278. Abuabara, K., Margolis, D. J. & Langan, S. M. The long-term course of atopic dermatitis. Dermatol. Clin. 35, 291–297 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Wan, J., Mitra, N., Hoffstad, O. J., Yan, A. C. & Margolis, D. J. Longitudinal atopic dermatitis control and persistence vary with timing of disease onset in children: a cohort study. J. Am. Acad. Dermatol. 81, 1292–1299 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Bieber, T. et al. Unraveling the complexity of atopic dermatitis: the CK-CARE approach toward precision medicine. Allergy 75, 2936–2938 (2020).

    Article  PubMed  Google Scholar 

  281. Thijs, J. L. et al. Moving toward endotypes in atopic dermatitis: identification of patient clusters based on serum biomarker analysis. J. Allergy Clin. Immunol. 140, 730–737 (2017).

    Article  CAS  PubMed  Google Scholar 

  282. van der Schaft, J., Thijs, J. L., Garritsen, F. M., Balak, D. & de Bruin-Weller, M. S. Towards personalized treatment in atopic dermatitis. Exp. Opin. Biol. Ther. 19, 469–476 (2019).

    Article  Google Scholar 

  283. Koschitzky, M. et al. Ustekinumab reduces serum protein levels associated with cardiovascular risk in psoriasis vulgaris. Exp. Dermatol. 31, 1341–1351 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Tsakok, T. et al. Association of serum ustekinumab levels with clinical response in psoriasis. JAMA Dermatol. 155, 1235–1243 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Foulkes, A. C. et al. A framework for multi-omic prediction of treatment response to biologic therapy for psoriasis. J. Invest. Dermatol. 139, 100–107 (2019).

    Article  CAS  PubMed  Google Scholar 

  286. Lee, Y. H. & Song, G. G. Association between circulating prolactin levels and psoriasis and its correlation with disease severity: a meta-analysis. Clin. Exp. Dermatol. 43, 27–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  287. Eyerich, K. et al. Human and computational models of atopic dermatitis: a review and perspectives by an expert panel of the International Eczema Council. J. Allergy Clin. Immunol. 143, 36–45 (2019).

    Article  PubMed  Google Scholar 

  288. Vetrano, S. et al. ImmUniverse Consortium: multi-omics integrative approach in personalized medicine for immune-mediated inflammatory diseases. Front. Immunol. 13, 1002629 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Broderick, C. et al. Biomarkers associated with the development of comorbidities in patients with atopic dermatitis: a systematic review. Allergy 78, 84–120 (2023).

    Article  CAS  PubMed  Google Scholar 

  290. Ziehfreund, S. et al. Requirements and expectations of high-quality biomarkers for atopic dermatitis and psoriasis in 2021 — a two-round Delphi survey among international experts. J. Eur. Acad. Dermatol. Venereol. 36, 1467–1476 (2022).

    Article  CAS  PubMed  Google Scholar 

  291. Lee, J. W., Wu, Y. & Wang, J. Fit-for-purpose method validation and assays for biomarker characterization to support drug development. in Biomarkers in Drug Development (eds Bleavins, M. R., Carini, C., Jurima-Romet, M. & Rahbari, R.) 187–213 (Wiley, 2010).

  292. Bieber, T. Atopic dermatitis 2.0: from the clinical phenotype to the molecular taxonomy and stratified medicine. Allergy 67, 1475–1482 (2012).

    CAS  PubMed  Google Scholar 

  293. Yu, K., Syed, M. N., Bernardis, E. & Gelfand, J. M. Machine learning applications in the evaluation and management of psoriasis: a systematic review. J. Psoriasis Psoriatic Arthritis 5, 147–159 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Patrick, M. T. et al. Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients. Nat. Commun. 9, 4178 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Clausen, M. L., Slotved, H. C., Krogfelt, K. A. & Agner, T. Tape stripping technique for stratum corneum protein analysis. Sci. Rep. 6, 19918 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Rinaldi, A. O. et al. Electrical impedance spectroscopy for the characterization of skin barrier in atopic dermatitis. Allergy 76, 3066–3079 (2021).

    Article  CAS  PubMed  Google Scholar 

  297. Rinnov, M. R. et al. Skin biomarkers predict development of atopic dermatitis in infancy. Allergy 78, 791–802 (2023).

    Article  CAS  PubMed  Google Scholar 

  298. Kelsell, D. P. & Byrne, C. SNPing at the epidermal barrier. J. Invest. Dermatol. 131, 1593–1595 (2011).

    Article  CAS  PubMed  Google Scholar 

  299. Smieszek, S. P. et al. Correlation of age-of-onset of atopic dermatitis with filaggrin loss-of-function variant status. Sci. Rep. 10, 2721 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Kothekar, E. et al. Utility of FDG-PET/CT in clinical psoriasis grading: the PET-PASI scoring system. Am. J. Nucl. Med. Mol. Imaging 10, 265–271 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Seifert, R., Weber, M., Kocakavuk, E., Rischpler, C. & Kersting, D. Artificial intelligence and machine learning in nuclear medicine: future perspectives. Semin. Nucl. Med. 51, 170–177 (2021).

    Article  PubMed  Google Scholar 

  302. Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).

    Article  CAS  PubMed  Google Scholar 

  303. Elnabawi, Y. A. et al. CCL20 in psoriasis: a potential biomarker of disease severity, inflammation, and impaired vascular health. J. Am. Acad. Dermatol. 84, 913–920 (2021).

    Article  CAS  PubMed  Google Scholar 

  304. Garshick, M. S. et al. Characterization of PCSK9 in the blood and skin of psoriasis. J. Invest. Dermatol. 141, 308–315 (2021).

    Article  CAS  PubMed  Google Scholar 

  305. Zabotti, A., Tinazzi, I., Aydin, S. Z. & McGonagle, D. From psoriasis to psoriatic arthritis: insights from imaging on the transition to psoriatic arthritis and implications for arthritis prevention. Curr. Rheumatol. Rep. 22, 24 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Gutierrez, M. et al. Subclinical entheseal involvement in patients with psoriasis: an ultrasound study. Semin. Arthritis Rheum. 40, 407–412 (2011).

    Article  PubMed  Google Scholar 

  307. Vyas, K. et al. Sonographic evaluation of subclinical enthesopathy in patients of chronic plaque psoriasis. Indian. Dermatol. Online J. 11, 580–585 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  308. Corren, J. et al. Tezepelumab in adults with uncontrolled asthma. N. Engl. J. Med. 377, 936–946 (2017).

    Article  CAS  PubMed  Google Scholar 

  309. Mullard, A. FDA approves first-in-class TSLP-targeted antibody for severe asthma. Nat. Rev. Drug Discov. 21, 89 (2022).

    PubMed  Google Scholar 

  310. Simpson, E. L. et al. Tezepelumab, an anti-thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: a randomized phase 2a clinical trial. J. Am. Acad. Dermatol. 80, 1013–1021 (2019).

    Article  CAS  PubMed  Google Scholar 

  311. Liu, Y. J. Thymic stromal lymphopoietin: master switch for allergic inflammation. J. Exp. Med. 203, 269–273 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Zhang, Z. et al. Thymic stromal lymphopoietin overproduced by keratinocytes in mouse skin aggravates experimental asthma. Proc. Natl Acad. Sci. USA 106, 1536–1541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Yang, L., Fu, J. & Zhou, Y. Research progress in atopic march. Front. Immunol. 11, 1907 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Simpson, E. L. et al. Patient burden of moderate to severe atopic dermatitis (AD): insights from a phase 2b clinical trial of dupilumab in adults. J. Am. Acad. Dermatol. 74, 491–498 (2016).

    Article  CAS  PubMed  Google Scholar 

  315. Paller, A. S. et al. Etanercept treatment for children and adolescents with plaque psoriasis. N. Engl. J. Med. 358, 241–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  316. Morant, A. V., Jagalski, V. & Vestergaard, H. T. Labeling of disease-modifying therapies for neurodegenerative disorders. Front. Med. 6, 223 (2019).

    Article  Google Scholar 

  317. Laifenfeld, D. et al. Emulated clinical trials from longitudinal real-world data efficiently identify candidates for neurological disease modification: examples from Parkinson’s disease. Front. Pharmacol. 12, 631584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Franklin, J. M., Liaw, K. L., Iyasu, S., Critchlow, C. W. & Dreyer, N. A. Real-world evidence to support regulatory decision making: new or expanded medical product indications. Pharmacoepidemiol. Drug Saf. 30, 685–693 (2021).

    Article  PubMed  Google Scholar 

  319. De, S., Larson, L., Kelly, K., Hanson, B. & Mack, C. D. Leveraging real-world evidence: a paradigm shift in regulation. J. Orthop. Trauma. 35, S13–S16 (2021).

    Article  PubMed  Google Scholar 

  320. Dreyer, N. A. Strengthening evidence-based medicine with real-world evidence. Lancet Healthy Longev. 3, e641–e642 (2022).

    Article  PubMed  Google Scholar 

  321. Stolzl, D. et al. Real-world data on the effectiveness, safety and drug survival of dupilumab: an analysis from the TREATgermany registry. Br. J. Dermatol. 187, 1022–1024 (2022).

    Article  CAS  PubMed  Google Scholar 

  322. FDA. Draft guidance for industry. Indications and usage section of labeling for human prescription drug and biological products — content and format (2018).

  323. European Commission. Notice to applicants. A guideline on Summary of Product Characteristics (SmPC) (2009).

Download references

Acknowledgements

This work was supported by the Christine Kühne-Center for Allergy Research and Education (CK-CARE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bieber.

Ethics declarations

Competing interests

T.B. was speaker and/or consultant and/or investigator for AbbVie, Affibody, Almirall, Amagma, AnaptysBio, AOBiom, Arena, Aristea, Asana Biosciences, ASLAN Pharma, Bayer Health, BioVerSys, Böhringer-Ingelheim, Bristol-Myers Squibb, Connect Pharma, Daichi-Sanyko, Dermavant, DIECE Therapeutics, Domain Therapeutics, DS Pharma, EQRx, Evelo, Galderma, Galapagos, Glenmark, GSK, Incyte, Innovaderm, Janssen, Kirin, Kymab, LEO, LG Chem, Lilly, L’Oréal, MSD, Medac, Micreos, Nektar, Novartis, Numab, OM-Pharma, Overtone, Pfizer, Pierre Fabre, Q32bio, RAPT, Sanofi/Regeneron, UCB and Union Therapeutics. He is the founder and chairman of the board of the non-profit biotech ‘Davos Biosciences’ within the International Kühne-Foundation.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Brian Kim, Miriam Wittman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Bio Revolution report from Mc Kinsey: https://www.mckinsey.com/industries/life-sciences/our-insights/the-bio-revolution-innovations-transforming-economies-societies-and-our-lives

EMA Guideline on registry-based studies: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-registry-based-studies_en.pdf

EMA Regulatory Science to 2025: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/ema-regulatory-science-2025-strategic-reflection_en.pdf; and https://www.ema.europa.eu/en/documents/presentation/presentation-proposal-darwin-eu-data-analytics-real-world-interrogation-network-parlett-ema_en.pdf

FDA, Black box warning on topical calcineurin inhibitors: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/fda-approves-updated-labelling-boxed-warning-and-medication-guide-two-eczema-drugs-elidel-and

FDA, Guidance for Industry, ‘Submitting Documents Using Real-World Data and Real-World Evidence to FDA for Drug and Biological Products’, September 2022: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/submitting-documents-using-real-world-data-and-real-world-evidence-fda-drug-and-biological-products

Framework for FDA’s real-world evidence program: https://www.fda.gov/media/120060/download

Guidance for submitting documents using real-world data and real-world evidence to FDA for drug and biological products: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/submitting-documents-using-real-world-data-and-real-world-evidence-fda-drug-and-biological-products

Positive CHMP opinion EMA/CHMP/898000/2023: https://www.ema.europa.eu/en/documents/smop-initial/chmp-summary-positive-opinion-sotyktu_en.pdf

Press release from dermatology experts on skin diseases: https://newsroom.submitmypressrelease.com/2022/01/05/top-dermatology-experts-from-across-the-world-unite-to-call-for-comprehensive-action-to-elevating-skin-disease_123684.html

Press release from Kymera: https://investors.kymeratx.com/news-releases/news-release-details/kymera-announces-positive-results-phase-1-clinical-trial

Press release from Nektar Therapeutics: Nektar Therapeutics announces phase 1b data for novel T regulatory stimulator NKTR-358 in patients with atopic dermatitis: https://www.prnewswire.com/news-releases/nektar-therapeutics-announces-phase-1b-data-for-novel-t-regulatory-cell-stimulator-nktr-358-ly3471851-in-patients-with-atopic-dermatitis-301445396.html

Press release from Sanofi: New, late-breaking data at EADV highlights emerging clinical profile of amlitelimab (formerly KY1005) in adults with inadequately controlled moderate-to-severe atopic dermatitis: https://www.sanofi.com/en/media-room/press-releases/2021/2021-09-30-12-30-00-2306183

Tralokinumab SmPC: https://www.ema.europa.eu/en/documents/product-information/adtralza-epar-product-information_en.pdf

WHO report on Psoriasis: https://apps.who.int/iris/handle/10665/204417

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bieber, T. Disease modification in inflammatory skin disorders: opportunities and challenges. Nat Rev Drug Discov 22, 662–680 (2023). https://doi.org/10.1038/s41573-023-00735-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00735-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research