Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dendritic cells as orchestrators of anticancer immunity and immunotherapy

Abstract

Dendritic cells (DCs) are a heterogeneous group of antigen-presenting innate immune cells that regulate adaptive immunity, including against cancer. Therefore, understanding the precise activities of DCs in tumours and patients with cancer is important. The classification of DC subsets has historically been based on ontogeny; however, single-cell analyses are now additionally revealing a diversity of functional states of DCs in cancer. DCs can promote the activation of potent antitumour T cells and immune responses via numerous mechanisms, although they can also be hijacked by tumour-mediated factors to contribute to immune tolerance and cancer progression. Consequently, DC activities are often key determinants of the efficacy of immunotherapies, including immune-checkpoint inhibitors. Potentiating the antitumour functions of DCs or using them as tools to orchestrate short-term and long-term anticancer immunity has immense but as-yet underexploited therapeutic potential. In this Review, we outline the nature and emerging complexity of DC states as well as their functions in regulating adaptive immunity across different cancer types. We also describe how DCs are required for the success of current immunotherapies and explore the inherent potential of targeting DCs for cancer therapy. We focus on novel insights on DCs derived from patients with different cancers, single-cell studies of DCs and their relevance to therapeutic strategies.

Key points

  • Dendritic cells (DCs) can induce adaptive anticancer immunity mainly via uptake and presentation of tumour-associated antigens, migration to lymph nodes and T cell priming, and recruitment and activation of tumour-infiltrating T cells.

  • Intratumoural DCs originate from distinct ontogenic lineages and adopt heterogeneous functional states.

  • The diversity of intratumoural DCs is generally conserved across species and cancer types; however, cancer-type-specific features of DCs in the blood, lymph nodes and tumours of patients are emerging.

  • The efficacy of many immune-checkpoint inhibitors in patients with cancer is dependent on the anticancer functions of DCs, either directly or indirectly.

  • The development of improved DC-based anticancer treatments, including agents targeting DCs in vivo and natural DC-based vaccines produced ex vivo, has the potential to improve patient outcomes and such treatments are generally safe.

  • Combining DC-based anticancer treatments with other (immuno)therapies has shown promise in preclinical studies; however, patient selection, treatment sequencing and immunomonitoring require optimization in clinical studies to identify the most synergistic combinations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DC heterogeneity.
Fig. 2: Hallmark functions of DCs that induce antitumour T cell responses.
Fig. 3: The importance of DCs for the efficacy of ICIs.

Similar content being viewed by others

References

  1. Hellmann, M. D. et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 381, 2020–2031 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cabeza-Cabrerizo, M., Cardoso, A., Minutti, C. M., Pereira Da Costa, M. & Reis E Sousa, C. Dendritic cells revisited. Annu. Rev. Immunol. 39, 131–166 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Segura, E. Human dendritic cell subsets: an updated view of their ontogeny and functional specialization. Eur. J. Immunol. 52, 1759–1767 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marciscano, A. E. & Anandasabapathy, N. The role of dendritic cells in cancer and anti-tumor immunity. Semin. Immunol. 52, 101481 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Bommareddy, P. K., Patel, A., Hossain, S. & Kaufman, H. L. Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am. J. Clin. Dermatol. 18, 1–15 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kamath, P., Darwin, E., Arora, H. & Nouri, K. A review on imiquimod therapy and discussion on optimal management of basal cell carcinomas. Clin. Drug Investig. 38, 883–899 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Guallar-Garrido, S. & Julián, E. Bacillus Calmette-Guérin (BCG) therapy for bladder cancer: an update. Immunotargets Ther. 9, 1–11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fasching, G., Dollinger, C., Spendel, S. & Tepeneu, N. F. Treatment of lymphangiomas by means of sclerotherapy with OK-432 (Picibanil®) is safe and effective - a retrospective case series. Ann. Med. Surg. 81, 104531 (2022).

    Article  CAS  Google Scholar 

  11. Wang, Y.-Q., Bazin-Lee, H., Evans, J. T., Casella, C. R. & Mitchell, T. C. MPL adjuvant contains competitive antagonists of human TLR4. Front. Immunol. 11, 577823 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goyvaerts, C. & Breckpot, K. The journey of in vivo virus engineered dendritic cells from bench to bedside: a bumpy road. Front. Immunol. 9, 2052 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Nakamizo, S. et al. Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. J. Exp. Med. 218, e20202345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brown, C. C. et al. Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell 179, 846–863.e24 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, Z. et al. Dendritic cell type 3 arises from Ly6C+ monocyte-dendritic cell progenitors. Immunity 56, 1761–1777.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Dutertre, C.-A. et al. Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells. Immunity 51, 573–589.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Cytlak, U. et al. Differential IRF8 transcription factor requirement defines two pathways of dendritic cell development in humans. Immunity 53, 353–370.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sulczewski, F. B. et al. Transitional dendritic cells are distinct from conventional DC2 precursors and mediate proinflammatory antiviral responses. Nat. Immunol. 24, 1265–1280 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Böttcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037.e14 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Barry, K. C. et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 24, 1178–1191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hubert, M. et al. IFN-III is selectively produced by cDC1 and predicts good clinical outcome in breast cancer. Sci. Immunol. 5, eaav3942 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Roberts, E. W. et al. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30, 324–336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Sosa Cuevas, E. et al. BDCA1+ cDC2s, BDCA2+ pDCs and BDCA3+ cDC1s reveal distinct pathophysiologic features and impact on clinical outcomes in melanoma patients. Clin. Transl. Immunol. 9, e1190 (2020).

    Article  CAS  Google Scholar 

  28. Mastelic-Gavillet, B. et al. Quantitative and qualitative impairments in dendritic cell subsets of patients with ovarian or prostate cancer. Eur. J. Cancer 135, 173–182 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Michea, P. et al. Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific. Nat. Immunol. 19, 885–897 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Iwanowycz, S. et al. Type 2 dendritic cells mediate control of cytotoxic T cell resistant tumors. JCI Insight 6, e145885 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Binnewies, M. et al. Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 177, 556–571.e16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tabarkiewicz, J., Rybojad, P., Jablonka, A. & Rolinski, J. CD1c+ and CD303+ dendritic cells in peripheral blood, lymph nodes and tumor tissue of patients with non-small cell lung cancer. Oncol. Rep. 19, 237–243 (2008).

    PubMed  Google Scholar 

  33. He, M. et al. CD5 expression by dendritic cells directs T cell immunity and sustains immunotherapy responses. Science 379, eabg2752 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248–262 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Li, B. et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 17, 174 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Becht, E. et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17, 218 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. van Beek, J. J. P. et al. Human pDCs are superior to cDC2s in attracting cytolytic lymphocytes in melanoma patients receiving DC vaccination. Cell Rep. 30, 1027–1038.e4 (2020).

    Article  PubMed  Google Scholar 

  39. Tel, J. et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res. 73, 1063–1075 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Kießler, M. et al. Tumor-infiltrating plasmacytoid dendritic cells are associated with survival in human colon cancer. J. Immunother. Cancer 9, e001813 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tian, S. et al. A comprehensive investigation to reveal the relationship between plasmacytoid dendritic cells and breast cancer by multiomics data analysis. Front. Cell Dev. Biol. 9, 640476 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Aspord, C., Leccia, M.-T., Charles, J. & Plumas, J. Plasmacytoid dendritic cells support melanoma progression by promoting Th2 and regulatory immunity through OX40L and ICOSL. Cancer Immunol. Res. 1, 402–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Han, N. et al. Increased tumor-infiltrating plasmacytoid dendritic cells promote cancer cell proliferation and invasion via TNF-α/NF-κB/CXCR-4 pathway in oral squamous cell carcinoma. J. Cancer 12, 3045–3056 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Banchereau, J. et al. The differential production of cytokines by human Langerhans cells and dermal CD14+ DCs controls CTL priming. Blood 119, 5742–5749 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. La Rocca, G. et al. CD1a down-regulation in primary invasive ductal breast carcinoma may predict regional lymph node invasion and patient outcome. Histopathology 52, 203–212 (2008).

    Article  PubMed  Google Scholar 

  46. Bandola-Simon, J. & Roche, P. A. Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol. Immunol. 113, 31–37 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xiao, Z. et al. Impaired function of dendritic cells within the tumor microenvironment. Front. Immunol. 14, 1213629 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hegde, S. et al. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell 37, 289–307.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Segura, E., Durand, M. & Amigorena, S. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J. Exp. Med. 210, 1035–1047 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Di Blasio, S. et al. Human CD1c+ DCs are critical cellular mediators of immune responses induced by immunogenic cell death. Oncoimmunology 5, e1192739 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kuhn, S., Yang, J. & Ronchese, F. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and antitumor responses after local immunotherapy. Front. Immunol. 6, 584 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ma, Y. et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38, 729–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Murphy, T. L. & Murphy, K. M. Dendritic cells in cancer immunol. Cell. Mol. Immunol. 19, 3–13 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Liu, T.-T. et al. Ablation of cDC2 development by triple mutations within the Zeb2 enhancer. Nature 607, 142–148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Subramanian, M. et al. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J. Clin. Invest. 124, 1296–1308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakayama, M. et al. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113, 3821–3830 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Caronni, N. et al. TIM4 expression by dendritic cells mediates uptake of tumor-associated antigens and anti-tumor responses. Nat. Commun. 12, 2237 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wiernicki, B. et al. Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat. Commun. 13, 3676 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fucikova, J. et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 11, 1013 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Giampazolias, E. et al. Secreted gelsolin inhibits DNGR-1-dependent cross-presentation and cancer immunity. Cell 184, 4016–4031.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Drouin, M. et al. CLEC-1 is a death sensor that limits antigen cross-presentation by dendritic cells and represents a target for cancer immunotherapy. Sci. Adv. 8, eabo7621 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yamauchi, T. et al. CD40 and CD80/86 signaling in cDC1s mediate effective neoantigen vaccination and generation of antigen-specific CX3CR1+ CD8+ T cells. Cancer Immunol. Immunother. 71, 137–151 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Ghislat, G. et al. NF-κB-dependent IRF1 activation programs cDC1 dendritic cells to drive antitumor immunity. Sci. Immunol. 6, eabg3570 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. De Mingo Pulido, Á. et al. The inhibitory receptor TIM-3 limits activation of the cGAS-STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake. Immunity 54, 1154–1167.e7 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lin, J. H. et al. Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis. J. Exp. Med. 217, e20190673 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, J. et al. Siglec receptors modulate dendritic cell activation and antigen presentation to T cells in cancer. Front. Cell Dev. Biol. 10, 828916 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Guenther, C. et al. β2-Integrin adhesion regulates dendritic cell epigenetic and transcriptional landscapes to restrict dendritic cell maturation and tumor rejection. Cancer Immunol. Res. 9, 1354–1369 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Wu, R. et al. Mechanisms of CD40-dependent cDC1 licensing beyond costimulation. Nat. Immunol. 23, 1536–1550 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schenkel, J. M. et al. Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+ CD8+ T cells in tumor-draining lymph nodes. Immunity 54, 2338–2353.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ruhland, M. K. et al. Visualizing synaptic transfer of tumor antigens among dendritic cells. Cancer Cell 37, 786–799.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pirillo, C. et al. Cotransfer of antigen and contextual information harmonizes peripheral and lymph node conventional dendritic cell activation. Sci. Immunol. 8, eadg8249 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Theisen, D. J. et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science 362, 694–699 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. MacNabb, B. W. et al. Dendritic cells can prime anti-tumor CD8+ T cell responses through major histocompatibility complex cross-dressing. Immunity 55, 982–997.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Das Mohapatra, A. et al. Cross-dressing of CD8α+ dendritic cells with antigens from live mouse tumor cells is a major mechanism of cross-priming. Cancer Immunol. Res. 8, 1287–1299 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Duong, E. et al. Type I interferon activates MHC class I-dressed CD11b+ conventional dendritic cells to promote protective anti-tumor CD8+ T cell immunity. Immunity 55, 308–323.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Wculek, S. K. et al. Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J. Immunother. Cancer 7, 100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ferris, S. T. et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584, 624–629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cueto, F. J. et al. DNGR-1 limits Flt3L-mediated antitumor immunity by restraining tumor-infiltrating type I conventional dendritic cells. J. Immunother. Cancer 9, e002054 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711–723.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Garris, C. S. et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148–1161.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Meiser, P. et al. A distinct stimulatory cDC1 subpopulation amplifies CD8+ T cell responses in tumors for protective anti-cancer immunity. Cancer Cell 41, 1498–1515.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Guo, C. et al. SLC38A2 and glutamine signalling in cDC1s dictate anti-tumour immunity. Nature 620, 200–208 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dähling, S. et al. Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches. Immunity 55, 656–670.e8 (2022).

    Article  PubMed  Google Scholar 

  87. Bayerl, F. et al. Tumor-derived prostaglandin E2 programs cDC1 dysfunction to impair intratumoral orchestration of anti-cancer T cell responses. Immunity 56, 1341–1358.e11 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Moreno Ayala, M. A. et al. CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8+ T cell antitumor immunity. Immunity 56, 1613–1630.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Ruiz De Galarreta, M. et al. β-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 9, 1124–1141 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Kim, S. et al. IL-6 selectively suppresses cDC1 specification via C/EBPβ. J. Exp. Med. 220, e20221757 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Gerhard, G. M., Bill, R., Messemaker, M., Klein, A. M. & Pittet, M. J. Tumor-infiltrating dendritic cell states are conserved across solid human cancers. J. Exp. Med. 218, e20200264 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Leader, A. M. et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell 39, 1594–1609.e12 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, J. et al. Mature dendritic cells enriched in immunoregulatory molecules (mregDCs): a novel population in the tumour microenvironment and immunotherapy target. Clin. Trans. Med 13, e1199 (2023).

    Article  CAS  Google Scholar 

  95. Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 30, 745–762 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845.e20 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Pittet, M. J., Di Pilato, M., Garris, C. & Mempel, T. R. Dendritic cells as shepherds of T cell immunity in cancer. Immunity 56, 2218–2230 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ardouin, L. et al. Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery. Immunity 45, 305–318 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, Y. et al. Tumour heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution. Nat. Commun. 12, 741 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442–459.e29 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Minohara, K. et al. Mature dendritic cells enriched in regulatory molecules may control regulatory T cells and the prognosis of head and neck cancer. Cancer Sci. 114, 1256–1269 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cohen, M. et al. The interaction of CD4+ helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nat. Cancer 3, 303–317 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Ruffell, B. et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 623–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Baldominos, P. et al. Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell 185, 1694–1708.e19 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Ladányi, A. et al. Density of DC-LAMP+ mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol. Immunother. 56, 1459–1469 (2007).

    Article  PubMed  Google Scholar 

  108. Dieu-Nosjean, M.-C. et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J. Clin. Oncol. 26, 4410–4417 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med. 27, 820–832 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Lee, Y. S. et al. Human CD141+ dendritic cells (cDC1) are impaired in patients with advanced melanoma but can be targeted to enhance anti-PD-1 in a humanized mouse model. J. Immunother. Cancer 9, e001963 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Schreibelt, G. et al. Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells. Clin. Cancer Res. 22, 2155–2166 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Schetters, S. T. T. et al. Monocyte-derived APCs are central to the response of PD1 checkpoint blockade and provide a therapeutic target for combination therapy. J. Immunother. Cancer 8, e000588 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Krieg, C. et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 24, 144–153 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Surówka, J. et al. Influence of ovarian cancer type I and type II microenvironment on the phenotype and function of monocyte-derived dendritic cells. Clin. Transl. Oncol. 19, 1489–1497 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Spary, L. K. et al. Tumor stroma-derived factors skew monocyte to dendritic cell differentiation toward a suppressive CD14+ PD-L1+ phenotype in prostate cancer. Oncoimmunology 3, e955331 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hopkins, D., Sanchez, H., Berwin, B. & Wilkinson-Ryan, I. Cisplatin increases immune activity of monocytes and cytotoxic T-cells in a murine model of epithelial ovarian cancer. Transl. Oncol. 14, 101217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Adhikaree, J. et al. Impaired circulating myeloid CD1c+ dendritic cell function in human glioblastoma is restored by p38 inhibition — implications for the next generation of DC vaccines. Oncoimmunology 8, 1593803 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Garzon-Muvdi, T. et al. Dendritic cell activation enhances anti-PD-1 mediated immunotherapy against glioblastoma. Oncotarget 9, 20681–20697 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Guo, J. et al. The miR-582/CD1B axis is involved in regulation of dendritic cells and is associated with clinical outcomes in advanced lung adenocarcinoma. BioMed. Res. Int. 2020, 4360930 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ramos, R. N. et al. Monocyte-derived dendritic cells from breast cancer patients are biased to induce CD4+CD25+Foxp3+ regulatory T cells. J. Leukoc. Biol. 92, 673–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Liu, W. et al. Gastric cancer patients have elevated plasmacytoid and CD1c+ dendritic cells in the peripheral blood. Oncol. Lett. 15, 5087–5092 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. Bai, X. et al. Loss of YTHDF1 in gastric tumors restores sensitivity to antitumor immunity by recruiting mature dendritic cells. J. Immunother. Cancer 10, e003663 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Abolhalaj, M. et al. Profiling dendritic cell subsets in head and neck squamous cell tonsillar cancer and benign tonsils. Sci. Rep. 8, 8030 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Murillo, O. et al. In vivo depletion of DC impairs the anti-tumor effect of agonistic anti-CD137 mAb. Eur. J. Immunol. 39, 2424–2436 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Salmon, H. et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sánchez-Paulete, A. R. et al. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann. Oncol. 28, xii44–xii55 (2017).

    Article  PubMed  Google Scholar 

  129. Peng, Q. et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat. Commun. 11, 4835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu, J. et al. Batf3+ DCs and type I IFN are critical for the efficacy of neoadjuvant cancer immunotherapy. OncoImmunology 8, e1546068 (2019).

    Article  PubMed  Google Scholar 

  131. Teijeira, A. et al. Depletion of conventional type-1 dendritic cells in established tumors suppresses immunotherapy efficacy. Cancer Res. 82, 4373–4385 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Chow, M. T. et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498–1512.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu, S.-Y. et al. CCL19+ dendritic cells potentiate clinical benefit of anti-PD-(L)1 immunotherapy in triple-negative breast cancer. Med 4, 373–393.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Paz-Ares, L. et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379, 2040–2051 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Tang, H. et al. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J. Clin. Invest. 128, 580–588 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Oh, S. A. et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat. Cancer 1, 681–691 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Mayoux, M. et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci. Transl. Med. 12, eaav7431 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Kamphorst, A. O. et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355, 1423–1427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Oba, T. et al. Overcoming primary and acquired resistance to anti-PD-L1 therapy by induction and activation of tumor-residing cDC1s. Nat. Commun. 11, 5415 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dammeijer, F. et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 38, 685–700.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Chen, L. et al. B7-H1 maintains the polyclonal T cell response by protecting dendritic cells from cytotoxic T lymphocyte destruction. Proc. Natl Acad. Sci. USA 115, 3126–3131 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Sugiura, D. et al. Restriction of PD-1 function by cis -PD-L1/CD80 interactions is required for optimal T cell responses. Science 364, 558–566 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Zhao, Y. et al. PD-L1:CD80 Cis-heterodimer triggers the co-stimulatory receptor CD28 while repressing the inhibitory PD-1 and CTLA-4 pathways. Immunity 51, 1059–1073.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Duraiswamy, J., Kaluza, K. M., Freeman, G. J. & Coukos, G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res. 73, 3591–3603 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lei, X. et al. CD4+ helper T cells endow cDC1 with cancer-impeding functions in the human tumor micro-environment. Nat. Commun. 14, 217 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hammerl, D. et al. Spatial immunophenotypes predict response to anti-PD1 treatment and capture distinct paths of T cell evasion in triple negative breast cancer. Nat. Commun. 12, 5668 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wolf, Y., Anderson, A. C. & Kuchroo, V. K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 20, 173–185 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Chiba, S. et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol. 13, 832–842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. De Mingo Pulido, Á. et al. TIM-3 regulates CD103+ dendritic cell function and response to chemotherapy in breast cancer. Cancer Cell 33, 60–74.e6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Dixon, K. O. et al. TIM-3 restrains anti-tumour immunity by regulating inflammasome activation. Nature 595, 101–106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gardner, A. et al. TIM-3 blockade enhances IL-12-dependent antitumor immunity by promoting CD8+ T cell and XCR1+ dendritic cell spatial co-localization. J. Immunother. Cancer 10, e003571 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Huang, Y.-H. et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517, 386–390 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Sabatos-Peyton, C. A. et al. Blockade of Tim-3 binding to phosphatidylserine and CEACAM1 is a shared feature of anti-Tim-3 antibodies that have functional efficacy. OncoImmunology 7, e1385690 (2018).

    Article  PubMed  Google Scholar 

  158. Melero, I., Castanon, E., Alvarez, M., Champiat, S. & Marabelle, A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat. Rev. Clin. Oncol. 18, 558–576 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rolfo, C., Giovannetti, E., Martinez, P., McCue, S. & Naing, A. Applications and clinical trial landscape using Toll-like receptor agonists to reduce the toll of cancer. NPJ Precis. Oncol. 7, 26 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cauwels, A. et al. Delivering type I interferon to dendritic cells empowers tumor eradication and immune combination treatments. Cancer Res. 78, 463–474 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Alvarez, M. et al. Intratumoral neoadjuvant immunotherapy based on the BO-112 viral RNA mimetic. OncoImmunology 12, 2197370 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Cueto, F. J. & Sancho, D. The Flt3L/Flt3 axis in dendritic cell biology and cancer immunotherapy. Cancers 13, 1525 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rodriguez-Ruiz, M. E. et al. Intratumoral BO-112 in combination with radiotherapy synergizes to achieve CD8 T-cell-mediated local tumor control. J. Immunother. Cancer 11, e005011 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hänel, G., Angerer, C., Petry, K., Lichtenegger, F. S. & Subklewe, M. Blood DCs activated with R848 and poly(I:C) induce antigen-specific immune responses against viral and tumor-associated antigens. Cancer Immunol. Immunother. 71, 1705–1718 (2022).

    Article  PubMed  Google Scholar 

  165. Bhatia, S. et al. Intratumoral G100, a TLR4 agonist, induces antitumor immune responses and tumor regression in patients with Merkel cell carcinoma. Clin. Cancer Res. 25, 1185–1195 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Cohen, E. E. W. et al. Intralesional SD-101 in combination with pembrolizumab in anti-PD-1 treatment-naïve head and neck squamous cell carcinoma: results from a multicenter, phase II trial. Clin. Cancer Res. 28, 1157–1166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ribas, A. et al. Overcoming PD-1 blockade resistance with CpG-A toll-like receptor 9 agonist vidutolimod in patients with metastatic melanoma. Cancer Discov. 11, 2998–3007 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Doshi, A. S., Cantin, S., Prickett, L. B., Mele, D. A. & Amiji, M. Systemic nano-delivery of low-dose STING agonist targeted to CD103+ dendritic cells for cancer immunotherapy. J. Control. Release 345, 721–733 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Byrne, K. T. & Vonderheide, R. H. CD40 stimulation obviates innate sensors and drives T cell immunity in cancer. Cell Rep. 15, 2719–2732 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Salomon, R. et al. Bispecific antibodies increase the therapeutic window of CD40 agonists through selective dendritic cell targeting. Nat. Cancer 3, 287–302 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Deronic, A. et al. The human anti-CD40 agonist antibody mitazalimab (ADC-1013; JNJ-64457107) activates antigen-presenting cells, improves expansion of antigen-specific T cells, and enhances anti-tumor efficacy of a model cancer vaccine in vivo. Cancer Immunol. Immunother. 70, 3629–3642 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ngiow, S. F. et al. Agonistic CD40 mAb-driven IL12 reverses resistance to anti-PD1 in a T-cell-rich tumor. Cancer Res. 76, 6266–6277 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. O’Hara, M. H. et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study. Lancet Oncol. 22, 118–131 (2021).

    Article  PubMed  Google Scholar 

  174. Weiss, S. A. et al. A phase I study of APX005M and cabiralizumab with or without nivolumab in patients with melanoma, kidney cancer, or non-small cell lung cancer resistant to anti-PD-1/PD-L1. Clin. Cancer Res. 27, 4757–4767 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Coveler, A. L. et al. Phase 1 dose-escalation study of SEA-CD40: a non-fucosylated CD40 agonist, in advanced solid tumors and lymphomas. J. Immunother. Cancer 11, e005584 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Hägerbrand, K. et al. Bispecific antibodies targeting CD40 and tumor-associated antigens promote cross-priming of T cells resulting in an antitumor response superior to monospecific antibodies. J. Immunother. Cancer 10, e005018 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Liu, W., Takahashi, Y., Morishita, M., Nishikawa, M. & Takakura, Y. Development of CD40L-modified tumor small extracellular vesicles for effective induction of antitumor immune response. Nanomedicine 15, 1641–1652 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article  PubMed  Google Scholar 

  179. Pandya, A. et al. The future of cancer immunotherapy: DNA vaccines leading the way. Med. Oncol. 40, 200 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wang, Y. et al. mRNA vaccine: a potential therapeutic strategy. Mol. Cancer 20, 33 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Beck, J. D. et al. mRNA therapeutics in cancer immunotherapy. Mol. Cancer 20, 69 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Sancho, D. et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J. Clin. Invest. 118, 2098–2110 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Huang, J. et al. Targeted co-delivery of tumor antigen and α-galactosylceramide to CD141+ dendritic cells induces a potent tumor antigen-specific human CD8+ T cell response in human immune system mice. Front. Immunol. 11, 2043 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cruz, L. J. et al. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J. Control. Release 144, 118–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  185. Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yang, X. et al. Synthetic multiepitope neoantigen DNA vaccine for personalized cancer immunotherapy. Nanomed. Nanotechnol. Biol. Med. 37, 102443 (2021).

    Article  CAS  Google Scholar 

  188. Moku, G., Vangala, S., Gu, S. K. & Yakati, V. In vivo targeting of DNA vaccines to dendritic cells via the mannose receptor induces long-lasting immunity against melanoma. ChemBioChem 22, 523–531 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Itai, Y. S. et al. Bispecific dendritic-T cell engager potentiates anti-tumor immunity. Cell 187, 375–389.e18 (2024).

    Article  Google Scholar 

  190. Liu, L. et al. Rejuvenation of tumour-specific T cells through bispecific antibodies targeting PD-L1 on dendritic cells. Nat. Biomed. Eng. 5, 1261–1273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Jiang, H. et al. PD-L1/LAG-3 bispecific antibody enhances tumor-specific immunity. OncoImmunology 10, 1943180 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Hsu, F. J. et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 2, 52–58 (1996).

    Article  CAS  PubMed  Google Scholar 

  193. Lin, M. J. et al. Cancer vaccines: the next immunotherapy frontier. Nat. Cancer 3, 911–926 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Laureano, R. S. et al. Trial watch: dendritic cell (DC)-based immunotherapy for cancer. OncoImmunology 11, 2096363 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Anguille, S., Smits, E. L., Lion, E., Van Tendeloo, V. F. & Berneman, Z. N. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 15, e257–e267 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. de Vries, I. J. M. et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin. Cancer Res. 9, 5091–5100 (2003).

    PubMed  Google Scholar 

  197. Lövgren, T. et al. Complete and long-lasting clinical responses in immune checkpoint inhibitor-resistant, metastasized melanoma treated with adoptive T cell transfer combined with DC vaccination. OncoImmunology 9, 1792058 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Schreibelt, G. et al. Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy. Cancer Immunol. Immunother. 59, 1573–1582 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Bol, K. F. et al. Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity. Cancer Immunol. Immunother. 65, 327–339 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lövgren, T. et al. Enhanced stimulation of human tumor-specific T cells by dendritic cells matured in the presence of interferon-γ and multiple toll-like receptor agonists. Cancer Immunol. Immunother. 66, 1333–1344 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Bonehill, A. et al. Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin. Cancer Res. 15, 3366–3375 (2009).

    Article  CAS  PubMed  Google Scholar 

  202. Figlin, R. A. et al. Results of the ADAPT phase 3 study of rocapuldencel-T in combination with sunitinib as first-line therapy in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 26, 2327–2336 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Currivan, E., Finlay, D. & Moreira, D. Dendritic cells metabolism: a strategic path to improve antitumoral DC vaccination. Clin. Exp. Immunol. 208, 193–201 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Aarntzen, E. H. et al. Targeting CD4+ T-helper cells improves the induction of antitumor responses in dendritic cell-based vaccination. Cancer Res. 73, 19–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  205. Chang, C.-N. et al. A phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. J. Clin. Neurosci. 18, 1048–1054 (2011).

    Article  CAS  PubMed  Google Scholar 

  206. Bota, D. A. et al. Phase 2 study of AV-GBM-1 (a tumor-initiating cell targeted dendritic cell vaccine) in newly diagnosed glioblastoma patients: safety and efficacy assessment. J. Exp. Clin. Cancer Res. 41, 344 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Liau, L. M. et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial. JAMA Oncol. 9, 112 (2023).

    Article  PubMed  Google Scholar 

  208. Liau, L. M. et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J. Transl. Med. 16, 142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gatto, L. et al. DCVax-L vaccination in patients with glioblastoma: real promise or negative trial? The debate is open. Cancers 15, 3251 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Jackson, C. M., Choi, J. & Lim, M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat. Immunol. 20, 1100–1109 (2019).

    Article  CAS  PubMed  Google Scholar 

  211. Ashour, D. et al. IL-12 from endogenous cDC1, and not vaccine DC, is required for Th1 induction. JCI Insight 5, e135143 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Kleindienst, P. & Brocker, T. Endogenous dendritic cells are required for amplification of T cell responses induced by dendritic cell vaccines in vivo. J. Immunol. 170, 2817–2823 (2003).

    Article  CAS  PubMed  Google Scholar 

  213. Yewdall, A. W., Drutman, S. B., Jinwala, F., Bahjat, K. S. & Bhardwaj, N. CD8+ T cell priming by dendritic cell vaccines requires antigen transfer to endogenous antigen presenting cells. PLoS ONE 5, e11144 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Ferris, S. T. et al. cDC1 vaccines drive tumor rejection by direct presentation independently of host cDC1. Cancer Immunol. Res. 10, 920–931 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Freeman, J. L., Vari, F. & Hart, D. N. J. CMRF-56 immunoselected blood dendritic cell preparations activated with GM-CSF induce potent antimyeloma cytotoxic T-cell responses. J. Immunother. 30, 740–748 (2007).

    Article  CAS  PubMed  Google Scholar 

  216. Osugi, Y., Vuckovic, S. & Hart, D. N. J. Myeloid blood CD11c+ dendritic cells and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes. Blood 100, 2858–2866 (2002).

    Article  CAS  PubMed  Google Scholar 

  217. Zhou, Y. et al. Vaccine efficacy against primary and metastatic cancer with in vitro-generated CD103+ conventional dendritic cells. J. Immunother. Cancer 8, 13 (2020).

    Article  CAS  Google Scholar 

  218. Bol, K. F. et al. The clinical application of cancer immunotherapy based on naturally circulating dendritic cells. J. Immunother. Cancer 7, 109 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Wimmers, F., Schreibelt, G., Sköld, A. E., Figdor, C. G. & De Vries, I. J. M. Paradigm shift in dendritic cell-based immunotherapy: from in vitro generated monocyte-derived DCs to naturally circulating DC subsets. Front. Immunol. 5, 165 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Bloemendal, M. et al. Immunological responses to adjuvant vaccination with combined CD1c+ myeloid and plasmacytoid dendritic cells in stage III melanoma patients. OncoImmunology 11, 2015113 (2022).

    Article  PubMed  Google Scholar 

  221. Westdorp, H. et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J. Immunother. Cancer 7, 302 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Bol, K. et al. 1078MO MIND-DC: a randomized phase III trial to assess the efficacy of adjuvant dendritic cell vaccination in comparison to placebo in stage IIIB and IIIC melanoma patients. Ann. Oncol. 31, S732 (2020).

    Article  Google Scholar 

  223. Johnson, P., Rosendahl, N. & Radford, K. J. Conventional type 1 dendritic cells (cDC1) as cancer therapeutics: challenges and opportunities. Expert Opin. Biol. Ther. 22, 465–472 (2022).

    Article  CAS  PubMed  Google Scholar 

  224. Schwarze, J. K. et al. Intratumoral administration of CD1c (BDCA-1)+ and CD141 (BDCA-3)+ myeloid dendritic cells in combination with talimogene laherparepvec in immune checkpoint blockade refractory advanced melanoma patients: a phase I clinical trial. J. Immunother. Cancer 10, e005141 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Van Willigen, W. W. et al. Dendritic cell cancer therapy: vaccinating the right patient at the right time. Front. Immunol. 9, 2265 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Chang, H. et al. Co‐delivery of dendritic cell vaccine and anti-PD‐1 antibody with cryomicroneedles for combinational immunotherapy. Bioeng. Transl. Med. 8, e10457 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Stroopinsky, D. et al. Leukemia vaccine overcomes limitations of checkpoint blockade by evoking clonal T cell responses in a murine acute myeloid leukemia model. Haematologica 106, 1330–1342 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Zhu, S. et al. An effective dendritic cell-based vaccine containing glioma stem-like cell lysate and CpG adjuvant for an orthotopic mouse model of glioma. Int. J. Cancer 144, 2867–2879 (2019).

    Article  CAS  PubMed  Google Scholar 

  229. Esmaily, M. et al. Blockade of CTLA-4 increases anti-tumor response inducing potential of dendritic cell vaccine. J. Control. Release 326, 63–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  230. Barshidi, A. et al. Dual blockade of PD-1 and LAG3 immune checkpoints increases dendritic cell vaccine mediated T cell responses in breast cancer model. Pharm. Res. 39, 1851–1866 (2022).

    Article  CAS  PubMed  Google Scholar 

  231. Van Willigen, W. W. et al. Response and survival of metastatic melanoma patients treated with immune checkpoint inhibition for recurrent disease on adjuvant dendritic cell vaccination. OncoImmunology 9, 1738814 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Guo, Z. et al. Durable complete response to neoantigen-loaded dendritic-cell vaccine following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis. Oncol. 6, 34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Schwarze, J. K. et al. Intratumoral combinatorial administration of CD1c (BDCA-1)+ myeloid dendritic cells plus ipilimumab and avelumab in combination with intravenous low-dose nivolumab in patients with advanced solid tumors: a phase IB clinical trial. Vaccines 8, 670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. De Keersmaecker, B. et al. TriMix and tumor antigen mRNA electroporated dendritic cell vaccination plus ipilimumab: link between T-cell activation and clinical responses in advanced melanoma. J. Immunother. Cancer 8, e000329 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Fucikova, J. et al. An autologous dendritic cell vaccine promotes anticancer immunity in patients with ovarian cancer with low mutational burden and cold tumors. Clin. Cancer Res. 28, 3053–3065 (2022).

    Article  CAS  PubMed  Google Scholar 

  236. Zhang, W. et al. Phase I/II clinical trial of a Wilms’ tumor 1-targeted dendritic cell vaccination-based immunotherapy in patients with advanced cancer. Cancer Immunol. Immunother. 68, 121–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  237. Sioud, M. et al. Diversification of antitumour immunity in a patient with metastatic melanoma treated with ipilimumab and an IDO-silenced dendritic cell vaccine. Case Rep. Med. 2016, 9639585 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Sioud, M. et al. Silencing of indoleamine 2,3-dioxygenase enhances dendritic cell immunogenicity and antitumour immunity in cancer patients. Int. J. Oncol. 43, 280–288 (2013).

    Article  CAS  PubMed  Google Scholar 

  239. Matsushita, H. et al. A pilot study of autologous tumor lysate-loaded dendritic cell vaccination combined with sunitinib for metastatic renal cell carcinoma. J. Immunother. Cancer 2, 30 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Amin, A. et al. Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J. Immunother. Cancer 3, 14 (2015).

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  241. Tanyi, J. L. et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl. Med. 10, eaao5931 (2018).

    Article  PubMed  Google Scholar 

  242. Widén, K., Mozaffari, F., Choudhury, A. & Mellstedt, H. Overcoming immunosuppressive mechanisms. Ann. Oncol. 19, vii241–vii247 (2008).

    Article  PubMed  Google Scholar 

  243. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Finn, O. J. The dawn of vaccines for cancer prevention. Nat. Rev. Immunol. 18, 183–194 (2018).

    Article  CAS  PubMed  Google Scholar 

  245. Jansen, Y. et al. A randomized controlled phase II clinical trial on mRNA electroporated autologous monocyte-derived dendritic cells (TriMixDC-MEL) as adjuvant treatment for stage III/IV melanoma patients who are disease-free following the resection of macrometastases. Cancer Immunol. Immunother. 69, 2589–2598 (2020).

    Article  CAS  PubMed  Google Scholar 

  246. Matsui, H. M. et al. Novel adjuvant dendritic cell therapy with transfection of heat-shock protein 70 messenger RNA for patients with hepatocellular carcinoma: a phase I/II prospective randomized controlled clinical trial. Cancer Immunol. Immunother. 70, 945–957 (2021).

    Article  CAS  PubMed  Google Scholar 

  247. Tryggestad, A. M. A. et al. Long‐term first‐in‐man phase I/II study of an adjuvant dendritic cell vaccine in patients with high‐risk prostate cancer after radical prostatectomy. Prostate 82, 245–253 (2022).

    Article  PubMed  Google Scholar 

  248. Rodriguez, J. et al. A randomized phase II clinical trial of dendritic cell vaccination following complete resection of colon cancer liver metastasis. J. Immunother. Cancer 6, 96 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Boudewijns, S. et al. Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients. OncoImmunology 5, e1191732 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Wheeler, C. J., Das, A., Liu, G., Yu, J. S. & Black, K. L. Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin. Cancer Res. 10, 5316–5326 (2004).

    Article  CAS  PubMed  Google Scholar 

  251. Mittendorf, E. A., Burgers, F., Haanen, J. & Cascone, T. Neoadjuvant immunotherapy: leveraging the immune system to treat early-stage disease. Am. Soc. Clin. Oncol. Educ. Book 42, 1–15 (2022).

    PubMed  Google Scholar 

  252. Truxova, I. et al. Rationale for the combination of dendritic cell-based vaccination approaches with chemotherapy agents.Int. Rev. Cell Mol. Biol. 330, 115–156 (2017).

    Article  CAS  PubMed  Google Scholar 

  253. Rodríguez-Ruiz, M. E. et al. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann. Oncol. 29, 1312–1319 (2018).

    Article  PubMed  Google Scholar 

  254. Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 17, 725–741 (2020).

    Article  PubMed  Google Scholar 

  255. Rob, L. et al. Safety and efficacy of dendritic cell-based immunotherapy DCVAC/OvCa added to first-line chemotherapy (carboplatin plus paclitaxel) for epithelial ovarian cancer: a phase 2, open-label, multicenter, randomized trial. J. Immunother. Cancer 10, e003190 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Eisendle, K. et al. Combining chemotherapy and autologous peptide‐pulsed dendritic cells provides survival benefit in stage IV melanoma patients. J. Dtsch Dermatol. Ges. 18, 1270–1277 (2020).

    PubMed  PubMed Central  Google Scholar 

  257. He, D. et al. Single-cell RNA sequencing reveals heterogeneous tumor and immune cell populations in early-stage lung adenocarcinomas harboring EGFR mutations. Oncogene 40, 355–368 (2021).

    Article  CAS  PubMed  Google Scholar 

  258. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Cillo, A. R. et al. Immune landscape of viral- and carcinogen-driven head and neck cancer. Immunity 52, 183–199.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182, 497–514.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Higano, C. S. et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115, 3670–3679 (2009).

    Article  CAS  PubMed  Google Scholar 

  262. Small, E. J. et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol. 24, 3089–3094 (2006).

    Article  CAS  PubMed  Google Scholar 

  263. Beer, T. M. et al. Randomized trial of autologous cellular immunotherapy with sipuleucel-T in androgen-dependent prostate cancer. Clin. Cancer Res. 17, 4558–4567 (2011).

    Article  CAS  PubMed  Google Scholar 

  264. Beer, T. M. et al. Quality of life after sipuleucel-T therapy: results from a randomized, double-blind study in patients with androgen-dependent prostate cancer. Urology 82, 410–415 (2013).

    Article  PubMed  Google Scholar 

  265. Javed, A., Sato, S. & Sato, T. Autologous melanoma cell vaccine using monocyte-derived dendritic cells (NBS20/eltrapuldencel-T). Future Oncol. 12, 751–762 (2016).

    Article  CAS  PubMed  Google Scholar 

  266. Vogelzang, N. J. et al. Efficacy and safety of autologous dendritic cell-based immunotherapy, docetaxel, and prednisone vs placebo in patients with metastatic castration-resistant prostate cancer: the VIABLE phase 3 randomized clinical trial. JAMA Oncol. 8, 546 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Podrazil, M. et al. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget 6, 18192–18205 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Schuler-Thurner, B. et al. Immuntherapie beim Aderhautmelanom: vakzination gegen Krebs: multizentrische adjuvante phase-III-Impfstudie mit Tumor-RNA-beladenen dendritischen Zellen bei neu diagnostizierten, großen Uveamelanomen. Ophthalmologe 112, 1017–1021 (2015).

    Article  CAS  PubMed  Google Scholar 

  269. Nutt, S. L. & Chopin, M. Transcriptional networks driving dendritic cell differentiation and function. Immunity 52, 942–956 (2020).

    Article  CAS  PubMed  Google Scholar 

  270. Im, Y. & Kim, Y. A comprehensive overview of RNA deconvolution methods and their application. Mol. Cell 46, 99–105 (2023).

    Article  CAS  Google Scholar 

  271. Cancel, J.-C., Crozat, K., Dalod, M. & Mattiuz, R. Are conventional type 1 dendritic cells critical for protective antitumor immunity and how? Front. Immunol. 10, 9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Cheema, A. S., Duan, K., Dalod, M. & Vu Manh, T.-P. Harnessing single-cell RNA sequencing to identify dendritic cell types, characterize their biological states, and infer their activation trajectory. Methods Mol. Biol. 2618, 319–373 (2023).

    Article  CAS  PubMed  Google Scholar 

  273. Bayerl, F. et al. Guidelines for visualization and analysis of DC in tissues using multiparameter fluorescence microscopy imaging methods. Eur. J. Immunol. 53, e2249923 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the “La Caixa” Foundation (ID 100010434) Junior Leader Fellowship LCF/BQ/PR20/11770008 to S.K.W. and INPhINIT Fellowship LCF/BQ/IN17/11620074 to I.H.-M. I.A.-B. and M.G. are recipients of a Becas de Formación del Profesorado Universitario (FPU) fellowship (FPU18/05752 and FPU20/01418, respectively) from the Spanish Ministry of Science. The Institute for Research in Biomedicine (IRB Barcelona) is supported by the CERCA Programme (Government of Catalonia) and by a Severo Ochoa Award of Excellence from the Ministry of Economy and Competitiveness (Government of Spain). The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MICINN), and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (CEX2020-001041-S funded by MCIN/AEI/10.13039/501100011033).

Author information

Authors and Affiliations

Authors

Contributions

I.H.-M., S.K.W. and D.S. conceptualized the Review as well as the display items. All authors researched data for the article, contributed substantially to discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Stefanie K. Wculek or David Sancho.

Ethics declarations

Competing interests

I.H.M. serves as a scientific adviser for Pulmobiotics. S.K.W. serves as a scientific adviser for ONA therapeutics. D.S. serves as a scientific adviser for Pulmobiotics and has research collaboration agreements with Inmunotek and Adendra Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks M. Dalod, who co-reviewed with R. Akyol; L. Kandalaft; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heras-Murillo, I., Adán-Barrientos, I., Galán, M. et al. Dendritic cells as orchestrators of anticancer immunity and immunotherapy. Nat Rev Clin Oncol 21, 257–277 (2024). https://doi.org/10.1038/s41571-024-00859-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-024-00859-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer