Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology of HPV-associated cancers past, present and future: towards prevention and elimination

Abstract

Cervical cancer is the first cancer deemed amenable to elimination through prevention, and thus lessons from the epidemiology and prevention of this cancer type can provide information on strategies to manage other cancers. Infection with the human papillomavirus (HPV) causes virtually all cervical cancers, and an important proportion of oropharyngeal, anal and genital cancers. Whereas 20th century prevention efforts were dominated by cytology-based screening, the present and future of HPV-associated cancer prevention relies mostly on HPV vaccination and molecular screening tests. In this Review, we provide an overview of the epidemiology of HPV-associated cancers, their disease burden, how past and contemporary preventive interventions have shaped their incidence and mortality, and the potential for elimination. We particularly focus on the cofactors that could have the greatest effect on prevention efforts, such as parity and human immunodeficiency virus infection, as well as on social determinants of health. Given that the incidence of and mortality from HPV-associated cancers remain strongly associated with the socioeconomic status of individuals and the human development index of countries, elimination efforts are unlikely to succeed unless prevention efforts focus on health equity, with a commitment to both primary and secondary prevention.

Key points

  • Human papillomavirus (HPV) infection is a necessary cause for virtually all cervical cancers and an attributable cause for variable proportions of anal, oropharyngeal, vaginal, vulvar and penile cancers worldwide.

  • Cervical cancer screening led to substantial declines in cervical cancer incidence and mortality in many countries during the 20th century.

  • The advent of HPV vaccines and screening approaches has created the opportunity to eliminate cervical cancer, a recognized public health problem, by the end of the 21st century.

  • HPV vaccination programmes will probably prevent HPV-associated cancers other than cervical cancer, although research into the optimal screening approaches for these cancers is still ongoing.

  • Parity, tobacco use and human immunodeficiency virus infections are major cofactors that influence the epidemiology of HPV-associated cancers.

  • Cervical cancer elimination will require combined primary and secondary prevention approaches as well as a focus on reducing health inequities within and between countries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Age-standardized incidence and mortality from cervical cancer in women.
Fig. 2: Incidence of oropharyngeal and anal cancer in Nordic countries.
Fig. 3: Age-standardized incidence of cervical cancer in 2020.
Fig. 4: Correlation between cervical cancer mortality and level of education attainment across European countries.

Similar content being viewed by others

References

  1. Sporn, M. B. The war on cancer. Lancet 347, 1377–1381 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Bailar, J. C. & Smith, E. M. Progress against cancer? N. Engl. J. Med. 314, 1226–1232 (1986).

    Article  PubMed  Google Scholar 

  3. Vineis, P. & Wild, C. P. Global cancer patterns: causes and prevention. Lancet 383, 549–557 (2014).

    Article  PubMed  Google Scholar 

  4. World Health Organization. Global strategy to accelerate the elimination of cervical cancer as a public health problem. World Health Organization www.who.int/publications/i/item/9789240014107 (2020).

  5. Walboomers, J. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Muñoz, N. Human papillomavirus and cancer: the epidemiological evidence. J. Clin. Virol. 19, 1–5 (2000).

    Article  PubMed  Google Scholar 

  7. Bosch, F. X., Lorincz, A., Munoz, N., Meijer, C. J. & Shah, K. V. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol. 55, 244–265 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Inglis, S., Shaw, A. & Koenig, S. Chapter 11: HPV vaccines: commercial research & development. Vaccine 24, S99–S105 (2006).

    Article  Google Scholar 

  9. Petry, K. U., Liebrich, C., Luyten, A., Zander, M. & Iftner, T. Surgical staging identified false HPV-negative cases in a large series of invasive cervical cancers. Papillomavirus Res. 4, 85–89 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kaliff, M. et al. HPV-negative tumors in a Swedish cohort of cervical cancer. Int. J. Gynecol. Pathol. 39, 279–288 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Brisson, M. et al. Impact of HPV vaccination and cervical screening on cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet 395, 575–590 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Martel, C., Plummer, M., Vignat, J. & Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 141, 664–670 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Doll, R., Muir, C. & Waterhouse, J. Cancer Incidence in Five Continents: Volume II – 1970 Vol. 2 (Springer, 2012).

  14. Vaccarella, S. et al. 50 years of screening in the Nordic countries: quantifying the effects on cervical cancer incidence. Br. J. Cancer 111, 965–969 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sigurdsson, K. The Icelandic and Nordic cervical screening programs: trends in incidence and mortality rates through 1995. Acta Obstet. Gynecol. Scand. 78, 478–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Peto, J., Gilham, C., Fletcher, O. & Matthews, F. E. The cervical cancer epidemic that screening has prevented in the UK. Lancet 364, 249–256 (2004).

    Article  PubMed  Google Scholar 

  17. Kyndi, M., Frederiksen, K. & Krüger Kjær, S. Cervical cancer incidence in Denmark over six decades (1943–2002). Acta Obstet. Gynecol. Scand. 85, 106–111 (2006).

    Article  PubMed  Google Scholar 

  18. Dickinson, J. A. et al. Reduced cervical cancer incidence and mortality in Canada: national data from 1932 to 2006. BMC Public. Health 12, 992 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gatta, G. et al. Rare cancers are not so rare: the rare cancer burden in Europe. Eur. J. Cancer 47, 2493–2511 (2011).

    Article  PubMed  Google Scholar 

  20. Ervik, M., Lam, F., Laversanne, M., Ferlay, J. & Bray, F. Global Cancer Observatory: Cancer Over Time gco.iarc.fr/overtime (2021).

  21. Vizcaino, A. P. et al. International trends in incidence of cervical cancer: II. Squamous-cell carcinoma. Int. J. Cancer 86, 429–435 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Vizcaino, A. P. et al. International trends in the incidence of cervical cancer: I. Adenocarcinoma and adenosquamous cell carcinomas. Int. J. Cancer 75, 536–545 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Gustafsson, L., Ponten, J., Zack, M. & Adami, H. O. International incidence rates of invasive cervical cancer after introduction of cytological screening. Cancer Causes Control. 8, 755–763 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, M. & Canfell, K. Impact of the Australian national cervical screening program in women of different ages. Med. J. Aust. 205, 359–364 (2016).

    Article  PubMed  Google Scholar 

  25. Wingo, P. A. et al. Long-term trends in cancer mortality in the United States, 1930–1998. Cancer 97, 3133–3275 (2003).

    Article  PubMed  Google Scholar 

  26. Miller, A. B., Lindsay, J. & Hill, G. B. Mortality from cancer of the uterus in Canada and its relationship to screening for cancer of the cervix. Int. J. Cancer 17, 602–612 (1976).

    Article  CAS  PubMed  Google Scholar 

  27. Cramer, D. W. The role of cervical cytology in the declining morbidity and mortality of cervical cancer. Cancer 34, 2018–2027 (1974).

    Article  CAS  PubMed  Google Scholar 

  28. Lyon, J. L. & Gardner, J. W. The rising frequency of hysterectomy: its effect on uterine cancer rates. Am. J. Epidemiol. 105, 439–443 (1977).

    Article  CAS  PubMed  Google Scholar 

  29. Laukkanen, P. et al. Time trends in incidence and prevalence of human papillomavirus type 6, 11 and 16 infections in Finland. J. Gen. Virol. 84, 2105–2109 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Ryser, M. D., Rositch, A. & Gravitt, P. E. Modeling of US human papillomavirus (HPV) seroprevalence by age and sexual behavior indicates an increasing trend of HPV infection following the sexual revolution. J. Infect. Dis. 216, 604–611 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Desai, S. et al. Prevalence of human papillomavirus antibodies in males and females in England. Sex. Transm. Dis. 38, 622–629 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Francesca, P. & Peter, S. Impact of screening on cervical cancer incidence in England: a time trend analysis. BMJ Open. 9, e026292 (2019).

    Article  Google Scholar 

  33. Shen, X., Cheng, Y., Ren, F. & Shi, Z. The burden of cervical cancer in China. Front. Oncol. 12, 979809 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baldur-Felskov, B. et al. Trends in the incidence of cervical cancer and severe precancerous lesions in Denmark, 1997–2012. Cancer Causes Control. 26, 1105–1116 (2015).

    Article  PubMed  Google Scholar 

  35. Adegoke, O., Kulasingam, S. & Virnig, B. Cervical cancer trends in the United States: a 35-year population-based analysis. J. Womens Health 21, 1031–1037 (2012).

    Article  Google Scholar 

  36. Lönnberg, S. et al. Cervical cancer prevented by screening: long-term incidence trends by morphology in Norway. Int. J. Cancer 137, 1758–1764 (2015).

    Article  PubMed  Google Scholar 

  37. Islami, F., Fedewa, S. A. & Jemal, A. Trends in cervical cancer incidence rates by age, race/ethnicity, histological subtype, and stage at diagnosis in the United States. Prev. Med. 123, 316–323 (2019).

    Article  PubMed  Google Scholar 

  38. Sasieni, P., Castanon, A. & Cuzick, J. Screening and adenocarcinoma of the cervix. Int. J. Cancer 125, 525–529 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Sherman, M. E., Wang, S. S., Carreon, J. & Devesa, S. S. Mortality trends for cervical squamous and adenocarcinoma in the United States. Cancer 103, 1258–1264 (2005).

    Article  PubMed  Google Scholar 

  40. Sundqvist, A., Moberg, L., Dickman, P. W., Högberg, T. & Borgfeldt, C. Time trends for incidence and net survival of cervical cancer in Sweden 1960–2014 – a nationwide population-based study. Cancer Epidemiol. Biomark. Prev. 31, 1572–1581 (2022).

    Article  Google Scholar 

  41. Wright, J. D. et al. Population-level trends in relative survival for cervical cancer. Am. J. Obstet. Gynecol. 213, 670.e1–670.e7 (2015).

    Article  PubMed  Google Scholar 

  42. Muñoz, N. et al. Role of parity and human papillomavirus in cervical cancer: the IARC multicentric case-control study. Lancet 359, 1093–1101 (2002).

    Article  PubMed  Google Scholar 

  43. Dhillon, P. K., Yeole, B. B., Dikshit, R., Kurkure, A. P. & Bray, F. Trends in breast, ovarian and cervical cancer incidence in Mumbai, India over a 30-year period, 1976–2005: an age–period–cohort analysis. Br. J. Cancer 105, 723–730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiao, Z., Mehrotra, P. & Zimmerman, R. Sexual revolution in China: implications for Chinese women and society. AIDS Care 23, 105–112 (2011).

    Article  PubMed  Google Scholar 

  45. Jedy-Agba, E. et al. Trends in cervical cancer incidence in sub-Saharan Africa. Br. J. Cancer 123, 148–154 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Stelzle, D. et al. Estimates of the global burden of cervical cancer associated with HIV. Lancet Glob. Health 9, e161–e169 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. de Sanjose, S. et al. Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: a meta-analysis. Lancet Infect. Dis. 7, 453–459 (2007).

    Article  PubMed  Google Scholar 

  48. Bruni, L. et al. Cervical cancer screening programmes and age-specific coverage estimates for 202 countries and territories worldwide: a review and synthetic analysis. Lancet Glob. Health 10, e1115–e1127 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zumsteg, Z. S. et al. Global epidemiologic patterns of oropharyngeal cancer incidence trends. J. Natl Cancer Inst. 115, 1544–1554 (2023).

    Article  PubMed  Google Scholar 

  50. Chaturvedi, A. K. et al. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J. Clin. Oncol. 31, 4550–4559 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Forte, T., Niu, J., Lockwood, G. A. & Bryant, H. E. Incidence trends in head and neck cancers and human papillomavirus (HPV)-associated oropharyngeal cancer in Canada, 1992–2009. Cancer Causes Control. 23, 1343–1348 (2012).

    Article  PubMed  Google Scholar 

  52. Larønningen S. et al. NORDCAN: cancer incidence, mortality, prevalence and survival in the Nordic countries, version 9.3 (02.10.2023). nordcan.iarc.fr/ (accessed 5 December 2023).

  53. Klussmann, J. P. et al. Expression of p16 protein identifies a distinct entity of tonsillar carcinomas associated with human papillomavirus. Am. J. Pathol. 162, 747–753 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lundberg, M., Leivo, I., Saarilahti, K., Mäkitie, A. A. & Mattila, P. S. Increased incidence of oropharyngeal cancer and p16 expression. Acta Otolaryngol. 131, 1008–1011 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Habbous, S. et al. The changing incidence of human papillomavirus-associated oropharyngeal cancer using multiple imputation from 2000 to 2010 at a Comprehensive Cancer Centre. Cancer Epidemiol. 37, 820–829 (2013).

    Article  PubMed  Google Scholar 

  56. Zamani, M. et al. The current epidemic of HPV-associated oropharyngeal cancer: an 18-year Danish population-based study with 2,169 patients. Eur. J. Cancer 134, 52–59 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Chaturvedi, A. K. et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J. Clin. Oncol. 29, 4294–4301 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rettig, E. M. et al. Oropharyngeal cancer is no longer a disease of younger patients and the prognostic advantage of human papillomavirus is attenuated among older patients: analysis of the National Cancer Database. Oral. Oncol. 83, 147–153 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tota, J. E. et al. Evolution of the oropharynx cancer epidemic in the United States: moderation of increasing incidence in younger individuals and shift in the burden to older individuals. J. Clin. Oncol. 37, 1538–1546 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lu, Y. et al. Global burden of oropharyngeal cancer attributable to human papillomavirus by anatomical subsite and geographic region. Cancer Epidemiol. 78, 102140 (2022).

    Article  PubMed  Google Scholar 

  61. Shield, K. D. et al. The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012. CA Cancer J. Clin. 67, 51–64 (2017).

    Article  PubMed  Google Scholar 

  62. Tam, S. et al. The epidemiology of oral human papillomavirus infection in healthy populations: a systematic review and meta-analysis. Oral. Oncol. 82, 91–99 (2018).

    Article  PubMed  Google Scholar 

  63. Islami, F., Ferlay, J., Lortet-Tieulent, J., Bray, F. & Jemal, A. International trends in anal cancer incidence rates. Int. J. Epidemiol. 46, 924–938 (2016).

    Google Scholar 

  64. Bray, F., Laversanne, M., Weiderpass, E. & Arbyn, M. Geographic and temporal variations in the incidence of vulvar and vaginal cancers. Int. J. Cancer 147, 2764–2771 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Robinson, D., Coupland, V. & Møller, H. An analysis of temporal and generational trends in the incidence of anal and other HPV-related cancers in Southeast England. Br. J. Cancer 100, 527–531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang, J. et al. Incidence, risk factors, and temporal trends of penile cancer: a global population-based study. BJU Int. 133, 314–323 (2023).

    Article  PubMed  Google Scholar 

  67. Hansen, B. T., Orumaa, M., Lie, A. K., Brennhovd, B. & Nygård, M. Trends in incidence, mortality and survival of penile squamous cell carcinoma in Norway 1956–2015. Int. J. Cancer 142, 1586–1593 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Arya, M. et al. Long-term trends in incidence, survival and mortality of primary penile cancer in England. Cancer Causes Control. 24, 2169–2176 (2013).

    Article  PubMed  Google Scholar 

  69. Mignozzi, S. et al. Global trends in anal cancer incidence and mortality. Eur. J. Cancer Prev. 33, 77–86 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shiels, M. S., Kreimer, A. R., Coghill, A. E., Darragh, T. M. & Devesa, S. S. Anal cancer incidence in the United States, 1977–2011: distinct patterns by histology and behavior. Cancer Epidemiol. Biomark. Prev. 24, 1548–1556 (2015).

    Article  Google Scholar 

  71. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  72. Statistics Canada. Cancer incidence and mortality trends, 1984 to 2020. Statistics Canada www150.statcan.gc.ca/n1/daily-quotidien/220204/dq220204b-eng.htm (2022).

  73. Clifford, G. M. et al. A meta-analysis of anal cancer incidence by risk group: toward a unified anal cancer risk scale. Int. J. Cancer 148, 38–47 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Shiels, M. S., Pfeiffer, R. M., Chaturvedi, A. K., Kreimer, A. R. & Engels, E. A. Impact of the HIV epidemic on the incidence rates of anal cancer in the United States. J. Natl Cancer Inst. 104, 1591–1598 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Goodman, M. T. et al. Acquisition of anal human papillomavirus (HPV) infection in women: the Hawaii HPV Cohort study. J. Infect. Dis. 197, 957–966 (2008).

    Article  PubMed  Google Scholar 

  76. World Health Organization. Human papillomavirus vaccines: WHO position paper, no. 50 (2022 update). Wkly. Epidemiol. Rec. 97, 645–672 (2022).

    Google Scholar 

  77. Schiller, J. T. & Kreimer, A. R. An HPV vaccine from India: broadening possibilities for cervical cancer control. Lancet Oncol. 24, 1288–1289 (2023).

    Article  PubMed  Google Scholar 

  78. Zhao, X.-L. et al. Tackling barriers to scale up human papillomavirus vaccination in China: progress and the way forward. Infect. Dis. Poverty 12, 81–86 (2023).

    Article  Google Scholar 

  79. Li, N., Franceschi, S., Howell-Jones, R., Snijders, P. J. & Clifford, G. M. Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: variation by geographical region, histological type and year of publication. Int. J. Cancer 128, 927–935 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. de Sanjose, S. et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 11, 1048–1056 (2010).

    Article  PubMed  Google Scholar 

  81. Future II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N. Engl. J. Med. 356, 1915–1927 (2007).

    Article  Google Scholar 

  82. Harper, D. M. et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 364, 1757–1765 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Paavonen, J. et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 374, 301–314 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. The World Bank. Prevalence of current tobacco Use (% of adults). The World Bank https://genderdata.worldbank.org/indicators/sh-prv-smok/?gender=female&geos=EAS_LCN_NAC_SSF_EMU&view=trend (2024).

  85. Ho, L. et al. The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the movement of ancient human populations. J. Virol. 67, 6413–6423 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wheeler, C. M. et al. Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 13, 100–110 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Wheeler, C. M. et al. The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in sexually active women aged 16-26 years. J. Infect. Dis. 199, 936–944 (2009).

    Article  PubMed  Google Scholar 

  88. World Health Organization. Human Papillomavirus (HPV) Vaccination Coverage. World Health Organization https://immunizationdata.who.int/global/wiise-detail-page/human-papillomavirus-(hpv)-vaccination-coverage (2023).

  89. Khieu, M. & Butler, S. L. High-grade Squamous Intraepithelial Lesion of the Cervix (StatPearls, 2024).

  90. Patel, C. et al. The impact of 10 years of human papillomavirus (HPV) vaccination in Australia: what additional disease burden will a nonavalent vaccine prevent? Eur. Surveill. 23, 1700737 (2018).

    Article  Google Scholar 

  91. Rosenblum, H. G. et al. Declines in prevalence of human papillomavirus vaccine-type infection among females after introduction of vaccine – United States, 2003–2018. MMWR Morb. Mortal. Wkly. Rep. 70, 415–420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, W. et al. Real-world impact and effectiveness of the quadrivalent HPV vaccine: an updated systematic literature review. Expert. Rev. Vaccines 21, 1799–1817 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Mesher, D. et al. The impact of the national HPV vaccination program in England using the bivalent HPV vaccine: surveillance of type-specific HPV in young females, 2010–2016. J. Infect. Dis. 218, 911–921 (2018).

    Article  PubMed  Google Scholar 

  94. Herweijer, E. et al. Quadrivalent HPV vaccine effectiveness against high-grade cervical lesions by age at vaccination: a population-based study. Int. J. Cancer 138, 2867–2874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Baldur-Felskov, B., Dehlendorff, C., Munk, C. & Kjaer, S. K. Early impact of human papillomavirus vaccination on cervical neoplasia – nationwide follow-up of young Danish women. J. Natl Cancer Inst. 106, djt460 (2014).

    Article  PubMed  Google Scholar 

  96. Pollock, K. G. et al. Reduction of low- and high-grade cervical abnormalities associated with high uptake of the HPV bivalent vaccine in Scotland. Br. J. Cancer 111, 1824–1830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dong, L., Nygård, M., Støer, N. C., Klungsøyr, O. & Hansen, B. T. Real-world effectiveness of HPV vaccination against cervical neoplasia among birth cohorts ineligible for routine vaccination. Int. J. Cancer 153, 399–406 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Falcaro, M. et al. The effects of the national HPV vaccination programme in England, UK, on cervical cancer and grade 3 cervical intraepithelial neoplasia incidence: a register-based observational study. Lancet 398, 2084–2092 (2021).

    Article  PubMed  Google Scholar 

  99. Palmer, T. J. et al. Invasive cervical cancer incidence following bivalent human papillomavirus vaccination: a population-based observational study of age at immunization, dose, and deprivation. J. Natl Cancer Inst. djad263, https://doi.org/10.1093/jnci/djad263 (2024).

  100. Lei, J. et al. HPV vaccination and the risk of invasive cervical cancer. N. Engl. J. Med. 383, 1340–1348 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Kjaer, S. K., Dehlendorff, C., Belmonte, F. & Baandrup, L. Real-world effectiveness of human papillomavirus vaccination against cervical cancer. J. Natl Cancer Inst. 113, 1329–1335 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Burger, E. A., Kim, J. J., Sy, S. & Castle, P. E. Age of acquiring causal human papillomavirus (HPV) infections: leveraging simulation models to explore the natural history of HPV-induced cervical cancer. Clin. Infect. Dis. 65, 893–899 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gheit, T. et al. Impact of HPV vaccination on HPV-related oral infections. Oral. Oncol. 136, 106244 (2023).

    Article  PubMed  Google Scholar 

  104. Palefsky, J. M. et al. HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. N. Engl. J. Med. 365, 1576–1585 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Kreimer, A. R. et al. Efficacy of a bivalent HPV 16/18 vaccine against anal HPV 16/18 infection among young women: a nested analysis within the Costa Rica Vaccine Trial. Lancet Oncol. 12, 862–870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xu, L. et al. Prophylactic vaccination against human papillomaviruses to prevent vulval and vaginal cancer and their precursors. Expert. Rev. Vaccines 18, 1157–1166 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Baandrup, L., Maltesen, T., Dehlendorff, C. & Kjaer, S. K. Human papillomavirus vaccination and anal high-grade precancerous lesions and cancer – a real-world effectiveness study. J. Natl Cancer Inst. 116, 283–287 (2023).

    Article  Google Scholar 

  108. Chaturvedi, A. K. et al. Prevalence of oral HPV infection in unvaccinated men and women in the United States, 2009-2016. JAMA 322, 977–979 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Matti, L. et al. Human papillomavirus vaccine efficacy against invasive, HPV-positive cancers: population-based follow-up of a cluster-randomised trial. BMJ Open. 11, e050669 (2021).

    Article  Google Scholar 

  110. Nanda, K. et al. Accuracy of the Papanicolaou test in screening for and follow-up of cervical cytologic abnormalities: a systematic review. Ann. Intern. Med. 132, 810–819 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Nessa, A., Anwar, B. R. & Begum, S. A. in Preventive Oncology for the Gynecologist (eds Sumita, M. & Anshuja, S.) 167–185 (Springer, 2019).

  112. Catarino, R., Petignat, P., Dongui, G. & Vassilakos, P. Cervical cancer screening in developing countries at a crossroad: emerging technologies and policy choices. World J. Clin. Oncol. 6, 281–290 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Cuzick, J. et al. Overview of the European and North American studies on HPV testing in primary cervical cancer screening. Int. J. Cancer 119, 1095–1101 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Salazar, K. L., Duhon, D. J., Olsen, R. & Thrall, M. A review of the FDA-approved molecular testing platforms for human papillomavirus. J. Am. Soc. Cytopathol. 8, 284–292 (2019).

    Article  PubMed  Google Scholar 

  115. Poljak, M., Oštrbenk Valenčak, A., Gimpelj Domjanič, G., Xu, L. & Arbyn, M. Commercially available molecular tests for human papillomaviruses: a global overview. Clin. Microbiol. Infect. 26, 1144–1150 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Arbyn, M. et al. 2020 list of human papillomavirus assays suitable for primary cervical cancer screening. Clin. Microbiol. Infect. 27, 1083–1095 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. World Health Organization. WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention. World Health Organization www.who.int/publications/i/item/9789240030824 (2021).

  118. Polman, N. J., Snijders, P. J. F., Kenter, G. G., Berkhof, J. & Meijer, C. HPV-based cervical screening: rationale, expectations and future perspectives of the new Dutch screening programme. Prev. Med. 119, 108–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Smith, M. A. et al. National experience in the first two years of primary human papillomavirus (HPV) cervical screening in an HPV vaccinated population in Australia: observational study. BMJ 376, e068582 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Cuzick, J. et al. Impact of HPV testing in opportunistic cervical screening: support for primary HPV screening in the United States. Int. J. Cancer 153, 83–93 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Aitken, C. A. et al. Introduction of primary screening using high-risk HPV DNA detection in the Dutch cervical cancer screening programme: a population-based cohort study. BMC Med. 17, 228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhao, Y. et al. Real-world effectiveness of primary screening with high-risk human papillomavirus testing in the cervical cancer screening programme in China: a nationwide, population-based study. BMC Med. 19, 164 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kaljouw, S. et al. Reducing unnecessary referrals for colposcopy in hrHPV-positive women within the Dutch cervical cancer screening programme: a modelling study. Gynecol. Oncol. 160, 713–720 (2021).

    Article  PubMed  Google Scholar 

  124. Rijkaart, D. C. et al. Evaluation of 14 triage strategies for HPV DNA-positive women in population-based cervical screening. Int. J. Cancer 130, 602–610 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Isidean, S. D. et al. Comparison of triage strategies for HPV-positive women: Canadian Cervical Cancer Screening Trial results. Cancer Epidemiol. Biomark. Prev. 26, 923–929 (2017).

    Article  CAS  Google Scholar 

  126. Wentzensen, N., Schiffman, M., Palmer, T. & Arbyn, M. Triage of HPV positive women in cervical cancer screening. J. Clin. Virol. 76, S49–S55 (2016).

    Article  PubMed  Google Scholar 

  127. Taghavi, K., Zhao, F., Downham, L., Baena, A. & Basu, P. Molecular triaging options for women testing HPV positive with self-collected samples. Front. Oncol. 13, 1243888 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tota, J. E. et al. Approaches for triaging women who test positive for human papillomavirus in cervical cancer screening. Prev. Med. 98, 15–20 (2017).

    Article  PubMed  Google Scholar 

  129. Lei, J. et al. Impact of HPV vaccination on cervical screening performance: a population-based cohort study. Br. J. Cancer 123, 155–160 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rebolj, M. et al. The impact of catch-up bivalent human papillomavirus vaccination on cervical screening outcomes: an observational study from the English HPV primary screening pilot. Br. J. Cancer 127, 278–287 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Palmer, T. J. et al. HPV immunisation and cervical screening – confirmation of changed performance of cytology as a screening test in immunised women: a retrospective population-based cohort study. Br. J. Cancer 114, 582–589 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Franco, E. L. & Cuzick, J. Cervical cancer screening following prophylactic human papillomavirus vaccination. Vaccine 26, A16–A23 (2008).

    Article  PubMed  Google Scholar 

  133. Franco, E. L., Mahmud, S. M., Tota, J., Ferenczy, A. & Coutlee, F. The expected impact of HPV vaccination on the accuracy of cervical cancer screening: the need for a paradigm change. Arch. Med. Res. 40, 478–485 (2009).

    Article  PubMed  Google Scholar 

  134. Arbyn, M. & Castle, P. E. Offering self-sampling kits for HPV testing to reach women who do not attend in the regular cervical cancer screening program. Cancer Epidemiol. Biomark. Prev. 24, 769–772 (2015).

    Article  Google Scholar 

  135. Schmeink, C. E., Bekkers, R. L. M., Massuger, L. F. A. G. & Melchers, W. J. G. The potential role of self-sampling for high-risk human papillomavirus detection in cervical cancer screening. Rev. Med. Virol. 21, 139–153 (2011).

    Article  PubMed  Google Scholar 

  136. Elfström, M., Gray, P. G. & Dillner, J. Cervical cancer screening improvements with self-sampling during the COVID-19 pandemic. eLife 12, e80905 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Serrano, B. et al. Worldwide use of HPV self-sampling for cervical cancer screening. Prev. Med. 154, 106900 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Canfell, K. et al. Mortality impact of achieving WHO cervical cancer elimination targets: a comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet 395, 591–603 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Burmeister, C. A. et al. Cervical cancer therapies: current challenges and future perspectives. Tumour Virus Res. 13, 200238 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pang, S. S., Murphy, M. & Markham, M. J. Current management of locally advanced and metastatic cervical cancer in the United States. JCO Oncol. Prac. 18, 417–422 (2022).

    Article  Google Scholar 

  141. Douglas, E., Wardle, J., Massat, N. J. & Waller, J. Colposcopy attendance and deprivation: a retrospective analysis of 27 193 women in the NHS cervical screening programme. Br. J. Cancer 113, 119–122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ezechi, O. C. et al. Predictors of default from follow-up care in a cervical cancer screening program using direct visual inspection in south-western Nigeria. BMC Health Serv. Res. 14, 143 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Desai, K. T. et al. The development of “automated visual evaluation” for cervical cancer screening: the promise and challenges in adapting deep-learning for clinical testing. Int. J. Cancer 150, 741–752 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Watson, A. J. M., Smith, B. B., Whitehead, M. R., Sykes, P. H. & Frizelle, F. A. Malignant progression of anal intra-epithelial neoplasia. Anz. J. Surg. 76, 715–717 (2006).

    Article  PubMed  Google Scholar 

  145. Scholefield, J. H., Castle, M. T. & Watson, N. F. Malignant transformation of high-grade anal intraepithelial neoplasia. Br. J. Surg. 92, 1133–1136 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Palefsky, J. M. et al. Treatment of anal high-grade squamous intraepithelial lesions to prevent anal cancer. N. Engl. J. Med. 386, 2273–2282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Clarke, M. A. et al. A systematic review and meta-analysis of cytology and HPV-related biomarkers for anal cancer screening among different risk groups. Int. J. Cancer 151, 1889–1901 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jin, F. et al. The performance of anal cytology as a screening test for anal HSILs in homosexual men. Cancer Cytopathol. 124, 415–424 (2016).

    Article  PubMed  Google Scholar 

  149. Cohen, C. M. & Clarke, M. A. Anal cancer and anal cancer screening. Clin. Obstet. Gynecol. 66, 516–533 (2023).

    Article  PubMed  Google Scholar 

  150. Palefsky, J. M. & Rubin, M. The epidemiology of anal human papillomavirus and related neoplasia. Obstet. Gynecol. Clin. North. Am. 36, 187–200 (2009).

    Article  PubMed  Google Scholar 

  151. Hillman, R. J. et al. 2016 IANS international guidelines for practice standards in the detection of anal cancer precursors. J. Low. Genit. Tract. Dis. 20, 283–291 (2016).

    Article  PubMed  Google Scholar 

  152. Clarke, M. A. & Wentzensen, N. Strategies for screening and early detection of anal cancers: a narrative and systematic review and meta-analysis of cytology, HPV testing, and other biomarkers. Cancer Cytopathol. 126, 447–460 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Nyitray, A. G., D’Souza, G., Stier, E. A., Clifford, G. & Chiao, E. Y. The utility of digital anal rectal examinations in a public health screening program for anal cancer. J. Low. Genit. Tract. Dis. 24, 192–196 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Stier, E. A. et al. International Anal Neoplasia Society’s consensus guidelines for anal cancer screening. Int. J. Cancer 154, 1694–1702 (2024).

    Article  CAS  PubMed  Google Scholar 

  155. Kreimer, A. R. et al. Screening for human papillomavirus-driven oropharyngeal cancer: considerations for feasibility and strategies for research. Cancer 124, 1859–1866 (2018).

    Article  PubMed  Google Scholar 

  156. Day, A. T., Fakhry, C., Tiro, J. A., Dahlstrom, K. R. & Sturgis, E. M. Considerations in human papillomavirus-associated oropharyngeal cancer screening: a review. JAMA Otolaryngol. Head. Neck Surg. 146, 656–664 (2020).

    Article  PubMed  Google Scholar 

  157. Holzinger, D. et al. Sensitivity and specificity of antibodies against HPV16 E6 and other early proteins for the detection of HPV16-driven oropharyngeal squamous cell carcinoma. Int. J. Cancer 140, 2748–2757 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Kreimer, A. R. et al. Timing of HPV16-E6 antibody seroconversion before OPSCC: findings from the HPVC3 Consortium. Ann. Oncol. 30, 1335–1343 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rosenthal, M. et al. Detection of HPV related oropharyngeal cancer in oral rinse specimens. Oncotarget 8, 109393–109401 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Gipson, B. J., Robbins, H. A., Fakhry, C. & D’Souza, G. Sensitivity and specificity of oral HPV detection for HPV-positive head and neck cancer. Oral. Oncol. 77, 52–56 (2018).

    Article  PubMed  Google Scholar 

  161. Koch, W. M. Clinical features of HPV-related head and neck squamous cell carcinoma: presentation and work-up. Otolaryngol. Clin. North. Am. 45, 779–793 (2012).

    Article  PubMed  Google Scholar 

  162. Tota, J. E., Isidean, S. D. & Franco, E. L. Defining benchmarks for tolerable risk thresholds in cancer screening: impact of HPV vaccination on the future of cervical cancer screening. Int. J. Cancer 147, 3305–3312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Qaseem, A., Humphrey, L. L., Harris, R., Starkey, M. & Denberg, T. D. Screening pelvic examination in adult women: a clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 161, 67–72 (2014).

    Article  PubMed  Google Scholar 

  164. Marcello, T., Sarah Connor, G., Ainsley, M. & Brett, D. T. Recommendations on routine screening pelvic examination. Can. Fam. Physician 62, 211 (2016).

    Google Scholar 

  165. Olawaiye, A. B., Cuello, M. A. & Rogers, L. J. Cancer of the vulva: 2021 update. Int. J. Gynecol. Obstet. 155, 7–18 (2021).

    Article  Google Scholar 

  166. Maclean, A. B. Vulval cancer: prevention and screening. Best. Pract. Res. Clin. Obstet. Gynaecol. 20, 379–395 (2006).

    Article  PubMed  Google Scholar 

  167. Chesson, H. W., Dunne, E. F., Hariri, S. & Markowitz, L. E. The estimated lifetime probability of acquiring human papillomavirus in the United States. Sex. Transm. Dis. 41, 660–664 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Zheng, R. et al. Global, regional, and national lifetime probabilities of developing cancer in 2020. Sci. Bull. 68, 2620–2628 (2023).

    Article  Google Scholar 

  169. Castellsagué, X. & Muñoz, N. Chapter 3: Cofactors in human papillomavirus carcinogenesis – role of parity, oral contraceptives, and tobacco smoking. J. Natl Cancer Inst. Monogr. (31), 20–28 (2003).

  170. Aguayo, F. et al. High-risk human papillomavirus and tobacco smoke interactions in epithelial carcinogenesis. Cancers 12, 2201 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Almonte, M. et al. Risk factors for human papillomavirus exposure and co-factors for cervical cancer in Latin America and the Caribbean. Vaccine 26, L16–L36 (2008).

    Article  PubMed  Google Scholar 

  172. Kelly, H. et al. Association of antiretroviral therapy with high-risk human papillomavirus, cervical intraepithelial neoplasia, and invasive cervical cancer in women living with HIV: a systematic review and meta-analysis. Lancet HIV 5, e45–e58 (2018).

    Article  PubMed  Google Scholar 

  173. Ojha, P. S., Maste, M. M., Tubachi, S. & Patil, V. S. Human papillomavirus and cervical cancer: an insight highlighting pathogenesis and targeting strategies. Virusdisease 33, 132–154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cohen, P. A., Jhingran, A., Oaknin, A. & Denny, L. Cervical cancer. Lancet 393, 169–182 (2019).

    Article  PubMed  Google Scholar 

  175. Hildesheim, A. et al. HPV co-factors related to the development of cervical cancer: results from a population-based study in Costa Rica. Br. J. Cancer 84, 1219–1226 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. de Araujo Souza, P. S., Sichero, L. & Maciag, P. C. HPV variants and HLA polymorphisms: the role of variability on the risk of cervical cancer. Future Oncol. 5, 359–370 (2009).

    Article  PubMed  Google Scholar 

  177. Choi, S., Ismail, A., Pappas-Gogos, G. & Boussios, S. HPV and cervical cancer: a review of epidemiology and screening uptake in the UK. Pathogens 12, 298 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  178. He, W.-Q. & Li, C. Recent global burden of cervical cancer incidence and mortality, predictors, and temporal trends. Gynecol. Oncol. 163, 583–592 (2021).

    Article  PubMed  Google Scholar 

  179. Senapati, R., Senapati, N. N. & Dwibedi, B. Molecular mechanisms of HPV mediated neoplastic progression. Infect. Agent. Cancer 11, 59 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Muwonge, R. et al. Socio-demographic and reproductive determinants of cervical neoplasia in seven sub-Sahara African countries. Cancer Causes Control. 27, 1437–1446 (2016).

    Article  PubMed  Google Scholar 

  181. Husain, R. S. & Ramakrishnan, V. Global variation of human papillomavirus genotypes and selected genes involved in cervical malignancies. Ann. Glob. Health 81, 675–683 (2015).

    Article  PubMed  Google Scholar 

  182. Vaccarella, S. et al. Reproductive factors, oral contraceptive use, and human papillomavirus infection: pooled analysis of the IARC HPV prevalence surveys. Cancer Epidemiol. Biomark. Prev. 15, 2148–2153 (2006).

    Article  CAS  Google Scholar 

  183. Louie, K. S. et al. Early age at first sexual intercourse and early pregnancy are risk factors for cervical cancer in developing countries. Br. J. Cancer 100, 1191–1197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bosch, F. X., Qiao, Y. L. & Castellsague, X. CHAPTER 2 The epidemiology of human papillomavirus infection and its association with cervical cancer. Int. J. Gynaecol. Obstet. 94, S8–S21 (2006).

    Article  PubMed  Google Scholar 

  185. Dugué, P. A., Rebolj, M., Garred, P. & Lynge, E. Immunosuppression and risk of cervical cancer. Expert. Rev. Anticancer. Ther. 13, 29–42 (2013).

    Article  PubMed  Google Scholar 

  186. International Collaboration of Epidemiological Studies of Cervical Cancer Cervical carcinoma and reproductive factors: collaborative reanalysis of individual data on 16,563 women with cervical carcinoma and 33,542 women without cervical carcinoma from 25 epidemiological studies. Int. J. Cancer 119, 1108–1124 (2006).

    Article  Google Scholar 

  187. The World Bank. Fertility rate, total (births per woman). The World Bank https://genderdata.worldbank.org/indicators/sp-dyn-tfrt-in/?view=trend (2024).

  188. Singh, D. et al. Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. Lancet Glob. Health 11, e197–e206 (2023).

    Article  CAS  PubMed  Google Scholar 

  189. Pérez-González, A., Cachay, E., Ocampo, A. & Poveda, E. Update on the epidemiological features and clinical implications of human papillomavirus infection (HPV) and human immunodeficiency virus (HIV) coinfection. Microorganisms 10, 1047 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  190. The World Bank. World Development Indicators. The World Bank databank.worldbank.org/source/world-development-indicators (2024).

  191. Ferlay, J., Ervik, M., Lam, F., Colombert, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I. & Bray, F. Global Cancer Observatory: Cancer Today. gco.iarc.fr/today (2020).

  192. The Global Health Observatory. HIV – Prevalence of HIV among adults aged 15 to 49 (%). World Health Organization https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-hiv-among-adults-aged-15-to-49-(-) (2023).

  193. The Global Health Observatory. HIV – New HIV infections (per 1000 uninfected population). World Health Organization https://www.who.int/data/gho/data/indicators/indicator-details/GHO/new-hiv-infections-(per-1000-uninfected-population) (2023).

  194. Castle, P. E., Einstein, M. H. & Sahasrabuddhe, V. V. Cervical cancer prevention and control in women living with human immunodeficiency virus. CA Cancer J. Clin. 71, 505–526 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Clifford, G. M. et al. Immunodeficiency and the risk of cervical intraepithelial neoplasia 2/3 and cervical cancer: a nested case-control study in the Swiss HIV Cohort Study. Int. J. Cancer 138, 1732–1740 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Szarewski, A. et al. Effect of smoking cessation on cervical lesion size. Lancet 347, 941–943 (1996).

    Article  CAS  PubMed  Google Scholar 

  197. Castle, P. E. How does tobacco smoke contribute to cervical carcinogenesis? J. Virol. 82, 6084–6085 (2008); author’s reply 82, 6085–6086 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Guan, P. et al. Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. Int. J. Cancer 131, 2349–2359 (2012).

    Article  CAS  PubMed  Google Scholar 

  199. Clifford, G. M., Smith, J. S., Aguado, T. & Franceschi, S. Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a meta-analysis. Br. J. Cancer 89, 101–105 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Smith, J. S. et al. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int. J. Cancer 121, 621–632 (2007).

    Article  CAS  PubMed  Google Scholar 

  201. Mirabello, L. et al. The intersection of HPV epidemiology, genomics and mechanistic studies of HPV-mediated carcinogenesis. Viruses 10, 80 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Burk, R. D., Harari, A. & Chen, Z. Human papillomavirus genome variants. Virology 445, 232–243 (2013).

    Article  CAS  PubMed  Google Scholar 

  203. Cornet, I. et al. HPV16 genetic variation and the development of cervical cancer worldwide. Br. J. Cancer 108, 240–244 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Villa, L. L. et al. Molecular variants of human papillomavirus types 16 and 18 preferentially associated with cervical neoplasia. J. Gen. Virol. 81, 2959–2968 (2000).

    Article  CAS  PubMed  Google Scholar 

  205. Sichero, L. et al. High grade cervical lesions are caused preferentially by non-European variants of HPVs 16 and 18. Int. J. Cancer 120, 1763–1768 (2007).

    Article  CAS  PubMed  Google Scholar 

  206. Zehbe, I. et al. Human papillomavirus 16 E6 polymorphisms in cervical lesions from different European populations and their correlation with human leukocyte antigen class II haplotypes. Int. J. Cancer 94, 711–716 (2001).

    Article  CAS  PubMed  Google Scholar 

  207. Castellsagué, X. et al. HPV involvement in head and neck cancers: comprehensive assessment of biomarkers in 3680 patients. J. Natl Cancer Inst. 108, djv403 (2016).

    Article  PubMed  Google Scholar 

  208. Serrano, B. et al. Human papillomavirus genotype attribution for HPVs 6, 11, 16, 18, 31, 33, 45, 52 and 58 in female anogenital lesions. Eur. J. Cancer 51, 1732–1741 (2015).

    Article  PubMed  Google Scholar 

  209. Bloss, J. D. et al. Clinical and histologic features of vulvar carcinomas analyzed for human papillomavirus status: evidence that squamous cell carcinoma of the vulva has more than one etiology. Hum. Pathol. 22, 711–718 (1991).

    Article  CAS  PubMed  Google Scholar 

  210. Gillison, M. L. et al. Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J. Natl Cancer Inst. 100, 407–420 (2008).

    Article  PubMed  Google Scholar 

  211. Lekoane, K. M. B., Kuupiel, D., Mashamba-Thompson, T. P. & Ginindza, T. G. The interplay of HIV and human papillomavirus-related cancers in sub-Saharan Africa: scoping review. Syst. Rev. 9, 88 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Chaturvedi, A. K., Madeleine, M. M., Biggar, R. J. & Engels, E. A. Risk of human papillomavirus-associated cancers among persons with AIDS. J. Natl Cancer Inst. 101, 1120–1130 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Lechner, M., Liu, J., Masterson, L. & Fenton, T. R. HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management. Nat. Rev. Clin. Oncol. 19, 306–327 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Kesic, V. et al. The European Society of Gynaecological Oncology (ESGO), the International Society for the Study of Vulvovaginal Disease (ISSVD), the European College for the Study of Vulval Disease (ECSVD), and the European Federation for Colposcopy (EFC) consensus statement on the management of vaginal intraepithelial neoplasia. Int. J. Gynecol. Cancer 33, 446–461 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Frisch, M., Biggar, R. J. & Goedert, J. J. Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J. Natl Cancer Inst. 92, 1500–1510 (2000).

    Article  CAS  PubMed  Google Scholar 

  216. Wei, F. et al. Epidemiology of anal human papillomavirus infection and high-grade squamous intraepithelial lesions in 29 900 men according to HIV status, sexuality, and age: a collaborative pooled analysis of 64 studies. Lancet HIV 8, e531–e543 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lin, C., Franceschi, S. & Clifford, G. M. Human papillomavirus types from infection to cancer in the anus, according to sex and HIV status: a systematic review and meta-analysis. Lancet Infect. Dis. 18, 198–206 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Piketty, C. et al. Incidence of HIV-related anal cancer remains increased despite long-term combined antiretroviral treatment: results from the French Hospital Database on HIV. J. Clin. Oncol. 30, 4360–4366 (2012).

    Article  PubMed  Google Scholar 

  219. Hernandez-Ramirez, R. U., Shiels, M. S., Dubrow, R. & Engels, E. A. Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study. Lancet HIV 4, e495–e504 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Kelly, H. et al. Association of antiretroviral therapy with anal high-risk human papillomavirus, anal intraepithelial neoplasia, and anal cancer in people living with HIV: a systematic review and meta-analysis. Lancet HIV 7, e262–e278 (2020).

    Article  PubMed  Google Scholar 

  221. Wang, C. J. & Palefsky, J. M. HPV-associated anal cancer in the HIV/AIDS patient. Cancer Treat. Res. 177, 183–209 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Sunesen, K. G., Nørgaard, M., Thorlacius-Ussing, O. & Laurberg, S. Immunosuppressive disorders and risk of anal squamous cell carcinoma: a nationwide cohort study in Denmark, 1978–2005. Int. J. Cancer 127, 675–684 (2010).

    Article  CAS  PubMed  Google Scholar 

  223. Fehr, M. K. et al. Disease progression and recurrence in women treated for vulvovaginal intraepithelial neoplasia. J. Gynecol. Oncol. 24, 236–241 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Anantharaman, D. et al. Combined effects of smoking and HPV16 in oropharyngeal cancer. Int. J. Epidemiol. 45, 752–761 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Applebaum, K. M. et al. Lack of association of alcohol and tobacco with HPV16-associated head and neck cancer. J. Natl Cancer Inst. 99, 1801–1810 (2007).

    Article  PubMed  Google Scholar 

  226. Farsi, N. J. et al. Aetiological heterogeneity of head and neck squamous cell carcinomas: the role of human papillomavirus infections, smoking and alcohol. Carcinogenesis 38, 1188–1195 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. Auguste, A. et al. Joint effect of tobacco, alcohol, and oral HPV infection on head and neck cancer risk in the French West Indies. Cancer Med. 9, 6854–6863 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. United Nations Development Programme. Human development report 2021-22: Uncertain times, unsettled lives: shaping our future in a transforming world. UNDP https://hdr.undp.org/content/human-development-report-2021-22 (United Nations Development Programme, 2022).

  229. Braaten, T., Weiderpass, E., Kumle, M. & Lund, E. Explaining the socioeconomic variation in cancer risk in the Norwegian Women and Cancer Study. Cancer Epidemiol. Biomark. Prev. 14, 2591–2597 (2005).

    Article  Google Scholar 

  230. Jensen, K. E. et al. Social inequality and incidence of and survival from cancer of the female genital organs in a population-based study in Denmark, 1994-2003. Eur. J. Cancer 44, 2003–2017 (2008).

    Article  PubMed  Google Scholar 

  231. de Vries, E., Arroyave, I. & Pardo, C. Re-emergence of educational inequalities in cervical cancer mortality, Colombia 1998–2015. J. Cancer Policy 15, 37–44 (2018).

    Article  Google Scholar 

  232. Vaccarella, S. et al. Socioeconomic inequalities in cancer mortality between and within countries in Europe: a population-based study. Lancet Reg. Health Eur. 25, 100551 (2023).

    Article  PubMed  Google Scholar 

  233. Drolet, M. et al. Sociodemographic inequalities in sexual activity and cervical cancer screening: implications for the success of human papillomavirus vaccination. Cancer Epidemiol. Biomark. Prev. 22, 641–652 (2013).

    Article  Google Scholar 

  234. Damiani, G. et al. Socioeconomic disparities in the uptake of breast and cervical cancer screening in Italy: a cross sectional study. BMC Public. Health 12, 99 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Walsh, B. & O’Neill, C. Socioeconomic disparities across ethnicities: an application to cervical cancer screening. Am. J. Manag. Care 21, e527–e536 (2015).

    PubMed  Google Scholar 

  236. Coughlin, S. S., King, J., Richards, T. B. & Ekwueme, D. U. Cervical cancer screening among women in metropolitan areas of the United States by individual-level and area-based measures of socioeconomic status, 2000 to 2002. Cancer Epidemiol. Biomark. Prev. 15, 2154–2159 (2006).

    Article  Google Scholar 

  237. Lee, M. et al. Socioeconomic disparity in cervical cancer screening among Korean women: 1998–2010. BMC Public. Health 13, 553 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Tomi, A., Kemi, O., Swati, S., Valentine, O. & Dejana, B. Life-course socioeconomic status and breast and cervical cancer screening: analysis of the WHO’s Study on Global Ageing and Adult Health (SAGE). BMJ Open 6, e012753 (2016).

    Article  Google Scholar 

  239. Nuche-Berenguer, B. & Sakellariou, D. Socioeconomic determinants of cancer screening utilisation in Latin America: a systematic review. PLoS ONE 14, e0225667 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Palencia, L. et al. Socio-economic inequalities in breast and cervical cancer screening practices in Europe: influence of the type of screening program. Int. J. Epidemiol. 39, 757–765 (2010).

    Article  PubMed  Google Scholar 

  241. Cotton, S. C. et al. Lifestyle and socio-demographic factors associated with high-risk HPV infection in UK women. Br. J. Cancer 97, 133–139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Shi, R., Devarakonda, S., Liu, L., Taylor, H. & Mills, G. Factors associated with genital human papillomavirus infection among adult females in the United States, NHANES 2007–2010. BMC Res. Notes 7, 544 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Franceschi, S. et al. Differences in the risk of cervical cancer and human papillomavirus infection by education level. Br. J. Cancer 101, 865–870 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Bosch, F. X. & de Sanjose, S. The epidemiology of human papillomavirus infection and cervical cancer. Dis. Markers 23, 213–227 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Fisher, H., Trotter, C. L., Audrey, S., MacDonald-Wallis, K. & Hickman, M. Inequalities in the uptake of human papillomavirus vaccination: a systematic review and meta-analysis. Int. J. Epidemiol. 42, 896–908 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Fisher, H., Audrey, S., Mytton, J. A., Hickman, M. & Trotter, C. Examining inequalities in the uptake of the school-based HPV vaccination programme in England: a retrospective cohort study. J. Public. Health 36, 36–45 (2014).

    Article  Google Scholar 

  247. Barbaro, B. & Brotherton, J. M. L. Assessing HPV vaccine coverage in Australia by geography and socioeconomic status: are we protecting those most at risk? Aust. N. Zealand J. Public. Health 38, 419–423 (2014).

    Article  Google Scholar 

  248. de Munter, A. C. et al. Determinants of HPV-vaccination uptake and subgroups with a lower uptake in the Netherlands. BMC Public. Health 21, 1848 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Malagon, T. et al. The impact of differential uptake of HPV vaccine by sexual risks on health inequalities: a model-based analysis. Vaccine 31, 1740–1747 (2013).

    Article  PubMed  Google Scholar 

  250. Wang, J. et al. Mode of HPV vaccination delivery and equity in vaccine uptake: a nationwide cohort study. Prev. Med. 120, 26–33 (2019).

    Article  PubMed  Google Scholar 

  251. Devotta, K., Vahabi, M., Prakash, V. & Lofters, A. Reach and effectiveness of an HPV self-sampling intervention for cervical screening amongst under- or never-screened women in Toronto, Ontario Canada. BMC Women’s Health 23, 36 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Pretsch, P. K. et al. Effect of HPV self-collection kits on cervical cancer screening uptake among under-screened women from low-income US backgrounds (MBMT-3): a phase 3, open-label, randomised controlled trial. Lancet Public. Health 8, e411–e421 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Conway, D. I. et al. Estimating and explaining the effect of education and income on head and neck cancer risk: INHANCE Consortium pooled analysis of 31 case-control studies from 27 countries. Int. J. Cancer 136, 1125–1139 (2015).

    Article  CAS  PubMed  Google Scholar 

  254. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  255. Bilimoria, K. Y. et al. Outcomes and prognostic factors for squamous-cell carcinoma of the anal canal: analysis of patients from the National Cancer Data Base. Dis. Colon. Rectum 52, 624–631 (2009).

    Article  PubMed  Google Scholar 

  256. Lin, D. et al. Impact of socioeconomic status on survival for patients with anal cancer. Cancer 124, 1791–1797 (2018).

    Article  PubMed  Google Scholar 

  257. Cruz, A. et al. Racial and gender disparities in the incidence of anal cancer: analysis of the Nationwide Inpatient Sample (NIS). J. Gastrointest. Oncol. 10, 37–41 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Damgacioglu, H. et al. State variation in squamous cell carcinoma of the anus incidence and mortality, and association with HIV/AIDS and smoking in the United States. J. Clin. Oncol. 41, 1228–1238 (2023).

    Article  CAS  PubMed  Google Scholar 

  259. National Cancer Intelligence Network. Cancer by Deprivation in England, Incidence, 1996-2010, Mortality, 1997-2011 (NCIN, 2014).

  260. Svahn, M. F., Munk, C., von Buchwald, C., Frederiksen, K. & Kjaer, S. K. Burden and incidence of human papillomavirus-associated cancers and precancerous lesions in Denmark. Scand. J. Public. Health 44, 551–559 (2016).

    Article  PubMed  Google Scholar 

  261. Benard, V. B. et al. Examining the association between socioeconomic status and potential human papillomavirus-associated cancers. Cancer 113, 2910–2918 (2008).

    Article  PubMed  Google Scholar 

  262. Baekhøj Kortsen, D., Predbjørn Krarup, K. & Jakobsen, J. K. DaPeCa-9 – cohabitation and socio-economic conditions predict penile cancer-specific survival in a national clinical study from Denmark. Scand. J. Urol. 55, 486–490 (2021).

    Article  PubMed  Google Scholar 

  263. Broutet, N. et al. Implementation research to accelerate scale-up of national screen and treat strategies towards the elimination of cervical cancer. Prev. Med. 155, 106906 (2022).

    Article  PubMed  Google Scholar 

  264. Gravitt, P. E. et al. Achieving equity in cervical cancer screening in low- and middle-income countries (LMICs): strengthening health systems using a systems thinking approach. Prev. Med. 144, 106322 (2021).

    Article  PubMed  Google Scholar 

  265. Boily, M.-C. et al. Estimating the effect of HIV on cervical cancer elimination in South Africa: comparative modelling of the impact of vaccination and screening. eClinicalMedicine 54, 101754 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Simms, K. T. et al. Impact of scaled up human papillomavirus vaccination and cervical screening and the potential for global elimination of cervical cancer in 181 countries, 2020–99: a modelling study. Lancet Oncol. 20, 394–407 (2019).

    Article  PubMed  Google Scholar 

  267. Bruni, L. et al. HPV vaccination introduction worldwide and WHO and UNICEF estimates of national HPV immunization coverage 2010–2019. Prev. Med. 144, 106399 (2021).

    Article  PubMed  Google Scholar 

  268. Morales-Campos, D. Y., Zimet, G. D. & Kahn, J. A. Human papillomavirus vaccine hesitancy in the United States. Pediatr. Clin. North. Am. 70, 211–226 (2023).

    Article  PubMed  Google Scholar 

  269. Milondzo, T., Meyer, J. C., Dochez, C. & Burnett, R. J. Human papillomavirus vaccine hesitancy highly evident among caregivers of girls attending South African private schools. Vaccines 10, 506 (2022).

    Article  Google Scholar 

  270. Nogueira-Rodrigues, A. et al. HPV vaccination in Latin America: coverage status, implementation challenges and strategies to overcome it. Front. Oncol. 12, 984449 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Hanley, S. J., Yoshioka, E., Ito, Y. & Kishi, R. HPV vaccination crisis in Japan. Lancet 385, 2571 (2015).

    Article  PubMed  Google Scholar 

  272. Hansen, P. R., Schmidtblaicher, M. & Brewer, N. T. Resilience of HPV vaccine uptake in Denmark: decline and recovery. Vaccine 38, 1842–1848 (2020).

    Article  PubMed  Google Scholar 

  273. Simas, C., Munoz, N., Arregoces, L. & Larson, H. J. HPV vaccine confidence and cases of mass psychogenic illness following immunization in Carmen de Bolivar, Colombia. Hum. Vaccin. Immunother. 15, 163–166 (2019).

    Article  PubMed  Google Scholar 

  274. Muhoza, P. et al. Routine vaccination coverage – worldwide, 2020. MMWR Morb. Mortal. Wkly. Rep. 70, 1495–1500 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Bhutta, Z. A. Conflict and polio: winning the polio wars. JAMA 310, 905–906 (2013).

    Article  CAS  PubMed  Google Scholar 

  276. Paniz-Mondolfi, A. E. et al. Resurgence of vaccine-preventable diseases in venezuela as a regional public health threat in the Americas. Emerg. Infect. Dis. 25, 625–632 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Landy, R., Windridge, P., Gillman, M. S. & Sasieni, P. D. What cervical screening is appropriate for women who have been vaccinated against high risk HPV? A simulation study. Int. J. Cancer 142, 709–718 (2018).

    Article  CAS  PubMed  Google Scholar 

  278. Simms, K. T. et al. Will cervical screening remain cost-effective in women offered the next generation nonavalent HPV vaccine? Results for four developed countries. Int. J. Cancer 139, 2771–2780 (2016).

    Article  CAS  PubMed  Google Scholar 

  279. Kim, J. J., Burger, E. A., Sy, S. & Campos, N. G. Optimal cervical cancer screening in women vaccinated against human papillomavirus. J. Natl Cancer Inst. 109, djw216 (2017).

    Article  PubMed  Google Scholar 

  280. Moscicki, A.-B. et al. Screening for anal cancer in women. J. Low. Genit. Tract. Dis. 19, S27–S42 (2015).

    Article  PubMed  Google Scholar 

  281. Barroso, L. F., Stier, E. A., Hillman, R. & Palefsky, J. Anal cancer screening and prevention: summary of evidence reviewed for the 2021 Centers for Disease Control and Prevention sexually transmitted infection guidelines. Clin. Infect. Dis. 74, S179–S192 (2022).

    Article  PubMed  Google Scholar 

  282. Timbang, M. R. et al. HPV-related oropharyngeal cancer: a review on burden of the disease and opportunities for prevention and early detection. Hum. Vaccin. Immunother. 15, 1920–1928 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Hall, M. T. et al. The projected timeframe until cervical cancer elimination in Australia: a modelling study. Lancet Public. Health 4, e19–e27 (2019).

    Article  PubMed  Google Scholar 

  284. Moore, S. P. et al. Cancer incidence in indigenous people in Australia, New Zealand, Canada, and the USA: a comparative population-based study. Lancet Oncol. 16, 1483–1492 (2015).

    Article  PubMed  Google Scholar 

  285. Spencer, J. C. et al. Reducing poverty-related disparities in cervical cancer: the role of HPV vaccination. Cancer Epidemiol. Biomark. Prev. 30, 1895–1903 (2021).

    Article  Google Scholar 

  286. Whop, L. J., Cunningham, J., Garvey, G. & Condon, J. R. Towards global elimination of cervical cancer in all groups of women. Lancet Oncol. 20, e238 (2019).

    Article  PubMed  Google Scholar 

  287. Whop, L. J. et al. Achieving cervical cancer elimination among Indigenous women. Prev. Med. 144, 106314 (2021).

    Article  PubMed  Google Scholar 

  288. Canadian Partnership Against Cancer. Action plan for the elimination of cervical cancer in Canada, 2020–2030. Canadian Partnership Against Cancer https://www.partnershipagainstcancer.ca/topics/elimination-cervical-cancer-action-plan/ (2020).

  289. Tranberg, M. et al. HPV self-sampling in cervical cancer screening: the effect of different invitation strategies in various socioeconomic groups – a randomized controlled trial. Clin. Epidemiol. 10, 1027–1036 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Tope, P., Morais, S., El-Zein, M., Franco, E. L. & Malagón, T. Differences in site-specific cancer incidence by individual- and area-level income in Canada from 2006 to 2015. Int. J. Cancer 153, 1766–1783 (2023).

    Article  CAS  PubMed  Google Scholar 

  291. Clegg, L. X. et al. Impact of socioeconomic status on cancer incidence and stage at diagnosis: selected findings from the surveillance, epidemiology, and end results: National Longitudinal Mortality Study. Cancer Causes Control. 20, 417–435 (2009).

    Article  PubMed  Google Scholar 

  292. Hodge, J. M., Patel, A. V., Islami, F., Jemal, A. & Hiatt, R. A. Educational attainment and cancer incidence in a large nationwide prospective cohort. Cancer Epidemiol. Biomark. Prev. 32, 1747–1755 (2023).

    Article  Google Scholar 

  293. National Center for Chronic Disease Prevention and Health Promotion Office on Smoking and Health. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General (Centers for Disease Control and Prevention, 2014).

  294. Doll R., Payne P. & Waterhouse J. Cancer Incidence in Five Continents: a Technical Report (Springer, 1966).

  295. Eurostat. Revision of the European Standard Population: report of Eurostat’s task force. 2013 edition. European Commission ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-ra-13-028 (2013).

  296. UNESCO Institute for Statistics. International Standard Classification of Education: ISCED 2011 (UNESCO Institute for Statistics, 2011).

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.T. and S.V. researched data for the article. T.M. and E.L.F. contributed substantially to discussion of the content. All authors wrote, reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Talía Malagón.

Ethics declarations

Competing interests

T.M. is a board member of the International Papillomavirus Society. E.L.F. has received personal fees from Merck, and holds a patent related to the discovery of DNA methylation markers for the early detection of cervical cancer, which is registered at the Office of Innovation and Partnerships, McGill University, Montreal, Quebec, Canada. R.T. and S.V. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks K. Canfell, who co-reviewed with S. Yuill; T. Fenton; and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Disclaimer Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/World Health Organization.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malagón, T., Franco, E.L., Tejada, R. et al. Epidemiology of HPV-associated cancers past, present and future: towards prevention and elimination. Nat Rev Clin Oncol (2024). https://doi.org/10.1038/s41571-024-00904-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41571-024-00904-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer