Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Derivatization with fatty acids in peptide and protein drug discovery

Abstract

Peptides and proteins are widely used to treat a range of medical conditions; however, they often have to be injected and their effects are short-lived. These shortcomings of the native structure can be addressed by molecular engineering, but this is a complex undertaking. A molecular engineering technology initially applied to insulin — and which has now been successfully applied to several biopharmaceuticals — entails the derivatization of peptides and proteins with fatty acids. Various protraction mechanisms are enabled by the specific characteristics and positions of the attached fatty acid. Furthermore, the technology can ensure a long half-life following oral administration of peptide drugs, can alter the distribution of peptides and may hold potential for tissue targeting. Due to the inherent safety and well-defined chemical nature of the fatty acids, this technology provides a versatile approach to peptide and protein drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural elements of a fatty acid protractor moiety.
Fig. 2: Structure of the side chains for biopharmaceuticals based on the fatty acid derivatization technology.
Fig. 3: Selected mechanisms enabled by fatty acid derivatization to extend the half-life of peptide and protein drugs.

Similar content being viewed by others

References

  1. Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021). This Review focuses on the current and future aspects of peptide drug discovery.

    Article  CAS  Google Scholar 

  2. Müller, T. D., Blüher, M., Tschöp, M. H. & DiMarchi, R. D. Anti-obesity drug discovery: advances and challenges. Nat. Rev. Drug Discov. 21, 201–223 (2022). This Review provides a perspective on the challenges of targeting obesity, particularly with novel peptide-based concepts.

    Article  Google Scholar 

  3. Strohl, W. R. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs 29, 215–239 (2015).

    Article  CAS  Google Scholar 

  4. Evans, M. et al. Adherence to and persistence with antidiabetic medications and associations with clinical and economic outcomes in people with type 2 diabetes mellitus: a systematic literature review. Diabetes Obes. Metab. 24, 377–390 (2022).

    Article  CAS  Google Scholar 

  5. Polonsky, W. H., Fisher, L., Hessler, D., Bruhn, D. & Best, J. H. Patient perspectives on once-weekly medications for diabetes. Diabetes Obes. Metab. 13, 144–149 (2011).

    Article  CAS  Google Scholar 

  6. Hashimoto, M., Takada, K., Kiso, Y. & Muranishi, S. Synthesis of palmitoyl derivatives of insulin and their biological activities. Pharm. Res. 6, 171–176 (1989).

    Article  CAS  Google Scholar 

  7. Kurtzhals, P. et al. Albumin binding of insulins acylated with fatty acids: characterization of the ligand–protein interaction and correlation between binding affinity and timing of the insulin effect in vivo. Biochem. J. 312, 725–731 (1995). This work is the first demonstration of an extended half-life by albumin binding of fatty acid-derivatized peptides.

    Article  CAS  Google Scholar 

  8. Hannoush, R. N. Synthetic protein lipidation. Curr. Opin. Chem. Biol. 28, 39–46 (2015).

    Article  CAS  Google Scholar 

  9. Mejuch, T. & Waldmann, H. Synthesis of lipidated proteins. Bioconjug. Chem. 27, 1771–1783 (2016).

    Article  CAS  Google Scholar 

  10. Chen, B., Sun, Y., Niu, J., Jarugumilli, G. K. & Wu, X. Protein lipidation in cell signaling and diseases: function, regulation, and therapeutic opportunities. Cell Chem. Biol. 25, 817–831 (2018).

    Article  CAS  Google Scholar 

  11. Richter, W. F., Bhansali, S. G. & Morris, M. E. Mechanistic determinants of biotherapeutics absorption following SC administration. AAPS J. 14, 559–570 (2012).

    Article  CAS  Google Scholar 

  12. Gradel, A. K. J. et al. Factors affecting the absorption of subcutaneously administered insulin: effect on variability. J. Diabetes Res. 2018, 1205121 (2018).

    Article  CAS  Google Scholar 

  13. Hildebrandt, P., Sejrsen, P., Nielsen, S. L., Birch, K. & Sestoft, L. Diffusion and polymerization determines the insulin absorption from subcutaneous tissue in diabetic patients. Scand. J. Clin. Lab. Invest. 45, 685–690 (1985).

    Article  CAS  Google Scholar 

  14. Mosekilde, E., Jensen, K. S., Binder, C., Pramming, S. & Thorsteinsson, B. Modeling absorption kinetics of subcutaneous injected soluble insulin. J. Pharmacokinet. Biopharm. 17, 67–87 (1989).

    Article  CAS  Google Scholar 

  15. Kuna, M., Mahdi, F., Chade, A. R. & Bidwell, G. L. III Molecular size modulates pharmacokinetics, biodistribution, and renal deposition of the drug delivery biopolymer elastin-like polypeptide. Sci. Rep. 8, 7923 (2018).

    Article  Google Scholar 

  16. Harris, J. M., Martin, N. E. & Modi, M. Pegylation: a novel process for modifying pharmacokinetics. Clin. Pharmacokinet. 40, 539–551 (2001).

    Article  CAS  Google Scholar 

  17. Peters, T. Jr. Serum albumin. Adv. Protein Chem. 37, 161–245 (1985).

    Article  CAS  Google Scholar 

  18. Ellmerer, M. et al. Measurement of interstitial albumin in human skeletal muscle and adipose tissue by open-flow microperfusion. Am. J. Physiol. Endocrinol. Metab. 278, E352–E356 (2000).

    Article  CAS  Google Scholar 

  19. Nilsen, J. et al. An intact C-terminal end of albumin is required for its long half-life in humans. Commun. Biol. 3, 181 (2020).

    Article  CAS  Google Scholar 

  20. Chaudhury, C. et al. The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J. Exp. Med. 197, 315–322 (2003).

    Article  CAS  Google Scholar 

  21. Ober, R. J., Martinez, C., Lai, X., Zhou, J. & Ward, E. S. Exocytosis of IgG as mediated by the receptor, FcRn: an analysis at the single-molecule level. Proc. Natl Acad. Sci. USA 101, 11076 (2004).

    Article  CAS  Google Scholar 

  22. He, X. M. & Carter, D. C. Atomic structure and chemistry of human serum albumin. Nature 358, 209–215 (1992).

    Article  CAS  Google Scholar 

  23. Curry, S., Mandelkow, H., Brick, P. & Franks, N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol. 5, 827–835 (1998). This work presents the structural basis for fatty acid binding to serum albumin.

    Article  CAS  Google Scholar 

  24. Irby, D., Du, C. & Li, F. Lipid–drug conjugate for enhancing drug delivery. Mol. Pharm. 14, 1325–1338 (2017).

    Article  CAS  Google Scholar 

  25. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005).

    Article  CAS  Google Scholar 

  26. Bhat, M., Jatyan, R., Mittal, A., Mahato, R. I. & Chitkara, D. Opportunities and challenges of fatty acid conjugated therapeutics. Chem. Phys. Lipids 236, 105053 (2021).

    Article  CAS  Google Scholar 

  27. Smith, R. & Tanford, C. Hydrophobicity of long chain n-alkyl carboxylic acids, as measured by their distribution between heptane and aqueous solutions. Proc. Natl Acad. Sci. USA 70, 289 (1973).

    Article  CAS  Google Scholar 

  28. Spector, A. A. Fatty acid binding to plasma albumin. J. Lipid Res. 16, 165–179 (1975).

    Article  CAS  Google Scholar 

  29. Lau, J. et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J. Med. Chem. 58, 7370–7380 (2015). This work is the first demonstration of the once-weekly potential of applying the fatty acid derivatization technology.

    Article  CAS  Google Scholar 

  30. Østergaard, S. et al. The effect of fatty diacid acylation of human PYY3–36 on Y2 receptor potency and half-life in minipigs. Sci. Rep. 11, 21179 (2021). This paper demonstrates the importance of fatty acid position, linker and backbone stability in engineering PYY analogues with long half-lives.

    Article  Google Scholar 

  31. Enseñat-Waser, R. et al. Direct visualization by confocal fluorescent microscopy of the permeation of myristoylated peptides through the cell membrane. IUBMB Life 54, 33–36 (2002).

    Article  Google Scholar 

  32. Nelson, A. R., Borland, L., Allbritton, N. L. & Sims, C. E. Myristoyl-based transport of peptides into living cells. Biochemistry 46, 14771–14781 (2007).

    Article  CAS  Google Scholar 

  33. Kabanov, A. V., Levashov, A. V. & Alakhov, V. Y. Lipid modification of proteins and their membrane transport. Protein Eng. Des. Sel. 3, 39–42 (1989).

    Article  CAS  Google Scholar 

  34. Gao, X., Mazière, A. D., Beard, R., Klumperman, J. & Hannoush, R. N. Fatty acylation enhances the cellular internalization and cytosolic distribution of a cystine-knot peptide. iScience 24, 103220 (2021).

    Article  CAS  Google Scholar 

  35. Bech, E. M. et al. Half-life extending modifications of peptide YY3–36 direct receptor-mediated internalization. Mol. Pharm. 16, 3665–3677 (2019).

    Article  CAS  Google Scholar 

  36. Mäde, V., Bellmann-Sickert, K., Kaiser, A., Meiler, J. & Beck-Sickinger, A. G. Position and length of fatty acids strongly affect receptor selectivity pattern of human pancreatic polypeptide analogues. ChemMedChem 9, 2463–2474 (2014).

    Article  Google Scholar 

  37. Alexopoulou, F. et al. Lipidated PrRP31 metabolites are long acting dual GPR10 and NPFF2 receptor agonists with potent body weight lowering effect. Sci. Rep. 12, 1696 (2022). This methodological study highlights the differences between monoacid and diacid side chains.

    Article  CAS  Google Scholar 

  38. Poulsen, C. et al. Rational development of stable PYY3–36 peptide Y2 receptor agonists. Pharm. Res. 38, 1369–1385 (2021).

    Article  CAS  Google Scholar 

  39. Conde-Frieboes, K. et al. Identification and in vivo and in vitro characterization of long acting and melanocortin 4 receptor (MC4-R) selective α-melanocyte-stimulating hormone (α-MSH) analogues. J. Med. Chem. 55, 1969–1977 (2012).

    Article  CAS  Google Scholar 

  40. Ramírez-Andersen, H. S. et al. Long-acting human growth hormone analogue by noncovalent albumin binding. Bioconjug. Chem. 29, 3129–3143 (2018).

    Article  Google Scholar 

  41. Ostergaard, S. et al. Selective PYY compounds and uses thereof. US Patent US2015/0152150 A1 (2015).

  42. Madsen, K. et al. Structure−activity and protraction relationship of long-acting glucagon-like peptide-1 derivatives: importance of fatty acid length, polarity, and bulkiness. J. Med. Chem. 50, 6126–6132 (2007).

    Article  CAS  Google Scholar 

  43. Wieczorek, B., Spetzler, J. C., Kruse, T., Linderoth, L. & Kofoed, J. Double-acylated GLP-1 derivatives. US Patent WO2012/140117 (2012).

  44. Yang, P.-Y. et al. Engineering a long-acting, potent GLP-1 analog for microstructure-based transdermal delivery. Proc. Natl Acad. Sci. USA 113, 4140–4145 (2016).

    Article  CAS  Google Scholar 

  45. Royalty, J. E., Konradsen, G., Eskerod, O., Wulff, B. S. & Hansen, B. S. Investigation of safety, tolerability, pharmacokinetics, and pharmacodynamics of single and multiple doses of a long-acting α-MSH analog in healthy overweight and obese subjects. J. Clin. Pharmacol. 54, 394–404 (2014).

    Article  Google Scholar 

  46. Lau, J., F., Kruse, T., Linderoth, L. & Thøgersen, H. Novel glucagon analogues. US Patent WO2011/117416 Al (2011).

  47. Ward, B. P. et al. Peptide lipidation stabilizes structure to enhance biological function. Mol. Metab. 2, 468–479 (2013). This work demonstrates the role that the fatty acid side chain plays in determining the structural stability and receptor binding of peptide drugs.

    Article  CAS  Google Scholar 

  48. Coskun, T. et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol. Metab. 18, 3–14 (2018). This work presents the design of the first once-weekly fatty acid-derivatized GLP-1/GIP co-agonist to enter the clinic.

    Article  CAS  Google Scholar 

  49. Kjeldsen, T. B. et al. Molecular engineering of insulin icodec, the first acylated insulin analog for once-weekly administration in humans. J. Med. Chem. 64, 8942–8950 (2021). This work presents the design of the first once-weekly insulin based on fatty acid derivatization.

    Article  CAS  Google Scholar 

  50. van Witteloostuijn, S. B. et al. Neoglycolipids for prolonging the effects of peptides: self-assembling glucagon-like peptide 1 analogues with albumin binding properties and potent in vivo efficacy. Mol. Pharm. 14, 193–205 (2017).

    Article  Google Scholar 

  51. Zorzi, A., Middendorp, S. J., Wilbs, J., Deyle, K. & Heinis, C. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides. Nat. Commun. 8, 16092 (2017).

    Article  CAS  Google Scholar 

  52. Johansson, E. et al. Identification of binding sites on human serum albumin for somapacitan, a long-acting growth hormone derivative. Biochemistry 59, 1410–1419 (2020).

    Article  CAS  Google Scholar 

  53. Yáñez, J. A., Remsberg, C. M., Sayre, C. L., Forrest, M. L. & Davies, N. M. Flip-flop pharmacokinetics — delivering a reversal of disposition: challenges and opportunities during drug development. Ther. Deliv. 2, 643–672 (2011).

    Article  Google Scholar 

  54. Markussen, J. et al. Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Diabetologia 39, 281–288 (1996).

    Article  CAS  Google Scholar 

  55. Myers, S. R. et al. Acylation of human insulin with palmitic acid extends the time action of human insulin in diabetic dogs. Diabetes 46, 637–642 (1997).

    Article  CAS  Google Scholar 

  56. Radziuk, J. et al. Basal activity profiles of NPH and [Nepsilon-palmitoyl Lys (B29)] human insulins in subjects with IDDM. Diabetologia 41, 116–120 (1998).

    Article  CAS  Google Scholar 

  57. Nicol, D. S. & Smith, L. F. Amino-acid sequence of human insulin. Nature 187, 483–485 (1960).

    Article  CAS  Google Scholar 

  58. Potocka, E., Baughman, R. A. & Derendorf, H. Population pharmacokinetic model of human insulin following different routes of administration. J. Clin. Pharmacol. 51, 1015–1024 (2011).

    Article  CAS  Google Scholar 

  59. Smith, L. F. Species variation in the amino acid sequence of insulin. Am. J. Med. 40, 662–666 (1966).

    Article  CAS  Google Scholar 

  60. Havelund, S., Halstrom, J., Jonassen, I. K. P. & Markussen, J. Characterization of B1 and B29 fatty acid acylated insulins. Diabetologia 38, A192 (1995).

    Google Scholar 

  61. Havelund, S. et al. The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm. Res. 21, 1498–1504 (2004).

    Article  CAS  Google Scholar 

  62. Heinemann, L. et al. Time-action profile of the soluble, fatty acid acylated, long-acting insulin analogue NN304. Diabet. Med. 16, 332–338 (1999).

    Article  CAS  Google Scholar 

  63. Brunner, G. A. et al. Pharmacokinetic and pharmacodynamic properties of long-acting insulin analogue NN304 in comparison to NPH insulin in humans. Exp. Clin. Endocrinol. Diabetes 108, 100–105 (2000).

    Article  CAS  Google Scholar 

  64. Heller, S. et al. Insulin degludec, an ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 1 diabetes (BEGIN Basal-Bolus type 1): a phase 3, randomised, open-label, treat-to-target non-inferiority trial. Lancet 379, 1489–1497 (2012).

    Article  CAS  Google Scholar 

  65. Garber, A. J. et al. Insulin degludec, an ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 2 diabetes (BEGIN Basal-Bolus Type 2): a phase 3, randomised, open-label, treat-to-target non-inferiority trial. Lancet 379, 1498–1507 (2012).

    Article  CAS  Google Scholar 

  66. Hermansen, K. et al. A 26-week, randomized, parallel, treat-to-target trial comparing insulin detemir with NPH insulin as add-on therapy to oral glucose-lowering drugs in insulin-naive people with type 2 diabetes. Diabetes Care 29, 1269–1274 (2006).

    Article  CAS  Google Scholar 

  67. Vague, P. et al. Insulin detemir is associated with more predictable glycemic control and reduced risk of hypoglycemia than NPH insulin in patients with type 1 diabetes on a basal-bolus regimen with premeal insulin aspart. Diabetes Care 26, 590–596 (2003).

    Article  CAS  Google Scholar 

  68. Jonassen, I. et al. Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm. Res. 29, 2104–2114 (2012).

    Article  CAS  Google Scholar 

  69. Steensgaard, D. B. et al. Ligand-controlled assembly of hexamers, dihexamers, and linear multihexamer structures by the engineered acylated insulin degludec. Biochemistry 52, 295–309 (2013).

    Article  CAS  Google Scholar 

  70. Haahr, H. & Heise, T. A review of the pharmacological properties of insulin degludec and their clinical relevance. Clin. Pharmacokinet. 53, 787–800 (2014).

    Article  CAS  Google Scholar 

  71. Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373, 11–22 (2015). This work is the first pivotal study that demonstrates the weight loss potential in humans by a fatty acid-derivatized GLP-1 analogue.

    Article  Google Scholar 

  72. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016). This work presents the first demonstration of the cardiovascular benefits of a fatty acid-derivatized GLP-1 analogue.

    Article  CAS  Google Scholar 

  73. Kreymann, B., Ghatei, M. A., Williams, G. & Bloom, S. R. Glucagon-like peptide1 7–36: a physiological incretin in man. Lancet 330, 1300–1304 (1987).

    Article  Google Scholar 

  74. Nathan, D. M., Schreiber, E., Fogel, H., Mojsov, S. & Habener, J. F. Insulinotropic action of glucagonlike peptide-I-(7–37) in diabetic and nondiabetic subjects. Diabetes Care 15, 270 (1992).

    Article  CAS  Google Scholar 

  75. Nauck, M. A. et al. Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J. Clin. Invest. 91, 301–307 (1993).

    Article  CAS  Google Scholar 

  76. Deacon, C. F., Johnsen, A. H. & Holst, J. J. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J. Clin. Endocrinol. Metab. 80, 952–957 (1995).

    CAS  Google Scholar 

  77. Knudsen, L. B. et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J. Med. Chem. 43, 1664–1669 (2000). This work presents the first once-daily GLP-1 analogue designed by fatty acid derivatization.

    Article  CAS  Google Scholar 

  78. Steensgaard, D. B., Thomsen, J. K., Olsen, H. B. & Knudsen, L. B. The molecular basis for the delayed absorption of the once-daily human GLP-1 analogue, liraglutide. Diabetes 57, A164 (2008).

    Google Scholar 

  79. Wang, Y., Lomakin, A., Kanai, S., Alex, R. & Benedek, G. B. Transformation of oligomers of lipidated peptide induced by change in pH. Mol. Pharm. 12, 411–419 (2015).

    Article  CAS  Google Scholar 

  80. Wang, Y. et al. The molecular basis for the prolonged blood circulation of lipidated incretin peptides: peptide oligomerization or binding to serum albumin. J. Control. Rel. 241, 25–33 (2016).

    Article  CAS  Google Scholar 

  81. Agersø, H., Jensen, L. B., Elbrønd, B., Rolan, P. & Zdravkovic, M. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 45, 195–202 (2002).

    Article  Google Scholar 

  82. Elbrønd, B. et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care 25, 1398–1404 (2002).

    Article  Google Scholar 

  83. Garber, A. et al. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet 373, 473–481 (2009).

    Article  CAS  Google Scholar 

  84. Buse, J. B. et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 374, 39–47 (2009).

    Article  CAS  Google Scholar 

  85. Sonne, O. Receptor-mediated endocytosis and degradation of insulin. Physiol. Rev. 68, 1129–1196 (1988).

    Article  CAS  Google Scholar 

  86. Ward, C. W., Menting, J. G. & Lawrence, M. C. The insulin receptor changes conformation in unforeseen ways on ligand binding: sharpening the picture of insulin receptor activation. Bioessays 35, 945–954 (2013).

    Article  CAS  Google Scholar 

  87. Menting, J. G. et al. How insulin engages its primary binding site on the insulin receptor. Nature 493, 241–245 (2013).

    Article  CAS  Google Scholar 

  88. Ribel, U., Hougaard, P., Drejer, K. & Sørensen, A. R. Equivalent in vivo biological activity of insulin analogues and human insulin despite different in vitro potencies. Diabetes 39, 1033–1039 (1990).

    Article  CAS  Google Scholar 

  89. Ellmerer, M. et al. Mechanism of action in dogs of slow-acting insulin analog O346. J. Clin. Endocrinol. Metab. 88, 2256–2262 (2003).

    Article  CAS  Google Scholar 

  90. Hubálek, F. et al. Molecular engineering of safe and efficacious oral basal insulin. Nat. Commun. 11, 3746 (2020). This work presents insights into the development of oral insulin by applying fatty acid derivatization.

    Article  Google Scholar 

  91. Nakagawa, S. H. & Tager, H. S. Role of the phenylalanine B25 side chain in directing insulin interaction with its receptor. Steric and conformational effects. J. Biol. Chem. 261, 7332–7341 (1986).

    Article  CAS  Google Scholar 

  92. Halberg, I. B. et al. The effect of food intake on the pharmacokinetics of oral basal insulin: a randomised crossover trial in healthy male subjects. Clin. Pharmacokinet. 58, 1497–1504 (2019).

    Article  CAS  Google Scholar 

  93. Kjeldsen, T. B. et al. Engineering of orally available, ultralong-acting insulin analogues: discovery of OI338 and OI320. J. Med. Chem. 64, 616–628 (2021).

    Article  CAS  Google Scholar 

  94. Halberg, I. B. et al. Efficacy and safety of oral basal insulin versus subcutaneous insulin glargine in type 2 diabetes: a randomised, double-blind, phase 2 trial. Lancet Diabetes Endocrinol. 7, 179–188 (2019).

    Article  Google Scholar 

  95. Hamilton-Wessler, M. et al. Mode of transcapillary transport of insulin and insulin analog NN304 in dog hindlimb: evidence for passive diffusion. Diabetes 51, 574–582 (2002).

    Article  CAS  Google Scholar 

  96. Ludvigsen, S., Olsen, H. B. & Kaarsholm, N. C. A structural switch in a mutant insulin exposes key residues for receptor binding. J. Mol. Biol. 279, 1–7 (1998).

    Article  CAS  Google Scholar 

  97. Ludvigsen, S., Roy, M., Thøgersen, H. & Kaarsholm, N. C. High-resolution structure of an engineered biologically potent insulin monomer, B16 Tyr → His, as determined by nuclear magnetic resonance spectroscopy. Biochemistry 33, 7998–8006 (1994).

    Article  CAS  Google Scholar 

  98. Nishimura, E. et al. Molecular and pharmacological characterization of insulin icodec: a new basal insulin analog designed for once-weekly dosing. BMJ Open Diabetes Res. Care 9, e002301 (2021).

    Article  Google Scholar 

  99. Rosenstock, J. et al. Once-weekly insulin for type 2 diabetes without previous insulin treatment. N. Engl. J. Med. 383, 2107–2116 (2020).

    Article  CAS  Google Scholar 

  100. Mendez Perez, M. et al. Insulin conjugates. WO2020120463 (2020).

  101. Brennan, S. P., Flora, D. B., Kisselev, V., Liu, W. & Valenzuela, F. A. Extended time action acylated insulin compounds. WO2021231676 (2021).

  102. Sorli, C. et al. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes Endocrinol. 5, 251–260 (2017).

    Article  CAS  Google Scholar 

  103. Aroda, V. R. et al. Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas) in insulin-naive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label, parallel-group, multicentre, multinational, phase 3a trial. Lancet Diabetes Endocrinol. 5, 355–366 (2017).

    Article  CAS  Google Scholar 

  104. Marso, S. P., Holst, A. G. & Vilsbøll, T. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 376, 891–892 (2017). This key study demonstrates the cardiovascular benefits of the once-weekly fatty acid-derivatized GLP-1 analogue semaglutide.

    Google Scholar 

  105. Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989 (2021).

    Article  CAS  Google Scholar 

  106. Gallo, M. et al. Oligomerization, albumin binding and catabolism of therapeutic peptides in the subcutaneous compartment: an investigation on lipidated GLP-1 analogs. J. Pharm. Biomed. Anal. 210, 114566 (2022).

    Article  CAS  Google Scholar 

  107. Staby, A. et al. Influence of production process and scale on quality of polypeptide drugs: a case study on GLP-1 analogs. Pharm. Res. 37, 120 (2020).

    Article  CAS  Google Scholar 

  108. Zapadka, K. L., Becher, F. J., Gomes Dos Santos, A. L. & Jackson, S. E. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus. 7, 20170030 (2017).

    Article  Google Scholar 

  109. Pedersen, J. S. The nature of amyloid-like glucagon fibrils. J. Diabetes Sci. Technol. 4, 1357–1367 (2010).

    Article  Google Scholar 

  110. Abraham, M. A. et al. GIP/GLP-1 co-agonist compounds. US Patent 2020/0024322 A1 (2020).

  111. Rosenstock, J. et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet 398, 143–155 (2021). This work presents the efficacy of a fatty acid-derivatized once-weekly GLP-1/GIP co-agonist in type 2 diabetes.

    Article  CAS  Google Scholar 

  112. Frías, J. P. et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N. Engl. J. Med. 385, 503–515 (2021).

    Article  Google Scholar 

  113. Del Prato, S. et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet 398, 1811–1824 (2021).

    Article  Google Scholar 

  114. Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2206038 (2022). This work is the first pivotal study to demonstrate weight-lowering potential of a fatty acid-derivatized GLP-1/GIP dual receptor agonist.

    Article  Google Scholar 

  115. Hay, D. L., Chen, S., Lutz, T. A., Parkes, D. G. & Roth, J. D. Amylin: pharmacology, physiology, and clinical potential. Pharmacol. Rev. 67, 564–600 (2015).

    Article  CAS  Google Scholar 

  116. Kapurniotu, A. Amyloidogenicity and cytotoxicity of islet amyloid polypeptide. Pept. Sci. 60, 438–459 (2001).

    Article  CAS  Google Scholar 

  117. Younk, L. M., Mikeladze, M. & Davis, S. N. Pramlintide and the treatment of diabetes: a review of the data since its introduction. Expert. Opin. Pharmacother. 12, 1439–1451 (2011).

    Article  CAS  Google Scholar 

  118. Kruse, T. et al. Development of cagrilintide, a long-acting amylin analogue. J. Med. Chem. 64, 11183–11194 (2021). This work presents the design of a once-weekly amylin analogue by fatty acid derivatization.

    Article  CAS  Google Scholar 

  119. Hansen, K. T., Schaffer, L. & Lau, J. Amylin derivatives. US Patent 2009/0099085 (2009).

  120. Reidelberger, R. D., Arnelo, U., Granqvist, L. & Permert, J. Comparative effects of amylin and cholecystokinin on food intake and gastric emptying in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R605–R611 (2001).

    Article  CAS  Google Scholar 

  121. Enebo, L. B. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2.4 mg for weight management: a randomised, controlled, phase 1b trial. Lancet 397, 1736–1748 (2021).

    Article  CAS  Google Scholar 

  122. Lau, D. C. W. et al. Once-weekly cagrilintide for weight management in people with overweight and obesity: a multicentre, randomised, double-blind, placebo-controlled and active-controlled, dose-finding phase 2 trial. Lancet 398, 2160–2172 (2021).

    Article  CAS  Google Scholar 

  123. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03600480 (2022).

  124. Batterham, R. L. et al. Gut hormone PYY3–36 physiologically inhibits food intake. Nature 418, 650–654 (2002).

    Article  CAS  Google Scholar 

  125. Hutchinson, J. A. et al. The effect of lipidation on the self-assembly of the gut-derived peptide hormone PYY3–36. Bioconjug. Chem. 29, 2296–2308 (2018).

    Article  CAS  Google Scholar 

  126. Dich, J. & Nielsen, K. Metabolism and distribution of I-labelled albumin in the pig. Can. J. Comp. Med. Vet. Sci. 27, 269–273 (1963).

    CAS  Google Scholar 

  127. de Vos, A. M., Ultsch, M. & Kossiakoff, A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312 (1992).

    Article  Google Scholar 

  128. Press, M. Growth hormone and metabolism. Diabetes Metab. Rev. 4, 391–414 (1988).

    Article  CAS  Google Scholar 

  129. Helleberg, H., Lindecrona, R. H., Thygesen, P. & Bjelke, M. Structure identification of circulating metabolites from somapacitan, a long-acting growth hormone derivative, and pharmacokinetics after single and multiple subcutaneous dosing in rats. Eur. J. Pharm. Sci. 168, 106032 (2021).

    Article  Google Scholar 

  130. Johannsson, G. et al. Once-weekly somapacitan is effective and well tolerated in adults with GH deficiency: a randomized phase 3 trial. J. Clin. Endocrinol. Metab. 105, e1358–e1376 (2020).

    Article  Google Scholar 

  131. Rasmussen, M. H., Olsen, M. W., Alifrangis, L., Klim, S. & Suntum, M. A reversible albumin-binding growth hormone derivative is well tolerated and possesses a potential once-weekly treatment profile. J. Clin. Endocrinol. Metab. 99, E1819–E1829 (2014).

    Article  CAS  Google Scholar 

  132. Howard, J. F. et al. RA101495, a subcutaneously administered peptide inhibitor of complement component 5 (C5) for the treatment of generalized myasthenia gravis (gMG): phase 1 results and phase 2 design (S31.006). Neurology 90, S31.006 (2018).

    Google Scholar 

  133. Howard, J. F. Jr. et al. Zilucoplan: an investigational complement C5 inhibitor for the treatment of acetylcholine receptor autoantibody-positive generalized myasthenia gravis. Expert. Opin. Invest. Drugs 30, 483–493 (2021).

    Article  CAS  Google Scholar 

  134. Ekrami, H. M., Kennedy, A. R. & Shen, W.-C. Water-soluble fatty acid derivatives as acylating agents for reversible lipidization of polypeptides. FEBS Lett. 371, 283–286 (1995).

    Article  CAS  Google Scholar 

  135. Honeycutt, L., Wang, J., Ekrami, H. & Shen, W. C. Comparison of pharmacokinetic parameters of a polypeptide, the Bowman–Birk protease inhibitor (BBI), and its palmitic acid conjugate. Pharm. Res. 13, 1373–1377 (1996).

    Article  CAS  Google Scholar 

  136. Dasgupta, P., Singh, A. T. & Mukherjee, R. Lipophilization of somatostatin analog RC-160 improves its bioactivity and stability. Pharm. Res. 16, 1047–1053 (1999).

    Article  CAS  Google Scholar 

  137. Wang, J., Shen, D. & Shen, W.-C. Preparation, purification, and characterization of a reversibly lipidized desmopressin with potentiated anti-diuretic activity. Pharm. Res. 16, 1674–1679 (1999).

    Article  CAS  Google Scholar 

  138. Wan, L., Chen, Y.-H. & Chang, T. W. Improving pharmacokinetic properties of adrenocorticotropin by site-specific lipid modification. J. Pharm. Sci. 92, 1882–1892 (2003).

    Article  CAS  Google Scholar 

  139. Wang, J., Chow, D., Heiati, H. & Shen, W.-C. Reversible lipidization for the oral delivery of salmon calcitonin. J. Control. Rel. 88, 369–380 (2003).

    Article  CAS  Google Scholar 

  140. Yuan, L., Wang, J. & Shen, W.-C. Reversible lipidization prolongs the pharmacological effect, plasma duration, and liver retention of octreotide. Pharm. Res. 22, 220–227 (2005).

    Article  CAS  Google Scholar 

  141. Bellmann-Sickert, K. et al. Long-acting lipidated analogue of human pancreatic polypeptide is slowly released into circulation. J. Med. Chem. 54, 2658–2667 (2011).

    Article  CAS  Google Scholar 

  142. Lee, J. et al. Preparation and evaluation of palmitic acid-conjugated exendin-4 with delayed absorption and prolonged circulation for longer hypoglycemia. Int. J. Pharm. 424, 50–57 (2012).

    Article  CAS  Google Scholar 

  143. Chae, S. Y. et al. The fatty acid conjugated exendin-4 analogs for type 2 antidiabetic therapeutics. J. Control. Release 144, 10–16 (2010).

    Article  CAS  Google Scholar 

  144. Lim, S. I. et al. Site-specific fatty acid-conjugation to prolong protein half-life in vivo. J. Control. Release 170, 219–225 (2013).

    Article  CAS  Google Scholar 

  145. Dalbøge, L. S. et al. Synthesis and evaluation of novel lipidated neuromedin U analogs with increased stability and effects on food intake. J. Pept. Sci. 21, 85–94 (2015).

    Article  Google Scholar 

  146. Finan, B. et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21, 27–36 (2015). This work presents engineering of once-weekly GLP-1/GIP/glucagon receptor tri-agonists by fatty acid derivatization.

    Article  CAS  Google Scholar 

  147. Nissen, K. B., Andersen, J. J., Haugaard-Kedström, L. M., Bach, A. & Strømgaard, K. Design, synthesis, and characterization of fatty acid derivatives of a dimeric peptide-based postsynaptic density-95 (PSD-95) inhibitor. J. Med. Chem. 58, 1575–1580 (2015).

    Article  CAS  Google Scholar 

  148. Trier, S. et al. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement. Eur. J. Pharm. Biopharm. 96, 329–337 (2015).

    Article  CAS  Google Scholar 

  149. Maletínská, L. et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int. J. Obes. 39, 986–993 (2015).

    Article  Google Scholar 

  150. Chong, H., Wu, X., Su, Y. & He, Y. Development of poteny and long-acting HIV-1 fusion inhibitors. AIDS 30, 1187–1196 (2016).

    Article  CAS  Google Scholar 

  151. Juhl, C. et al. Development of potent and metabolically stable APJ ligands with high therapeutic potential. ChemMedChem 11, 2378–2384 (2016).

    Article  CAS  Google Scholar 

  152. Tanday, N., Irwin, N., Moffett, R. C., Flatt, P. R. & O’Harte, F. P. M. Beneficial actions of a long-acting apelin analogue in diabetes are related to positive effects on islet cell turnover and transdifferentiation. Diabetes Obes. Metab. 22, 2468–2478 (2020).

    Article  CAS  Google Scholar 

  153. Naik, H., Gauthier, T., Singh, S. & Jois, S. Design of novel lipidated peptidomimetic conjugates for targeting EGFR heterodimerization in HER2+ cancer. Bioorg. Med. Chem. Lett. 28, 3506–3513 (2018).

    Article  CAS  Google Scholar 

  154. Williams, E. T. et al. Solid-phase thiol–ene lipidation of peptides for the synthesis of a potent CGRP receptor antagonist. Angew. Chem. Int. Ed. 57, 11640–11643 (2018).

    Article  CAS  Google Scholar 

  155. Muppidi, A. et al. Design and synthesis of potent, long-acting lipidated relaxin-2 analogs. Bioconjug. Chem. 30, 83–89 (2019).

    Article  CAS  Google Scholar 

  156. Sensfuss, U. et al. Structure–activity relationships and characterization of highly selective, long-acting, peptide-based cholecystokinin 1 receptor agonists. J. Med. Chem. 62, 1407–1419 (2019).

    Article  Google Scholar 

  157. Christoffersen, B. et al. Long-acting CCK analogue NN9056 lowers food intake and body weight in obese Göttingen minipigs. Int. J. Obes. 44, 447–456 (2020).

    Article  CAS  Google Scholar 

  158. Lay, Y. H., Andrade, P. D., Wu, Y. & Spring, D. R. Peptide stapling techniques based on different macrocyclisation chemistries. Chem. Soc. Rev. 44, 91–102 (2015).

    Article  Google Scholar 

  159. Pflimlin, E. et al. Design of a long-acting and selective MEG–fatty acid stapled prolactin-releasing peptide analog. ACS Med. Chem. Lett. 10, 1166–1172 (2019).

    Article  CAS  Google Scholar 

  160. Lear, S. et al. Engineering of a potent, long-acting NPY2R agonist for combination with a GLP-1R agonist as a multi-hormonal treatment for obesity. J. Med. Chem. 63, 9660–9671 (2020).

    Article  CAS  Google Scholar 

  161. Farmer, T. D. et al. Comparison of the physiological relevance of systemic vs. portal insulin delivery to evaluate whole body glucose flux during an insulin clamp. Am. J. Physiol. Endocrinol. Metab. 308, E206–E222 (2015).

    Article  CAS  Google Scholar 

  162. Edgerton, D. S., Moore, M. C., Gregory, J. M., Kraft, G. & Cherrington, A. D. Importance of the route of insulin delivery to its control of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 320, E891–E897 (2021).

    Article  CAS  Google Scholar 

  163. Gregory, J. M. et al. Peripherally delivered hepatopreferential insulin analog insulin-406 mimics the hypoglycaemia-sparing effect of portal vein human insulin infusion in dogs. Diabetes Obes. Metab. 21, 2294–2304 (2019).

    Article  CAS  Google Scholar 

  164. Kurtzhals, P. et al. Commemorating insulin’s centennial: engineering insulin pharmacology towards physiology. Trends Pharmacol. Sci. 42, 620–639 (2021).

    Article  CAS  Google Scholar 

  165. Pratley, R. et al. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. Lancet 394, 39–50 (2019). This pivotal study demonstrates the efficacy of an oral peptide drug, semaglutide, versus subcutaneous liraglutide for the treatment of type 2 diabetes.

    Article  CAS  Google Scholar 

  166. Gabery, S. et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 5, e133429 (2020).

    Article  Google Scholar 

  167. Asada, H. et al. Stability of acyl derivatives of insulin in the small intestine: relative importance of insulin association characteristics in aqueous solution. Pharm. Res. 11, 1115–1120 (1994).

    Article  CAS  Google Scholar 

  168. Meier, J. J. Efficacy of semaglutide in a subcutaneous and an oral formulation. Front. Endocrinol. 12, 645617 (2021).

    Article  Google Scholar 

  169. Davies, M. et al. Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: a randomized clinical trial. JAMA 318, 1460–1470 (2017).

    Article  CAS  Google Scholar 

  170. Buckley, S. T. et al. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci. Transl. Med. 10, eaar7047 (2018).

    Article  Google Scholar 

  171. Trier, S., Linderoth, L., Bjerregaard, S., Andresen, T. L. & Rahbek, U. L. Acylation of glucagon-like peptide-2: interaction with lipid membranes and in vitro intestinal permeability. PLoS ONE 9, e109939 (2014).

    Article  Google Scholar 

  172. Rocco, D., Ross, J., Murray, P. E. & Caccetta, R. Acyl lipidation of a peptide: effects on activity and epidermal permeability in vitro. Drug Des. Devel. Ther. 10, 2203–2209 (2016).

    Article  CAS  Google Scholar 

  173. Jensen, L. et al. Absorption, metabolism and excretion of the GLP-1 analogue semaglutide in humans and nonclinical species. Eur. J. Pharm. Sci. 104, 31–41 (2017).

    Article  CAS  Google Scholar 

  174. Malm-Erjefält, M. et al. Metabolism and excretion of the once-daily human glucagon-like peptide-1 analog liraglutide in healthy male subjects and its in vitro degradation by dipeptidyl peptidase IV and neutral endopeptidase. Drug Metab. Dispos. 38, 1944–1953 (2010).

    Article  Google Scholar 

  175. Kurtzhals, P., Havelund, S., Jonassen, I. & Markussen, J. Effect of fatty acids and selected drugs on the albumin binding of a long-acting, acylated insulin analogue. J. Pharm. Sci. 86, 1365–1368 (1997).

    Article  CAS  Google Scholar 

  176. Hausner, H. et al. Effect of semaglutide on the pharmacokinetics of metformin, warfarin, atorvastatin and digoxin in healthy subjects. Clin. Pharmacokinet. 56, 1391–1401 (2017).

    Article  CAS  Google Scholar 

  177. Jordy, A. B. et al. Effect of oral semaglutide on the pharmacokinetics of levonorgestrel and ethinylestradiol in healthy postmenopausal women and furosemide and rosuvastatin in healthy subjects. Clin. Pharmacokinet. 60, 1171–1185 (2021).

    Article  CAS  Google Scholar 

  178. Kiss, I. et al. Insulin degludec: pharmacokinetics in patients with renal impairment. Clin. Pharmacokinet. 53, 175–183 (2014).

    Article  CAS  Google Scholar 

  179. Granhall, C., Søndergaard, F. L., Thomsen, M. & Anderson, T. W. Pharmacokinetics, safety and tolerability of oral semaglutide in subjects with renal impairment. Clin. Pharmacokinet. 57, 1571–1580 (2018).

    Article  CAS  Google Scholar 

  180. Marbury, T. C., Flint, A., Jacobsen, J. B., Derving Karsbøl, J. & Lasseter, K. Pharmacokinetics and tolerability of a single dose of semaglutide, a human glucagon-like peptide-1 analog, in subjects with and without renal impairment. Clin. Pharmacokinet. 56, 1381–1390 (2017).

    Article  CAS  Google Scholar 

  181. Thibaudeau, K. et al. Synthesis and evaluation of insulin−human serum albumin conjugates. Bioconjug. Chem. 16, 1000–1008 (2005).

    Article  CAS  Google Scholar 

  182. Léger, R. et al. Identification of CJC-1131–albumin bioconjugate as a stable and bioactive GLP-1(7–36) analog. Bioorg. Med. Chem. Lett. 14, 4395–4398 (2004).

    Article  Google Scholar 

  183. Baraboi, E. D. et al. Effects of albumin-conjugated PYY on food intake: the respective roles of the circumventricular organs and vagus nerve. Eur. J. Neurosci. 32, 826–839 (2010).

    Article  Google Scholar 

  184. Ehrlich, G. K. et al. Preparation and characterization of albumin conjugates of a truncated peptide YY analogue for half-life extension. Bioconj. Chem. 24, 2015–2024 (2013).

    Article  CAS  Google Scholar 

  185. Baker, M., Reynolds, H. M., Lumicisi, B. & Bryson, C. J. Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self/Nonself 1, 314–322 (2010).

    Article  Google Scholar 

  186. Sauna, Z. E., Lagassé, D., Pedras-Vasconcelos, J., Golding, B. & Rosenberg, A. S. Evaluating and mitigating the immunogenicity of therapeutic proteins. Trends Biotechnol. 36, 1068–1084 (2018).

    Article  CAS  Google Scholar 

  187. Casadevall, N. et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N. Engl. J. Med. 346, 469–475 (2002).

    Article  CAS  Google Scholar 

  188. Cantor, J. R. et al. Therapeutic enzyme deimmunization by combinatorial T-cell epitope removal using neutral drift. Proc. Natl Acad. Sci. USA 108, 1272–1277 (2011).

    Article  CAS  Google Scholar 

  189. Mazor, R. et al. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes. Proc. Natl Acad. Sci. USA 111, 8571–8576 (2014).

    Article  CAS  Google Scholar 

  190. Nielsen, M. et al. Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput. Biol. 4, e1000107 (2008).

    Article  Google Scholar 

  191. Vita, R. et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 43, D405–D412 (2015).

    Article  CAS  Google Scholar 

  192. Ducret, A. et al. Assay format diversity in pre-clinical immunogenicity risk assessment: toward a possible harmonization of antigenicity assays. mAbs 14, 1993522 (2022).

    Article  Google Scholar 

  193. Lamberth, K. et al. Post hoc assessment of the immunogenicity of bioengineered factor VIIa demonstrates the use of preclinical tools. Sci. Transl. Med. 9, eaag1286 (2017).

    Article  Google Scholar 

  194. Schultz, H. S., Østergaard, S., Sidney, J., Lamberth, K. & Sette, A. The effect of acylation with fatty acids and other modifications on HLA class II:peptide binding and T cell stimulation for three model peptides. PLoS ONE 13, e0197407 (2018).

    Article  Google Scholar 

  195. Buse, J. B. et al. Liraglutide treatment is associated with a low frequency and magnitude of antibody formation with no apparent impact on glycemic response or increased frequency of adverse events: results from the liraglutide effect and action in diabetes (LEAD) trials. J. Clin. Endocrinol. Metab. 96, 1695–1702 (2011).

    Article  CAS  Google Scholar 

  196. Vora, J. et al. Insulin degludec does not increase antibody formation versus insulin glargine: an evaluation of phase IIIa trials. Diabetes Obes. Metab. 18, 716–720 (2016).

    Article  CAS  Google Scholar 

  197. Bartley, P. C., Bogoev, M., Larsen, J. & Philotheou, A. Long-term efficacy and safety of insulin detemir compared to neutral protamine Hagedorn insulin in patients with type 1 diabetes using a treat-to-target basal-bolus regimen with insulin aspart at meals: a 2-year, randomized, controlled trial. Diabet. Med. 25, 442–449 (2008).

    Article  CAS  Google Scholar 

  198. Novo Nordisk A/S. [Ozempic] Summary of product characteristics. European Medicines Agency https://www.ema.europa.eu/en/documents/product-information/ozempic-epar-product-information_en.pdf (2021).

  199. Steiner, D. et al. Half-life extension using serum albumin-binding DARPin® domains. Protein Eng. Des. Sel. 30, 583–591 (2017).

    Article  CAS  Google Scholar 

  200. Hoogenboezem, E. N. & Duvall, C. L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev. 130, 73–89 (2018).

    Article  CAS  Google Scholar 

  201. Spada, A., Emami, J., Tuszynski, J. A. & Lavasanifar, A. The uniqueness of albumin as a carrier in nanodrug delivery. Mol. Pharm. 18, 1862–1894 (2021).

    Article  CAS  Google Scholar 

  202. Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).

    Article  CAS  Google Scholar 

  203. Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).

    Article  CAS  Google Scholar 

  204. Gonzaga, R. V. et al. Perspectives about self-immolative drug delivery systems. J. Pharm. Sci. 109, 3262–3281 (2020).

    Article  CAS  Google Scholar 

  205. Sprogøe, K., Mortensen, E., Karpf, D. B. & Leff, J. A. The rationale and design of TransCon Growth Hormone for the treatment of growth hormone deficiency. Endocr. Connect. 6, R171–R181 (2017).

    Article  Google Scholar 

  206. Santi, D. V., Schneider, E. L., Reid, R., Robinson, L. & Ashley, G. W. Predictable and tunable half-life extension of therapeutic agents by controlled chemical release from macromolecular conjugates. Proc. Natl Acad. Sci. USA 109, 6211 (2012).

    Article  CAS  Google Scholar 

  207. Alouane, A., Labruère, R., Le Saux, T., Schmidt, F. & Jullien, L. Self-immolative spacers: kinetic aspects, structure–property relationships, and applications. Angew. Chem. Int. Ed. 54, 7492–7509 (2015).

    Article  CAS  Google Scholar 

  208. Deng, Z., Hu, J. & Liu, S. Disulfide-based self-immolative linkers and functional bioconjugates for biological applications. Macromol. Rapid Commun. 41, 1900531 (2020).

    Article  CAS  Google Scholar 

  209. Kole, R., Krainer, A. R. & Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discov. 11, 125–140 (2012).

    Article  CAS  Google Scholar 

  210. Goga, A. & Stoffel, M. Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nat. Rev. Drug Discov. 21, 417–439 (2022).

    Article  CAS  Google Scholar 

  211. Setten, R. L., Rossi, J. J. & Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421–446 (2019).

    Article  CAS  Google Scholar 

  212. Osborn, M. F. & Khvorova, A. Improving siRNA delivery in vivo through lipid conjugation. Nucleic Acid Ther. 28, 128–136 (2018).

    Article  CAS  Google Scholar 

  213. Brown, K. M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01334-x (2022).

    Article  Google Scholar 

  214. Prakash, T. P. et al. Fatty acid conjugation enhances potency of antisense oligonucleotides in muscle. Nucleic Acids Res. 47, 6029–6044 (2019).

    Article  CAS  Google Scholar 

  215. Biscans, A. et al. Docosanoic acid conjugation to siRNA enables functional and safe delivery to skeletal and cardiac muscles. Mol. Ther. 29, 1382–1394 (2021).

    Article  CAS  Google Scholar 

  216. European Medicines Agency. Levemir® CHMP assessment report. European Mediines Agency https://www.ema.europa.eu/en/documents/scientific-discussion/levemir-epar-scientific-discussion_en.pdf (2004).

  217. European Medicines Agency. Tresiba® CHMP assessment report. European Mediines Agency https://www.ema.europa.eu/en/documents/assessment-report/tresiba-epar-public-assessment-report_en.pdf (2012).

  218. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04136067 (2022).

  219. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03965013 (2022).

  220. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02470039 (2022).

  221. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02938572 (2021).

  222. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02612844 (2022).

  223. Shi, A. et al. Pharmacokinetics, safety and tolerability of once-weekly subcutaneous semaglutide in healthy chinese subjects: a double-blind, phase 1, randomized controlled trial. Adv. Ther. 38, 550–561 (2021).

    Article  CAS  Google Scholar 

  224. Granhall, C. et al. Safety and pharmacokinetics of single and multiple ascending doses of the novel oral human GLP-1 analogue, oral semaglutide, in healthy subjects and subjects with type 2 diabetes. Clin. Pharmacokinet. 58, 781–791 (2019).

    Article  CAS  Google Scholar 

  225. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04777396 (2022).

  226. Newsome, P. N. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 384, 1113–1124 (2021).

    Article  CAS  Google Scholar 

  227. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04822181 (2022).

  228. Overgaard, R. V., Navarria, A., Ingwersen, S. H., Bækdal, T. A. & Kildemoes, R. J. Clinical pharmacokinetics of oral semaglutide: analyses of data from clinical pharmacology trials. Clin. Pharmacokinet. 60, 1335–1348 (2021).

    Article  CAS  Google Scholar 

  229. Husain, M. et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 381, 841–851 (2019).

    Article  CAS  Google Scholar 

  230. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05035095 (2022).

  231. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04667377 (2022).

  232. Tillner, J. et al. A novel dual glucagon-like peptide and glucagon receptor agonist SAR425899: results of randomized, placebo-controlled first-in-human and first-in-patient trials. Diabetes Obes. Metab. 21, 120–128 (2019).

    Article  CAS  Google Scholar 

  233. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02973321 (2022).

  234. Henderson, S. J. et al. Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon receptor peptide agonist in rodents and non-human primates. Diabetes Obes. Metab. 18, 1176–1190 (2016).

    Article  CAS  Google Scholar 

  235. Ambery, P. et al. MEDI0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: a randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet 391, 2607–2618 (2018).

    Article  CAS  Google Scholar 

  236. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03235050 (2022).

  237. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03661879 (2022).

  238. Bossart, M. et al. Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. Cell Metab. 34, 59–74.e10 (2022).

    Article  CAS  Google Scholar 

  239. US National Library of Medicine. ClinicaTtrials.gov https://clinicaltrials.gov/ct2/show/NCT04521738 (2022).

  240. Zealand Pharma. Company announcement — No. 70/2021. GlobeNewsWire https://www.globenewswire.com/news-release/2021/11/22/2339043/0/en/Zealand-Pharma-announces-successful-outcome-of-Phase-1b-clinical-trial-with-GLP1-GLP2-dual-receptor-agonist-dapiglutide.html (2021).

  241. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04612517 (2022).

  242. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02835235 (2022).

  243. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04969939 (2022).

  244. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03574584 (2022).

  245. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01044108 (2022).

  246. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04010786 (2022).

  247. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05016882 (2022).

  248. Battelino, T. et al. Somapacitan, a once-weekly reversible albumin-binding GH derivative, in children with GH deficiency: a randomized dose-escalation trial. Clin. Endocrinol. 87, 350–358 (2017).

    Article  CAS  Google Scholar 

  249. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04115293 (2022).

  250. Pedersen, K. M. et al. Optimization of pig models for translation of subcutaneous pharmacokinetics of therapeutic proteins: liraglutide, insulin aspart and insulin detemir. Transl. Res. J. Lab. Clin. Med. 239, 71–84 (2022).

    CAS  Google Scholar 

  251. Albericio, F. Orthogonal protecting groups for Nα-amino and C-terminal carboxyl functions in solid-phase peptide synthesis. Pept. Sci. 55, 123–139 (2000).

    Article  CAS  Google Scholar 

  252. Jacob, E. & Unger, R. A tale of two tails: why are terminal residues of proteins exposed. Bioinformatics 23, e225–e230 (2007).

    Article  CAS  Google Scholar 

  253. Rosen, C. B. & Francis, M. B. Targeting the N terminus for site-selective protein modification. Nat. Chem. Biol. 13, 697–705 (2017).

    Article  CAS  Google Scholar 

  254. Grimsley, G. R., Scholtz, J. M. & Pace, C. N. A summary of the measured pK values of the ionizable groups in folded proteins. Protein Sci. 18, 247–251 (2009).

    CAS  Google Scholar 

  255. Martos-Maldonado, M. C. et al. Selective N-terminal acylation of peptides and proteins with a Gly-His tag sequence. Nat. Commun. 9, 3307 (2018).

    Article  Google Scholar 

  256. Rawale, D. G., Thakur, K., Adusumalli, S. R. & Rai, V. Chemical methods for selective labeling of proteins. Eur. J. Org. Chem. 2019, 6749–6763 (2019).

    Article  CAS  Google Scholar 

  257. Huang, C. et al. Late-stage lipidation of fully elaborated tryptophan-containing peptides for improved pharmacokinetics. Tetrahedron Lett. 58, 1219–1222 (2017).

    Article  CAS  Google Scholar 

  258. Krall, N., da Cruz, F. P., Boutureira, O. & Bernardes, G. J. L. Site-selective protein-modification chemistry for basic biology and drug development. Nat. Chem. 8, 103–113 (2016).

    Article  CAS  Google Scholar 

  259. Kontermann, R. E. Half-life extended biotherapeutics. Expert. Opin. Biol. Ther. 16, 903–915 (2016).

    Article  CAS  Google Scholar 

  260. Greenwald, R. B., Choe, Y. H., McGuire, J. & Conover, C. D. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 55, 217–250 (2003).

    Article  CAS  Google Scholar 

  261. Jevševar, S., Kunstelj, M. & Porekar, V. G. PEGylation of therapeutic proteins. Biotechnol. J. 5, 113–128 (2010).

    Article  Google Scholar 

  262. Paola, M., Franco, D. & Luigi, C. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab. 13, 105–119 (2012).

    Article  Google Scholar 

  263. Turecek, P. L., Bossard, M. J., Schoetens, F. & Ivens, I. A. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 105, 460–475 (2016).

    Article  CAS  Google Scholar 

  264. Solá, R. J. & Griebenow, K. Glycosylation of therapeutic proteins. BioDrugs 24, 9–21 (2010).

    Article  Google Scholar 

  265. Fares, F. & Azzam, N. Development of long-acting recombinant glycoprotein hormones by increasing the carbohydrate content. Drug Discov. Today 24, 1017–1022 (2019).

    Article  CAS  Google Scholar 

  266. Podust, V. N. et al. Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J. Control. Release 240, 52–66 (2016).

    Article  CAS  Google Scholar 

  267. Podust, V. N. et al. Extension of in vivo half-life of biologically active peptides via chemical conjugation to XTEN protein polymer. Protein Eng. Des. Sel. 26, 743–753 (2013).

    Article  CAS  Google Scholar 

  268. Schlapschy, M. et al. PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng. Des. Sel. 26, 489–501 (2013).

    Article  CAS  Google Scholar 

  269. Binder, U. & Skerra, A. PASylation®: a versatile technology to extend drug delivery. Curr. Opin. Colloid Interface Sci. 31, 10–17 (2017).

    Article  CAS  Google Scholar 

  270. Kjeldsen, T. B., Hoeg-Jensen, T., Vinther, T. N., Hubalek, F. & Pettersson, I. Insulins with polar recombinant extensions. EP3303380B1 (2016).

  271. Kratz, F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 132, 171–183 (2008).

    Article  CAS  Google Scholar 

  272. Sleep, D., Cameron, J. & Evans, L. R. Albumin as a versatile platform for drug half-life extension. Biochim. Biophys. Acta Gen. Subj. 1830, 5526–5534 (2013).

    Article  CAS  Google Scholar 

  273. Lee, E. S. & Youn, Y. S. Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. J. Pharm. Invest. 46, 305–315 (2016).

    Article  CAS  Google Scholar 

  274. Pilati, D. & Howard, K. A. Albumin-based drug designs for pharmacokinetic modulation. Expert. Opin. Drug Metab. Toxicol. 16, 783–795 (2020).

    Article  CAS  Google Scholar 

  275. Levin, D., Golding, B., Strome, S. E. & Sauna, Z. E. Fc fusion as a platform technology: potential for modulating immunogenicity. Trends Biotechnol. 33, 27–34 (2015).

    Article  CAS  Google Scholar 

  276. Ghetie, V. et al. Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat. Biotechnol. 15, 637–640 (1997).

    Article  CAS  Google Scholar 

  277. Vaccaro, C., Zhou, J., Ober, R. J. & Ward, E. S. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat. Biotechnol. 23, 1283–1288 (2005).

    Article  CAS  Google Scholar 

  278. Andersen, J. T. et al. Extending serum half-life of albumin by engineering FcRn binding. J. Biol. Chem. 289, 13492–13502 (2014).

    Article  CAS  Google Scholar 

  279. Dennis, M. S. et al. Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J. Biol. Chem. 277, 35035–35043 (2002).

    Article  CAS  Google Scholar 

  280. Nguyen, A. et al. The pharmacokinetics of an albumin-binding Fab (AB.Fab) can be modulated as a function of affinity for albumin. Protein Eng. Des. Sel. 19, 291–297 (2006).

    Article  CAS  Google Scholar 

  281. Jonsson, A., Dogan, J., Herne, N., Abrahmsén, L. & Nygren, P.-Å. Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng. Des. Sel. 21, 515–527 (2008).

    Article  CAS  Google Scholar 

  282. Linhult, M., Binz, H. K., Uhlén, M. & Hober, S. Mutational analysis of the interaction between albumin-binding domain from streptococcal protein G and human serum albumin. Protein Sci. 11, 206–213 (2002).

    Article  CAS  Google Scholar 

  283. Bao, W. et al. Novel fusion of GLP-1 with a domain antibody to serum albumin prolongs protection against myocardial ischemia/reperfusion injury in the rat. Cardiovasc. Diabetol. 12, 148 (2013).

    Article  Google Scholar 

  284. O’Connor-Semmes, R. L. et al. GSK2374697, a novel albumin-binding domain antibody (AlbudAb), extends systemic exposure of exendin-4: first study in humans — PK/PD and safety. Clin. Pharm. Ther. 96, 704–712 (2014).

    Article  Google Scholar 

  285. Walker, A. et al. Anti-serum albumin domain antibodies in the development of highly potent, efficacious and long-acting interferon. Protein Eng. Des. Sel. 23, 271–278 (2010).

    Article  CAS  Google Scholar 

  286. Read, C. et al. Apelin peptides linked to anti-serum albumin domain antibodies retain affinity in vitro and are efficacious receptor agonists in vivo. Basic Clin. Pharmacol. Toxicol. 126, 96–103 (2020).

    Article  CAS  Google Scholar 

  287. Holt, L. J. et al. Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs. Protein Eng. Des. Sel. 21, 283–288 (2008).

    Article  CAS  Google Scholar 

  288. Zobel, K., Koehler, M. F. T., Beresini, M. H., Caris, L. D. & Combs, D. Phosphate ester serum albumin affinity tags greatly improve peptide half-life in vivo. Bioorg. Med. Chem. Lett. 13, 1513–1515 (2003).

    Article  CAS  Google Scholar 

  289. Koehler, M. F. T. et al. Albumin affinity tags increase peptide half-life in vivo. Bioorg. Med. Chem. Lett. 12, 2883–2886 (2002).

    Article  CAS  Google Scholar 

  290. Dumelin, C. E. et al. A portable albumin binder from a DNA-encoded chemical library. Angew. Chem. Int. Ed. 47, 3196–3201 (2008).

    Article  CAS  Google Scholar 

  291. Bech, E. M. et al. Peptide half-life extension: divalent, small-molecule albumin interactions direct the systemic properties of glucagon-like peptide 1 (GLP-1) analogues. J. Med. Chem. 60, 7434–7446 (2017).

    Article  CAS  Google Scholar 

  292. Zhou, J. et al. Phenylbutazone, a new long-acting agent that can improve the peptide pharmacokinetic based on serum albumin as a drug carrier. Chem. Biol. Drug Des. 87, 936–945 (2016).

    Article  CAS  Google Scholar 

  293. Jonassen, I. et al. Biochemical and physiological properties of a novel series of long-acting insulin analogs obtained by acylation with cholic acid derivatives. Pharm. Res. 23, 49–55 (2006).

    Article  CAS  Google Scholar 

  294. Reed, R. G. Location of long chain fatty acid-binding sites of bovine serum albumin by affinity labeling. J. Biol. Chem. 261, 15619–15624 (1986).

    Article  CAS  Google Scholar 

  295. Hamilton, J. A., Era, S., Bhamidipati, S. P. & Reed, R. G. Locations of the three primary binding sites for long-chain fatty acids on bovine serum albumin. Proc. Natl Acad. Sci. USA 88, 2051–2054 (1991).

    Article  CAS  Google Scholar 

  296. Simard, J. R., Zunszain, P. A., Hamilton, J. A. & Curry, S. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. J. Mol. Biol. 361, 336–351 (2006).

    Article  CAS  Google Scholar 

  297. Bhattacharya, A. A., Grüne, T. & Curry, S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin1. J. Mol. Biol. 303, 721–732 (2000).

    Article  CAS  Google Scholar 

  298. Carter, D. C. & Ho, J. X. Structure of serum albumin. Adv. Protein Chem. 45, 153–203 (1994).

    Article  CAS  Google Scholar 

  299. Sudlow, G., Birkett, D. J. & Wade, D. N. The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol. 11, 824–832 (1975).

    CAS  Google Scholar 

  300. Henninot, A., Collins, J. C. & Nuss, J. M. The current state of peptide drug discovery: back to the future? J. Med. Chem. 61, 1382–1414 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Novo Nordisk A/S. The authors thank F. F. Kreiner, Novo Nordisk A/S for outstanding support. They are grateful to the many present and former Novo Nordisk A/S colleagues involved in producing, purifying, quantifying, characterizing and testing some of compounds described in this Review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kurtzhals.

Ethics declarations

Competing interests

All authors are employees and shareholders of Novo Nordisk A/S. T.K. is co-inventor of insulin analogues, which are described in the following patents: WO2009/115469, US Patent 9,035,020 B1 and WO2015/128403 A2. S.O. is co-inventor of peptide YY (PYY) analogues which are described in US Patent US2015/0152150 A1.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1: Studies reporting the half-life of drug compounds presented in the figure of Box 3.

Supplementary Video 1: The multiple roles of fatty acid derivatisation in the design of long-acting insulin analogues.

Using examples of different modified insulin molecules, this video highlights some principles that have been applied to the engineering of long-acting insulin analogues by fatty acid derivatisation. It specifically demonstrates the varied protraction mechanisms enabled for once-daily insulin detemir and insulin degludec as well as for once-weekly insulin icodec.

Glossary

Fatty acid derivatization

The chemical coupling of a fatty acid side chain onto a peptide or a protein.

Lipidation

Attachment of a fatty acid to a peptide or protein. Sometimes used as an alternative term for ‘fatty acid derivatization’ in drug discovery.

Protraction

Extending the half-life of a drug compound.

Backbone

The chain of amino acids composing the primary structure of a peptide or protein.

Linker

The chemical element connecting the fatty acid to the spacer or to the peptide backbone in a fatty acid-derivatized peptide or protein.

Spacer

The chemical element connecting the linker and the peptide backbone in a fatty acid-derivatized peptide or protein.

Fatty monoacid

A fatty acid in the form of a long alkyl chain (12–22 carbon atoms) with one carboxylate group at the distal end.

Fatty diacid

A fatty acid in the form of a long alkyl chain with two carboxylate groups, one at each end.

Analogues

Peptides or proteins that have been modified by amino acid substitution, backbone modification and/or derivatization.

Hexamer

Quaternary structure in which six molecules self-associate into a structural unit.

Heptamer

Quaternary structure in which seven molecules self-associate into a structural unit.

Hyperinsulinaemic, euglycaemic clamp

A method to estimate the glucose-lowering effect of an insulin at high insulin concentrations.

Liver preferential insulin

An insulin analogue that exerts more of its action on the liver compared with subcutaneously administered human insulin.

Self-immolative systems

Chemical structures that spontaneously undergo a degradation reaction to release the active drug substance.

RNAi

Sequence-specific suppression of gene expression using modified RNA oligonucleotides.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurtzhals, P., Østergaard, S., Nishimura, E. et al. Derivatization with fatty acids in peptide and protein drug discovery. Nat Rev Drug Discov 22, 59–80 (2023). https://doi.org/10.1038/s41573-022-00529-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-022-00529-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research