Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Drug-tolerant persister cells in cancer: the cutting edges and future directions

Abstract

Drug-tolerant persister (DTP) cell populations were originally discovered in antibiotic-resistant bacterial biofilms. Similar populations with comparable features have since been identified among cancer cells and have been linked with treatment resistance that lacks an underlying genomic alteration. Research over the past decade has improved our understanding of the biological roles of DTP cells in cancer, although clinical knowledge of the role of these cells in treatment resistance remains limited. Nonetheless, targeting this population is anticipated to provide new treatment opportunities. In this Perspective, we aim to provide a clear definition of the DTP phenotype, discuss the underlying characteristics of these cells, their biomarkers and vulnerabilities, and encourage further research on DTP cells that might improve our understanding and enable the development of more effective anticancer therapies.

Key points

  • Drug-tolerant persister (DTP) cells are phenotypically heterogeneous, with diverse characteristics such as slow-proliferating or quiescent phenotypes, and a range of metabolic adaptations, cell identity switches and immune-evasion mechanisms. The specific traits expressed depend on the type of cancer and the treatment received.

  • DTP cells arise stochastically. All cancer cells have the potential to enter a drug-tolerant state depending on their initial adaptive response to treatment.

  • The DTP cell phenotype is transient and does not reflect the presence of resistance mutations. These cells can either produce drug-sensitive progeny or evolve towards irreversible, acquired resistance mediated by acquired genomic alterations.

  • DTP cells emerge in tumours that initially respond to systemic anticancer therapies and might not be involved in disease recurrence following local therapies such as surgery. Incomplete responses to systemic therapies might reflect the coexistence of several distinct populations of resistant cancer cells, including dormant tumour cells, cancer stem cells, clones harbouring primary resistance and DTPs.

  • No universally accepted biomarkers enabling the identification of DTP cells currently exist. The roles of DTP cells should be investigated in the context of specific clinical scenarios to facilitate their optimal application in precision oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Persistence of DTP cells.
Fig. 2: Detection of DTP cells in clinical settings.
Fig. 3: Potential DTP cell-targeting therapeutic strategies.

Similar content being viewed by others

References

  1. Saini, K. S. & Twelves, C. Determining lines of therapy in patients with solid cancers: a proposed new systematic and comprehensive framework. Br. J. Cancer 125, 155–163 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Soria, J. C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Westover, D., Zugazagoitia, J., Cho, B. C., Lovly, C. M. & Paz-Ares, L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol. 29 (Suppl. 1), i10–i19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Long, G. V. et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N. Engl. J. Med. 377, 1813–1823 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Dummer, R. et al. Five-year analysis of adjuvant dabrafenib plus trametinib in stage III Melanoma. N. Engl. J. Med. 383, 1139–1148 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Burnett, A., Wetzler, M. & Lowenberg, B. Therapeutic advances in acute myeloid leukemia. J. Clin. Oncol. 29, 487–494 (2011).

    Article  PubMed  Google Scholar 

  7. Roth, B. J. et al. Randomized study of cyclophosphamide, doxorubicin, and vincristine versus etoposide and cisplatin versus alternation of these two regimens in extensive small-cell lung cancer: a phase III trial of the Southeastern Cancer Study Group. J. Clin. Oncol. 10, 282–291 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Rudin, C. M., Brambilla, E., Faivre-Finn, C. & Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Prim. 7, 3 (2021).

    Article  PubMed  Google Scholar 

  9. Shen, S., Vagner, S. & Robert, C. Persistent cancer cells: the deadly survivors. Cell 183, 860–874 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Luskin, M. R., Murakami, M. A., Manalis, S. R. & Weinstock, D. M. Targeting minimal residual disease: a path to cure? Nat. Rev. Cancer 18, 255–263 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vallette, F. M. et al. Dormant, quiescent, tolerant and persister cells: four synonyms for the same target in cancer. Biochem. Pharmacol. 162, 169–176 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Risson, E., Nobre, A. R., Maguer-Satta, V. & Aguirre-Ghiso, J. A. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer 1, 672–680 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 7, 834–846 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. Nat. Rev. Cancer 20, 398–411 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Valent, P. et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat. Rev. Cancer 12, 767–775 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Beck, B. & Blanpain, C. Unravelling cancer stem cell potential. Nat. Rev. Cancer 13, 727–738 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Malladi, S. et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165, 45–60 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ramirez, M. et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 7, 10690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harbeck, N. et al. De-escalation strategies in human epidermal growth factor receptor 2 (HER2)-positive early breast cancer (BC): final analysis of the West German Study Group Adjuvant Dynamic Marker-Adjusted Personalized Therapy Trial Optimizing Risk Assessment and Therapy Response Prediction in Early BC HER2- and Hormone Receptor-Positive Phase II Randomized Trial — efficacy, safety, and predictive markers for 12 weeks of neoadjuvant trastuzumab emtansine with or without endocrine therapy (ET) versus trastuzumab plus ET. J. Clin. Oncol. 35, 3046–3054 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Bigger, J. W. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244, 3 (1944).

    Article  Google Scholar 

  24. Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Urbaniec, J., Xu, Y., Hu, Y., Hingley-Wilson, S. & McFadden, J. Phenotypic heterogeneity in persisters: a novel ‘hunker’ theory of persistence. FEMS Microbiol. Rev. 46, fuab042 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Russo, M., Sogari, A. & Bardelli, A. Adaptive evolution: how bacteria and cancer cells survive stressful conditions and drug treatment. Cancer Discov. 11, 1886–1895 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Shen, S. et al. An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells. Nat. Commun. 10, 5713 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855.e19 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Biehs, B. et al. A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition. Nature 562, 429–433 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Russo, M. et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science 366, 1473–1480 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Rehman, S. K. et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell 184, 226–242.e21 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Alvarez-Varela, A. et al. Mex3a marks drug-tolerant persister colorectal cancer cells that mediate relapse after chemotherapy. Nat. Cancer 3, 1052–1070 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Risom, T. et al. Differentiation-state plasticity is a targetable resistance mechanism in basal-like breast cancer. Nat. Commun. 9, 3815 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Echeverria, G. V. et al. Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state. Sci. Transl. Med. 11, eaav0936 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Marsolier, J. et al. H3K27me3 conditions chemotolerance in triple-negative breast cancer. Nat. Genet. 54, 459–468 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liau, B. B. et al. Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 20, 233–246.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Farge, T. et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 7, 716–735 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salgia, R. & Kulkarni, P. The genetic/non-genetic duality of drug ‘resistance’ in cancer. Trends Cancer 4, 110–118 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hayford, C. E. et al. A heterogeneous drug tolerant persister state in BRAF-mutant melanoma is characterized by ion channel dysregulation and susceptibility to ferroptosis. Preprint at bioRxiv, https://doi.org/10.1101/2022.02.03.479045 (2022).

  41. Chang, C. A. et al. Ontogeny and vulnerabilities of drug-tolerant persisters in HER2+ breast cancer. Cancer Discov. 12, 1022–1045 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roesch, A. et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141, 583–594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roesch, A. et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1Bhigh cells. Cancer Cell 23, 811–825 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Kalkavan, H. et al. Sublethal cytochrome c release generates drug-tolerant persister cells. Cell 185, 3356–3374.e22 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Antoszczak, M. et al. Iron-sensitive prodrugs that trigger active ferroptosis in drug-tolerant pancreatic cancer cells. J. Am. Chem. Soc. 144, 11536–11545 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. El-Kenawi, A. B. et al. Elevated methionine flux drives pyroptosis evasion in persister cancer cells. Cancer Res. 83, 14 (2023).

    Article  Google Scholar 

  47. Dhimolea, E. et al. An embryonic diapause-like adaptation with suppressed myc activity enables tumor treatment persistence. Cancer Cell 39, 240–256.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oren, Y. et al. Cycling cancer persister cells arise from lineages with distinct programs. Nature 596, 576–582 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aissa, A. F. et al. Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer. Nat. Commun. 12, 1628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hejna, M. et al. Reinduction therapy with the same cytostatic regimen in patients with advanced colorectal cancer. Br. J. Cancer 78, 760–764 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Simon, G. R. & Wagner, H. American College of Chest Physicians. Small cell lung cancer. Chest 123 (Suppl. 1), 259S–271S (2003).

    Article  PubMed  Google Scholar 

  52. Colombo, N. & Gore, M. Treatment of recurrent ovarian cancer relapsing 6-12 months post platinum-based chemotherapy. Crit. Rev. Oncol. Hematol. 64, 129–138 (2007).

    Article  PubMed  Google Scholar 

  53. Sartore-Bianchi, A. et al. Circulating tumor DNA to guide rechallenge with panitumumab in metastatic colorectal cancer: the phase 2 CHRONOS trial. Nat. Med. 28, 1612–1618 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marine, J. C., Dawson, S. J. & Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20, 743–756 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Cabanos, H. F. & Hata, A. N. Emerging insights into targeted therapy-tolerant persister cells in cancer.Cancers 13, 2666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dhanyamraju, P. K., Schell, T. D., Amin, S. & Robertson, G. P. Drug-tolerant persister cells in cancer therapy resistance. Cancer Res. 82, 2503–2514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Naumov, G. N. et al. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res. Treat. 82, 199–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Min, M. & Spencer, S. L. Spontaneously slow-cycling subpopulations of human cells originate from activation of stress-response pathways. PLoS Biol. 17, e3000178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wiecek, A. J. et al. Genomic hallmarks and therapeutic implications of G0 cell cycle arrest in cancer. Genome Biol. 24, 128 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Fujii, M. & Sato, T. Defining the role of Lgr5+ stem cells in colorectal cancer: from basic research to clinical applications. Genome Med. 9, 66 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eyler, C. E. et al. Single-cell lineage analysis reveals genetic and epigenetic interplay in glioblastoma drug resistance. Genome Biol. 21, 174 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Recasens, A. et al. Global phosphoproteomics reveals DYRK1A regulates CDK1 activity in glioblastoma cells. Cell Death Discov. 7, 81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sadasivam, S. & DeCaprio, J. A. The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat. Rev. Cancer 13, 585–595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. MacDonald, J. et al. A systematic analysis of negative growth control implicates the DREAM complex in cancer cell dormancy. Mol. Cancer Res. 15, 371–381 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Shen, S. et al. Melanoma persister cells are tolerant to BRAF/MEK inhibitors via ACOX1-mediated fatty acid oxidation. Cell Rep. 33, 108421 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, Z. et al. Inhibition of NPC1L1 disrupts adaptive responses of drug-tolerant persister cells to chemotherapy. EMBO Mol. Med. 14, e14903 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gerosa, L. et al. Receptor-driven ERK pulses reconfigure MAPK signaling and enable persistence of drug-adapted BRAF-mutant melanoma cells. Cell Syst. 11, 478–494.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Russo, M. et al. A modified fluctuation-test framework characterizes the population dynamics and mutation rate of colorectal cancer persister cells. Nat. Genet. 54, 976–984 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Luria, S. E., & Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Baselga, J. et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 379, 633–640 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moyed, H. S. & Bertrand, K. P. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155, 768–775 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jacob Berger, A. et al. IRS1 phosphorylation underlies the non-stochastic probability of cancer cells to persist during EGFR inhibition therapy. Nat. Cancer 2, 1055–1070 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Barria, A., Muller, D., Derkach, V., Griffith, L. C. & Soderling, T. R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276, 2042–2045 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Menon, D. R. et al. A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene 34, 4545 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Guler, G. D. et al. Repression of stress-induced LINE-1 expression protects cancer cell subpopulations from lethal drug exposure. Cancer Cell 32, 221–237.e13 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Joers, A. & Tenson, T. Growth resumption from stationary phase reveals memory in Escherichia coli cultures. Sci. Rep. 6, 24055 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Riber, L. & Hansen, L. H. Epigenetic memories: the hidden drivers of bacterial persistence? Trends Microbiol. 29, 190–194 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Albeck, J. G. et al. Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol. Cell 30, 11–25 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tait, S. W. et al. Resistance to caspase-independent cell death requires persistence of intact mitochondria. Dev. Cell 18, 802–813 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oliver, L. et al. Constitutive presence of cytochrome c in the cytosol of a chemoresistant leukemic cell line. Apoptosis 10, 277–287 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, W. et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sehgal, K. et al. Dynamic single-cell RNA sequencing identifies immunotherapy persister cells following PD-1 blockade. J. Clin. Invest. 131, e135038 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Miao, Y. et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 177, 1172–1186.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nilsson, M. B. et al. CD70 is a therapeutic target upregulated in EMT-associated EGFR tyrosine kinase inhibitor resistance. Cancer Cell 41, 340–355.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Flieswasser, T. et al. Screening a broad range of solid and haematological tumour types for CD70 expression using a uniform IHC methodology as potential patient stratification method. Cancers 11, 1611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Johnson, P. J. & Levin, B. R. Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genet. 9, e1003123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nam, A. et al. Dynamic phenotypic switching and group behavior help non-small cell lung cancer cells evade chemotherapy. Biomolecules 12, 8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Noronha, A. et al. AXL and error-prone DNA replication confer drug resistance and offer strategies to treat EGFR-mutant lung cancer. Cancer Discov. 12, 2666–2683 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schmitt, M. et al. Colon tumour cell death causes mTOR dependence by paracrine P2X4 stimulation. Nature 612, 347–353 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Williams, A. F. et al. Abstract 99: Apoptotic DNase DFFB mediates cancer persister cell mutagenesis and acquired drug resistance. Cancer Res. 83 (Suppl. 7), 99 (2023).

    Article  Google Scholar 

  97. Ichim, G. et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 57, 860–872 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lovric, M. M. & Hawkins, C. J. TRAIL treatment provokes mutations in surviving cells. Oncogene 29, 5048–5060 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Velazquez, E. R., Aerts, H. J., Oberije, C., De Ruysscher, D. & Lambin, P. Prediction of residual metabolic activity after treatment in NSCLC patients. Acta Oncol. 49, 1033–1039 (2010).

    Article  PubMed  Google Scholar 

  100. Zamagni, E. et al. Impact of minimal residual disease standardised assessment by FDG-PET/CT in transplant-eligible patients with newly diagnosed multiple myeloma enrolled in the imaging sub-study of the FORTE trial. EClinicalMedicine 60, 102017 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Valkema, M. J. et al. Accuracy of 18F-FDG PET/CT in predicting residual disease after neoadjuvant chemoradiotherapy for esophageal cancer. J. Nucl. Med. 60, 1553–1559 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Lue, H. W. et al. Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade. Genes Dev. 31, 2067–2084 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Muller, S. et al. CD44 regulates epigenetic plasticity by mediating iron endocytosis. Nat. Chem. 12, 929–938 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chauvistre, H. et al. Persister state-directed transitioning and vulnerability in melanoma. Nat. Commun. 13, 3055 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jiang, H. et al. Ferrous iron-activatable drug conjugate achieves potent MAPK blockade in KRAS-driven tumors. J. Exp. Med. 219, e20210739 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Behr, S. C. et al. Targeting iron metabolism in high-grade glioma with 68Ga-citrate PET/MR. JCI Insight 3, e93999 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Behr, S. C. et al. A feasibility study showing [68Ga]citrate PET detects prostate cancer. Mol. Imaging Biol. 18, 946–951 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Aparici, C. M. et al. Imaging hepatocellular carcinoma with 68Ga-citrate PET: first clinical experience. Mol. Imaging 16, 1536012117723256 (2017).

    Google Scholar 

  110. Promteangtrong, C. et al. Head-to-head comparison of 68Ga-FAPI-46 and 18F-FDG PET/CT for evaluation of head and neck squamous cell carcinoma: a single-center exploratory study. J. Nucl. Med. 63, 1155–1161 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Spick, C., Herrmann, K. & Czernin, J. Evaluation of prostate cancer with 11C-acetate PET/CT. J. Nucl. Med. 57 (Suppl. 3), 30S–37S (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Park, S. et al. 11C-acetate and 18F-fluorodeoxyglucose positron emission tomography/computed tomography dual imaging for the prediction of response and prognosis after transarterial chemoembolization. Medicine 97, e12311 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Camidge, D. R. et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 379, 2027–2039 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Adler, S. et al. Minimum lesion detectability as a measure of PET system performance. EJNMMI Phys. 4, 13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Cohen, S. J. et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 3213–3221 (2008).

    Article  PubMed  Google Scholar 

  116. Krebs, M. G. et al. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat. Rev. Clin. Oncol. 11, 129–144 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Lawrence, R., Watters, M., Davies, C. R., Pantel, K. & Lu, Y. J. Circulating tumour cells for early detection of clinically relevant cancer. Nat. Rev. Clin. Oncol. 20, 487–500 (2023).

    Article  PubMed  Google Scholar 

  118. Ko, J. M. et al. Clinical utility of serial analysis of circulating tumour cells for detection of minimal residual disease of metastatic nasopharyngeal carcinoma. Br. J. Cancer 123, 114–125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brown, H. K. et al. Characterization of circulating tumor cells as a reflection of the tumor heterogeneity: myth or reality? Drug Discov. Today 24, 763–772 (2019).

    Article  PubMed  Google Scholar 

  120. Gabriel, M. T., Calleja, L. R., Chalopin, A., Ory, B. & Heymann, D. Circulating tumor cells: a review of non-EpCAM-based approaches for cell enrichment and isolation. Clin. Chem. 62, 571–581 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Andreopoulou, E. et al. Comparison of assay methods for detection of circulating tumor cells in metastatic breast cancer: AdnaGen AdnaTest BreastCancer Select/DetectTM versus Veridex CellSearchTM system. Int. J. Cancer 130, 1590–1597 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Feng, W. W. et al. CD36-mediated metabolic rewiring of breast cancer cells promotes resistance to HER2-targeted therapies. Cell Rep. 29, 3405–3420.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Vendramin, R. et al. Activation of the integrated stress response confers vulnerability to mitoribosome-targeting antibiotics in melanoma. J. Exp. Med. 218, e20210571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chuang, C. H. et al. Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis. Nat. Med. 23, 291–300 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Franco, S. S. et al. In vitro models of cancer stem cells and clinical applications. BMC Cancer 16, 738 (2016).

    Article  Google Scholar 

  127. Kantara, C. et al. Methods for detecting circulating cancer stem cells (CCSCs) as a novel approach for diagnosis of colon cancer relapse/metastasis. Lab. Invest. 95, 100–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Song, C. et al. Recurrent tumor cell-intrinsic and -extrinsic alterations during mapki-induced melanoma regression and early adaptation. Cancer Discov. 7, 1248–1265 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jee, J. et al. Overall survival with circulating tumor DNA-guided therapy in advanced non-small-cell lung cancer. Nat. Med. 28, 2353–2363 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Tie, J. et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N. Engl. J. Med. 386, 2261–2272 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, J. T. et al. Longitudinal undetectable molecular residual disease defines potentially cured population in localized non-small cell lung cancer. Cancer Discov. 12, 1690–1701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Abbosh, C. et al. Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA. Nature 616, 553–562 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Diehl, F. et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl Acad. Sci. USA 102, 16368–16373 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sadeh, R. et al. ChIP-seq of plasma cell-free nucleosomes identifies gene expression programs of the cells of origin. Nat. Biotechnol. 39, 586–598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tellez-Gabriel, M. et al. Circulating tumor cell-derived pre-clinical models for personalized medicine. Cancers 11, 19 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Maynard, A. et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 182, 1232–1251.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schwartz, L. H. et al. RECIST 1.1-update and clarification: from the RECIST committee. Eur. J. Cancer 62, 132–137 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor heterogeneity: the rosetta stone of therapy resistance. Cancer Cell 37, 471–484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Goyal, Y. et al. Diverse clonal fates emerge upon drug treatment of homogeneous cancer cells.Nature 620, 651–659 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Zhao, B. et al. Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell 165, 234–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rodriguez, R., Schreiber, S. L. & Conrad, M. Persister cancer cells: iron addiction and vulnerability to ferroptosis. Mol. Cell 82, 728–740 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Dos Santos, A. F., Fazeli, G., Xavier da Silva, T. N. & Friedmann Angeli, J. P. Ferroptosis: mechanisms and implications for cancer development and therapy response. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2023.04.005 (2023).

    Article  PubMed  Google Scholar 

  145. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shimada, K. et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ding, C. C. et al. MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis. Nat. Metab. 2, 270–277 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Olsen, N. J. & Stein, C. M. New drugs for rheumatoid arthritis. N. Engl. J. Med. 350, 2167–2179 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Vinogradova, M. et al. An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells. Nat. Chem. Biol. 12, 531–538 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Hinohara, K. et al. KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance. Cancer Cell 34, 939–953.e9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Olsen, E. A. et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 25, 3109–3115 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. US FDA. Drug Approval Package https://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021991s000_zolinzatoc.cfm (2006).

  154. Ramalingam, S. S. et al. Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J. Clin. Oncol. 28, 56–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Criscione, S. W. et al. The landscape of therapeutic vulnerabilities in EGFR inhibitor osimertinib drug tolerant persister cells. NPJ Precis. Oncol. 6, 95 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Karras, P. et al. A cellular hierarchy in melanoma uncouples growth and metastasis. Nature 610, 190–198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Marin-Bejar, O. et al. Evolutionary predictability of genetic versus nongenetic resistance to anticancer drugs in melanoma. Cancer Cell 39, 1135–1149.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Kurppa, K. J. et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 37, 104–122.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ruscetti, M. et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 362, 1416–1422 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ruscetti, M. et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Cell 181, 424–441.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fane, M. E. et al. Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature 606, 396–405 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang, C. et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 574, 268–272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Iwai, K. et al. A CDC7 inhibitor sensitizes DNA-damaging chemotherapies by suppressing homologous recombination repair to delay DNA damage recovery. Sci. Adv. 7, eabf0197 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Enriquez-Navas, P. M. et al. Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci. Transl. Med. 8, 327ra24 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Labrie, M., Brugge, J. S., Mills, G. B. & Zervantonakis, I. K. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat. Rev. Cancer 22, 323–339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hughes, D. & Andersson, D. I. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat. Rev. Genet. 16, 459–471 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Kuczynski, E. A., Sargent, D. J., Grothey, A. & Kerbel, R. S. Drug rechallenge and treatment beyond progression–implications for drug resistance. Nat. Rev. Clin. Oncol. 10, 571–587 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kavran, A. J. et al. Intermittent treatment of BRAF(V600E) melanoma cells delays resistance by adaptive resensitization to drug rechallenge. Proc. Natl Acad. Sci. USA 119, e2113535119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Algazi, A. P. et al. Continuous versus intermittent BRAF and MEK inhibition in patients with BRAF-mutated melanoma: a randomized phase 2 trial. Nat. Med. 26, 1564–1568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gonzalez-Cao, M. et al. Intermittent BRAF inhibition in advanced BRAF mutated melanoma results of a phase II randomized trial. Nat. Commun. 12, 7008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Brown, J. E. et al. Temporary treatment cessation versus continuation of first-line tyrosine kinase inhibitor in patients with advanced clear cell renal cell carcinoma (STAR): an open-label, non-inferiority, randomised, controlled, phase 2/3 trial. Lancet Oncol. 24, 213–227 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Hussain, M. et al. Intermittent versus continuous androgen deprivation in prostate cancer. N. Engl. J. Med. 368, 1314–1325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang, J., Cunningham, J. J., Brown, J. S. & Gatenby, R. A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 8, 1816 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Lewis, K. Persister cells. Ann. Rev. Microbiol. 64, 357–372 (2010).

    Article  CAS  Google Scholar 

  175. Cara, S. & Tannock, I. F. Retreatment of patients with the same chemotherapy: implications for clinical mechanisms of drug resistance. Ann. Oncol. 12, 23–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  176. Muss, H. B., Smith, L. R. & Cooper, M. R. Tamoxifen rechallenge: response to tamoxifen following relapse after adjuvant chemohormonal therapy for breast cancer. J. Clin. Oncol. 5, 1556–1558 (1987).

    Article  CAS  PubMed  Google Scholar 

  177. Palmieri, C. et al. Rechallenging with anthracyclines and taxanes in metastatic breast cancer. Nat. Rev. Clin. Oncol. 7, 561–574 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.S. acknowledges grant support from the National Natural Science Foundation of China (grant No. 82172794) and from the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University (grant No. Y2022JC002). C.R. thanks S. Bazin, O. and C. Courtin, Ensemble Contre le Mélanome, the Foundation Crédit Mutuel, Foundation Carrefour and the association Vaincre le Mélanome for their ongoing research funding support.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding authors

Correspondence to François Vallette or Shensi Shen.

Ethics declarations

Competing interests

C.R. has acted as a consultant for Astra Zeneca, BMS, MSD, Pfizer, Pierre Fabre, Roche, and Sanofi and is a co-founder of Ribonexus. Y.P., L.L., H.P., L.L., D.H., F.V. and S.S. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks R. Bernards, M. Herlyn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

PERSIST-SEQ: https://persist-seq.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Y., Li, L., Peng, H. et al. Drug-tolerant persister cells in cancer: the cutting edges and future directions. Nat Rev Clin Oncol 20, 799–813 (2023). https://doi.org/10.1038/s41571-023-00815-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00815-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer