Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Progression-free survival, disease-free survival and other composite end points in oncology: improved reporting is needed

Subjects

Abstract

Composite outcome measures such as progression-free survival and disease-free survival are increasingly used as surrogate end points in oncology research, frequently serving as the primary end point of pivotal trials that form the basis for FDA and EMA approvals. Such outcome measures combine two or more distinct events (for example, tumour (re)growth, new lesions and/or death) into a single, time-to-event end point. The use of a composite end point can increase the statistical power of a clinical trial and decrease the follow-up period required to demonstrate efficacy, thus lowering costs; however, these end points have a number of limitations. Composite outcomes are often vaguely defined, with definitions that vary greatly between studies, complicating comparisons of results across trials. Altering the makeup of events included in a composite outcome can alter study conclusions, including whether treatment effects are statistically significant. Moreover, the events included in a composite outcome often vary in clinical significance, reflect distinct biological pathways and/or are affected differently by treatment. Therefore, knowing the precise breakdown of the component events is essential to accurately interpret trial results and gauge the true benefit of an intervention. In oncology clinical trials, however, such information is rarely provided. In this Perspective, we emphasize this deficiency through a review of 50 studies with progression-free survival as an outcome published in five top oncology journals, discuss the advantages and challenges of using composite end points, and highlight the need for transparent reporting of the component events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Components of PFS according to RECIST definitions for disease progression.
Fig. 2: Definitions of PFS in patients with prostate cancer according to standard response criteria.
Fig. 3: Evaluation of the reporting of PFS component events in oncology studies.

Similar content being viewed by others

References

  1. Del Paggio, J. C. et al. Evolution of the randomized clinical trial in the era of precision oncology. JAMA Oncol. 7, 728–734 (2021).

    Article  PubMed  Google Scholar 

  2. Le-Rademacher, J. & Wang, X. Time-to-event data: an overview and analysis considerations. J. Thorac. Oncol. 16, 1067–1074 (2021).

    Article  PubMed  Google Scholar 

  3. McCoy, C. E. Understanding the use of composite endpoints in clinical trials. West J. Emerg. Med. 19, 631–634 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim, C. & Prasad, V. Cancer drugs approved on the basis of a surrogate end point and subsequent overall survival: an analysis of 5 years of US Food and Drug Administration approvals. JAMA Intern. Med. 175, 1992–1994 (2015).

    Article  PubMed  Google Scholar 

  5. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Delgado, A. & Guddati, A. K. Clinical endpoints in oncology–a primer. Am. J. Cancer Res. 11, 1121–1131 (2021).

    PubMed  PubMed Central  Google Scholar 

  7. Robinson, A. G., Booth, C. M. & Eisenhauer, E. A. Disease-free survival as an end-point in the treatment of solid tumours – perspectives from clinical trials and clinical practice. Eur. J. Cancer 50, 2298–2302 (2014).

    Article  PubMed  Google Scholar 

  8. Cohen, R. et al. Guidelines for time-to-event end-point definitions in adjuvant randomised trials for patients with localised colon cancer: results of the DATECAN initiative. Eur. J. Cancer 130, 63–71 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gourgou-Bourgade, S. et al. Guidelines for time-to-event end point definitions in breast cancer trials: results of the DATECAN initiative (Definition for the Assessment of Time-to-event Endpoints in CANcer trials). Ann. Oncol. 26, 873–879 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Fleming, M. T., Morris, M. J., Heller, G. & Scher, H. I. Post-therapy changes in PSA as an outcome measure in prostate cancer clinical trials. Nat. Rev. Clin. Oncol. 3, 658–667 (2006).

    Article  CAS  Google Scholar 

  11. Bubley, G. et al. Eligibility and response guidelines for phase II clinical trials in androgen-independent prostate cancer: recommendations from the Prostate-Specific Antigen Working Group. J. Clin. Oncol. 17, 3461–3467 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. J. Natl Cancer Inst. 92, 205–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Scher, H. I. et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J. Clin. Oncol. 26, 1148–1159 (2008).

    Article  PubMed  Google Scholar 

  14. Scher, H. I. et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the Prostate Cancer Clinical Trials Working Group 3. J. Clin. Oncol. 34, 1402–1418 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Franzese, C. et al. The efficacy of stereotactic body radiation therapy and the impact of systemic treatments in oligometastatic patients from prostate cancer. Cancer Med. 7, 4379–4386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gafita, A. et al. Early prostate-specific antigen changes and clinical outcome after 177Lu-PSMA radionuclide treatment in patients with metastatic castration-resistant prostate cancer. J. Nucl. Med. 61, 1476–1483 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Fizazi, K. et al. Phase III, randomized, placebo-controlled study of docetaxel in combination with zibotentan in patients with metastatic castration-resistant prostate cancer. J. clin. oncol. 31, 1740–1747 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Woo, S. et al. Correlation between imaging-based intermediate endpoints and overall survival in men with metastatic castration-resistant prostate cancer: analysis of 28 randomized trials using the Prostate Cancer Clinical Trials Working Group (PCWG2) criteria in 16,511 patients. Clin. Genitourin. Cancer 20, 69–79 (2022).

    Article  PubMed  Google Scholar 

  20. Shore, N. D. et al. Prostate-specific antigen (PSA) progression-free survival (PFS): a comparison of degarelix versus leuprolide in patients with prostate cancer [abstract]. J. Clin. Oncol. 29 (Suppl. 7), 12 (2011).

    Article  Google Scholar 

  21. Kato, H. et al. Consequences of an early PSA response to enzalutamide treatment for Japanese patients with metastatic castration-resistant prostate cancer. Anticancer Res. 36, 6141–6150 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, J. et al. AKR1C3 expression in primary lesion rebiopsy at the time of metastatic castration-resistant prostate cancer is strongly associated with poor efficacy of abiraterone as a first-line therapy. Prostate 79, 1553–1562 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, W. et al. Sequential use of the androgen synthesis inhibitors ketoconazole and abiraterone acetate in castration-resistant prostate cancer and the predictive value of circulating androgens. Clin. Cancer Res. 20, 6269–6276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saad, F. et al. Apalutamide plus abiraterone acetate and prednisone versus placebo plus abiraterone and prednisone in metastatic, castration-resistant prostate cancer (ACIS): a randomised, placebo-controlled, double-blind, multinational, phase 3 study. Lancet Oncol. 22, 1541–1559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rao, A. et al. Impact of clinical versus radiographic progression on clinical outcomes in metastatic castration-resistant prostate cancer. ESMO Open 5, e000943 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Choi, S. W. & Cheung, C. W. The case of the misleading composite – one outcome is better than two. Anaesthesia 71, 1101–1103 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Freemantle, N., Calvert, M., Wood, J., Eastaugh, J. & Griffin, C. Composite outcomes in randomized trials: greater precision but with greater uncertainty? JAMA 289, 2554–2559 (2003).

    Article  PubMed  Google Scholar 

  28. Lei, N. et al. Docetaxel-based therapy with and without antiangiogenic agents as first-line chemotherapy for castration-resistant prostate cancer: a meta-analysis of nine randomized controlled trials. Mol. Clin. Oncol. 2, 1182–1188 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kelly, W. K. et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J. Clin. Oncol. 30, 1534–1540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Quinn, D. I. et al. Docetaxel and atrasentan versus docetaxel and placebo for men with advanced castration-resistant prostate cancer (SWOG S0421): a randomised phase 3 trial. Lancet Oncol. 14, 893–900 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pili, R. et al. Phase II study on the addition of ASA404 (vadimezan; 5,6-dimethylxanthenone-4-acetic acid) to docetaxel in CRMPC. Clin. Cancer Res. 16, 2906–2914 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Heidenreich, A. et al. A randomized, double-blind, multicenter, phase 2 study of a human monoclonal antibody to human αν integrins (intetumumab) in combination with docetaxel and prednisone for the first-line treatment of patients with metastatic castration-resistant prostate cancer. Ann. Oncol. 24, 329–336 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Younes, A. et al. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann. Oncol. 28, 1436–1447 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheson, B. D. et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J. Clin. Oncol. 32, 3059–3067 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kostakoglu, L. et al. Recil 2017 criteria demonstrated similar prognostic value and detected a comparable treatment difference between obinutuzumab- and rituximab-chemotherapy compared with Cheson 2007 and Lugano 2014 criteria in patients with previously untreated advanced-stage follicular lymphoma [abstract]. Blood 136 (Suppl. 1), 25–26 (2020).

    Article  Google Scholar 

  36. Berzaczy, D. et al. RECIL versus Lugano for treatment response assessment in FDG-avid non-Hodgkin lymphomas: a head-to-head comparison in 54 patients. Cancers 12, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas: Response Assessment in Neuro-Oncology Working Group. J. Clin. Oncol. 28, 1963–1972 (2010).

    Article  PubMed  Google Scholar 

  38. Choi, H. et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J. Clin. Oncol. 25, 1753–1759 (2007).

    Article  PubMed  Google Scholar 

  39. Lencioni, R. & Llovet, J. M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 30, 52–60 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Lin, N. U. et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 16, e270–e278 (2015).

    Article  PubMed  Google Scholar 

  41. Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Bohnsack, O., Hoos, A. & Ludajic, K. Adaptation of the immune related response criteria: irrecist [abstract 1070P]. Ann. Oncol. 25 (Suppl. 4), iv369 (2014).

    Article  Google Scholar 

  43. Seymour, L. et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143–e152 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tazdait, M. et al. Patterns of responses in metastatic NSCLC during PD-1 or PDL-1 inhibitor therapy: comparison of RECIST 1.1, irRECIST and iRECIST criteria. Eur. J. Cancer 88, 38–47 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Park, H. J. et al. Comparison of RECIST 1.1 and iRECIST in patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Cancers 13, 120 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jaffe, C. C. Measures of response: RECIST, WHO, and new alternatives. J. Clin. Oncol. 24, 3245–3251 (2006).

    Article  PubMed  Google Scholar 

  47. Brody, T. Clinical Trials 2nd edn, 331–376 (Academic, 2016).

  48. Rao, A. V. et al. Age-specific differences in oncogenic pathway dysregulation in patients with acute myeloid leukemia. J. Clin. Oncol. 27, 5580–5586 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Schultz, K. R. et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children’s Oncology Group study. J. Clin. Oncol. 27, 5175–5181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cortes, J. E. et al. Results of dasatinib therapy in patients with early chronic-phase chronic myeloid leukemia. J. Clin. Oncol. 28, 398–404 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Marcucci, G. et al. High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol. 25, 3337–3343 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Hughes, T. P. et al. Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: an analysis from the International Randomized Study of Interferon and STI571 (IRIS). Blood 116, 3758–3765 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yin, J. et al. Evaluation of event-free survival as a robust end point in untreated acute myeloid leukemia (Alliance A151614). Blood Adv. 3, 1714–1721 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bellera, C. A. et al. Protocol of the Definition for the Assessment of Time-to-event Endpoints in CANcer trials (DATECAN) project: formal consensus method for the development of guidelines for standardised time-to-event endpoints’ definitions in cancer clinical trials. Eur. J. Cancer 49, 769–781 (2013).

    Article  PubMed  Google Scholar 

  55. Tyagi, P. & Chu, E. Adjuvant irinotecan regimens in combination with infusional 5-fluorouracil/leucovorin fail to improve outcomes in surgically resected colorectal cancer. Clin. Colorectal Cancer 5, 86–88 (2005).

    Article  PubMed  Google Scholar 

  56. Tolaney, S. M. et al. Updated Standardized Definitions for Efficacy End Points (STEEP) in adjuvant breast cancer clinical trials: STEEP version 2.0. J. Clin. Oncol. 39, 2720–2731 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hudis, C. et al. Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system. J. Clin. Oncol. 25, 2127–2132 (2007).

    Article  PubMed  Google Scholar 

  58. Saad, E. D. & Katz, A. Progression-free survival and time to progression as primary end points in advanced breast cancer: often used, sometimes loosely defined. Ann. Oncol. 20, 460–464 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Prasad, V., Kim, C., Burotto, M. & Vandross, A. The strength of association between surrogate end points and survival in oncology: a systematic review of trial-level meta-analyses. JAMA Intern. Med. 175, 1389–1398 (2015).

    Article  PubMed  Google Scholar 

  60. Ajani, J. A. et al. Disease-free survival as a surrogate endpoint for overall survival in adults with resectable esophageal or gastroesophageal junction cancer: a correlation meta-analysis. Eur. J. Cancer 170, 119–130 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Google Scholar. Top publications: oncology. Google Scholar https://scholar.google.co.uk/citations?view_op=top_venues&hl=en&vq=med_oncology (2023).

  62. Kip, K. E., Hollabaugh, K., Marroquin, O. C. & Williams, D. O. The problem with composite end points in cardiovascular studies: the story of major adverse cardiac events and percutaneous coronary intervention. J. Am. Coll. Cardiol. 51, 701–707 (2008).

    Article  PubMed  Google Scholar 

  63. Anderson, R. L. et al. A framework for the development of effective anti-metastatic agents. Nat. Rev. Clin. Oncol. 16, 185–204 (2019).

    Article  PubMed  Google Scholar 

  64. Beaver, J. A., Kluetz, P. G. & Pazdur, R. Metastasis-free survival – a new end point in prostate cancer trials. N. Engl. J. Med. 378, 2458–2460 (2018).

    Article  PubMed  Google Scholar 

  65. Bellera, C. A. et al. Guidelines for time-to-event end point definitions in sarcomas and gastrointestinal stromal tumors (GIST) trials: results of the DATECAN initiative (Definition for the Assessment of Time-to-event Endpoints in CANcer trials). Ann. Oncol. 26, 865–872 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Amabile, S. et al. Clinical significance of Distant Metastasis-Free Survival (DMFS) in melanoma: a narrative review from adjuvant clinical trials. J. Clin. Med. 10, 5475 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pan, H. et al. Comparison of survival outcomes among patients with breast cancer with distant vs ipsilateral supraclavicular lymph node metastases. JAMA Netw. Open 4, e211809 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhan, H., Zhao, X., Lu, Z., Yao, Y. & Zhang, X. Correlation and survival analysis of distant metastasis site and prognosis in patients with hepatocellular carcinoma. Front. Oncol. 11, 652768 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Twelves, C. et al. “New” metastases are associated with a poorer prognosis than growth of pre-existing metastases in patients with metastatic breast cancer treated with chemotherapy. Breast Cancer Res. 17, 150 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mori, R. et al. The mode of progressive disease affects the prognosis of patients with metastatic breast cancer. World J. Surg. Oncol. 16, 169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Suzuki, C. et al. The initial change in tumor size predicts response and survival in patients with metastatic colorectal cancer treated with combination chemotherapy. Ann. Oncol. 23, 948–954 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Stein, A. et al. Survival prediction in everolimus-treated patients with metastatic renal cell carcinoma incorporating tumor burden response in the RECORD-1 trial. Eur. Urol. 64, 994–1002 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Haslam, A., Hey, S. P., Gill, J. & Prasad, V. A systematic review of trial-level meta-analyses measuring the strength of association between surrogate end-points and overall survival in oncology. Eur. J. Cancer 106, 196–211 (2019).

    Article  PubMed  Google Scholar 

  74. Walsh, E. M., Nunes, R., Wilkinson, M. J. & Santa-Maria, C. A. Extended endocrine therapy for early-stage breast cancer: how do we decide? Curr. Oncol. Rep. 22, 123 (2020).

    Article  PubMed  Google Scholar 

  75. Algorashi, I., Goldvaser, H., Ribnikar, D., Cescon, D. W. & Amir, E. Evolution in sites of recurrence over time in breast cancer patients treated with adjuvant endocrine therapy. Cancer Treat. Rev. 70, 138–143 (2018).

    Article  PubMed  Google Scholar 

  76. Wilson, B. E., Desnoyers, A., Al-Showbaki, L., Nadler, M. B. & Amir, E. A retrospective analysis of changes in distant and breast cancer related disease-free survival events in adjuvant breast cancer trials over time. Sci. Rep. 12, 6352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Robinson, A. G. et al. Patient perspectives of value of delayed disease progression on imaging (imaging PFS). A treatment trade-off experiment. J. Cancer Policy 30, 100301 (2021).

    Article  PubMed  Google Scholar 

  78. Brundage, M. D. et al. Patients’ attitudes and preferences toward delayed disease progression in the absence of improved survival. J. Natl Cancer Inst., https://doi.org/10.1093/jnci/djad138 (2023).

    Article  PubMed  Google Scholar 

  79. Cordoba, G., Schwartz, L., Woloshin, S., Bae, H. & Gøtzsche, P. C. Definition, reporting, and interpretation of composite outcomes in clinical trials: systematic review. BMJ 341, c3920 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. European Medicines Agency. Appendix 1 to the guideline on the evaluation of anticancer medicinal products in man. European Medicines Agency https://www.ema.europa.eu/en/documents/scientific-guideline/appendix-1-guideline-evaluation-anticancer-medicinal-products-man-methodological-consideration-using_en.pdf (2012).

  81. European Network for Health Technology Assessment. Personalised medicine and co-dependent technologies, with a special focus on issues of study design. EUNETHTA https://www.eunethta.eu/wp-content/uploads/2018/03/Personalized_Medicine_2016-03-07_reflection_paper_pm_2nd_draft.pdf (2015).

  82. Sopik, V. & Narod, S. A. The relationship between tumour size, nodal status and distant metastases: on the origins of breast cancer. Breast Cancer Res. Treat. 170, 647–656 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gray, J. W. Evidence emerges for early metastasis and parallel evolution of primary and metastatic tumors. Cancer Cell 4, 4–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Bryce, A. H. et al. Radiographic progression with nonrising PSA in metastatic castration-resistant prostate cancer: post hoc analysis of PREVAIL. Prostate Cancer Prostatic Dis. 20, 221–227 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Merino, M. et al. Irreconcilable differences: the divorce between response rates, progression-free survival, and overall survival. J. Clin. Oncol. 41, 2706–2712 (2023).

    Article  PubMed  Google Scholar 

  86. Kumar, S. K. et al. Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 21, 1630–1642 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. D’Alterio, C., Scala, S., Sozzi, G., Roz, L. & Bertolini, G. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Semin. Cancer Biol. 60, 351–361 (2020).

    Article  PubMed  Google Scholar 

  88. Kim, H. T., Logan, B. & Weisdorf, D. J. Novel composite endpoints after allogeneic hematopoietic cell transplantation. Transplant. Cell. Ther. 27, 650–657 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Soiffer, R. J. & Chen, Y.-B. Pharmacologic agents to prevent and treat relapse after allogeneic hematopoietic cell transplantation. Blood Adv. 1, 2473–2482 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oulhaj, A., El Ghouch, A. & Holman, R. R. Testing for qualitative heterogeneity: an application to composite endpoints in survival analysis. Stat. Methods Med. Res. 28, 151–169 (2019).

    Article  PubMed  Google Scholar 

  91. Carroll, K. J. Analysis of progression-free survival in oncology trials: some common statistical issues. Pharm. Stat. 6, 99–113 (2007).

    Article  PubMed  Google Scholar 

  92. Herbst, R. S. et al. Adjuvant osimertinib for resected EGFR-mutated stage IB-IIIA non-small-cell lung cancer: updated results from the phase III randomized ADAURA trial. J. Clin. Oncol. 41, 1830–1840 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, E. Y., Joshi, S. K., Tran, A. & Prasad, V. Estimation of study time reduction using surrogate end points rather than overall survival in oncology clinical trials. JAMA Intern. Med. 179, 642 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Marsal, J.-R. et al. The use of a binary composite endpoint and sample size requirement: influence of endpoints overlap. Am. J. Epidemiol. 185, 832–841 (2017).

    Article  PubMed  Google Scholar 

  95. Cameron, L. Multiple Endpoints in Randomized Controlled Trials: a Review and an Illustration of the Global Test. Thesis, Western (2023).

  96. Faber, J. & Fonseca, L. M. How sample size influences research outcomes. Dent. Press J. Orthod. 19, 27–29 (2014).

    Article  Google Scholar 

  97. Bonnetain, F. et al. Guidelines for time-to-event end-point definitions in trials for pancreatic cancer. Results of the DATECAN initiative (Definition for the Assessment of Time-to-event End-points in CANcer trials). Eur. J. Cancer 50, 2983–2993 (2014).

    Article  PubMed  Google Scholar 

  98. Kramar, A. et al. Guidelines for the definition of time-to-event end points in renal cell cancer clinical trials: results of the DATECAN project. Ann. Oncol. 26, 2392–2398 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Kantoff, P. W. et al. Hydrocortisone with or without mitoxantrone in men with hormone-refractory prostate cancer: results of the cancer and leukemia group B 9182 study [abstract]. J. Clin. Oncol. 17 (8), 2506 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Beer, T. M. et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 371, 424–433 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Durie, B. G. M. et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet 389, 519–527 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. O’Brien, M. et al. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage IB–IIIA non-small-cell lung cancer (PEARLS/KEYNOTE-091): an interim analysis of a randomised, triple-blind, phase 3 trial. Lancet Oncol. 23, 1274–1286 (2022).

    Article  PubMed  Google Scholar 

  104. Van Cutsem, E. et al. Randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC-3. J. Clin. Oncol. 27, 3117–3125 (2009).

    Article  PubMed  Google Scholar 

  105. Martin, M. et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 18, 1688–1700 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Stone, R. M. et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N. Engl. J. Med. 377, 454–464 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Forde, P. M. et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 386, 1973–1985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shah, B. D. et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 398, 491–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Luke, J. J. et al. Pembrolizumab versus placebo as adjuvant therapy in completely resected stage IIB or IIC melanoma (KEYNOTE-716): a randomised, double-blind, phase 3 trial. Lancet 399, 1718–1729 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to discussion of the content. A.W. researched data for the article and wrote the manuscript. J.T. contributed to drafting of the figures. A.W. and V.P. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Anushka Walia.

Ethics declarations

Competing interests

V.P. receives research funding from Arnold Ventures through a grant made to UCSF and royalties for books and writing from Johns Hopkins Press, MedPage and the Free Press; and declares consultancy roles with UnitedHealthcare and OptumRX. In addition, V.P. hosts the podcasts, Plenary Session, VPZD and Sensible Medicine; writes the newsletters, Sensible Medicine, the Drug Development Letter, and VP’s Observations and Thoughts; and runs the YouTube channel Vinay Prasad MD MPH, which collectively earn revenue on the following platforms: Patreon, YouTube and Substack. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks M. Mayerhoefer, G. R. Mohyuddin and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walia, A., Tuia, J. & Prasad, V. Progression-free survival, disease-free survival and other composite end points in oncology: improved reporting is needed. Nat Rev Clin Oncol 20, 885–895 (2023). https://doi.org/10.1038/s41571-023-00823-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00823-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer