Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune-checkpoint inhibition for resectable non-small-cell lung cancer — opportunities and challenges

Abstract

Therapeutic strategies harnessing the immune system to eliminate tumour cells have been successfully used for several cancer types, including in patients with advanced-stage non-small-cell lung cancer (NSCLC). In these patients, immune-checkpoint inhibitors (ICIs) can provide durable responses and improve overall survival either as monotherapy, or combined with chemotherapy or other immunotherapeutic agents. However, the implementation of ICIs in early stage NSCLC has been hampered by the continuous struggle to develop robust end points to assess their efficacy in this setting, especially those enabling a fast and reproducible evaluation of the clinical activity of neoadjuvant strategies. Several trials are testing ICIs, alone or in combination with chemotherapy, in early stage NSCLC as an adjuvant, neoadjuvant or perioperative approach. As a novelty, most trials in the neoadjuvant setting have adopted pathological response as a primary end point. ICIs have been approved for use in the neoadjuvant and adjuvant settings on the basis of event-free survival and disease-free survival benefit, respectively; however, the correlation of these end points with overall survival remains unclear in these settings. Unresolved challenges for the optimal use of ICIs with curative intent include concerns about their applicability in daily clinical practice and about improving patient selection based on predictive biomarkers or assessment of pathological response and minimal residual disease. In this Review, we discuss the rationale, available strategies and current trial landscape for the implementation of ICIs in patients with resectable NSCLC, and we further elaborate on future approaches to optimize their clinical benefit.

Key points

  • Preoperative, postoperative and perioperative treatment with immune-checkpoint inhibitors (ICIs) can be exploited therapeutically to maximize clinical outcomes in patients with resectable (stage I–IIIA/B) non-small-cell lung cancer (NSCLC).

  • In patients with resectable NSCLC, the addition of nivolumab to neoadjuvant platinum-doublet chemotherapy significantly increases pathological response rates and prolongs event-free survival.

  • In patients with PD-L1-positive resected stage II–IIIA NSCLC, adjuvant treatment with atezolizumab or pembrolizumab after platinum-based chemotherapy significantly prolongs disease-free survival.

  • Perioperative chemoimmunotherapy with ICIs such as durvalumab, toripalimab and pembrolizumab significantly increases pathological response rates and prolongs event-free survival.

  • Determination of optimal combinations, sequence and duration of ICI treatment, as well as the identification of robust biomarkers and end points in both the neoadjuvant and adjuvant settings, remain important challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological rationale for ICI-based treatment of patients with resectable non-small-cell lung cancer.
Fig. 2: Clinical trials of neoadjuvant and perioperative ICIs in resectable non-small-cell lung cancer.
Fig. 3: Ongoing clinical trials of adjuvant immune-checkpoint inhibitors in resectable non-small-cell lung cancer.
Fig. 4: Neoadjuvant versus adjuvant treatment with immune-checkpoint inhibitors in patients with resectable non-small-cell lung cancer.

References

  1. Reck, M., Remon, J. & Hellmann, M. D. First-line immunotherapy for non-small-cell lung cancer. J. Clin. Oncol. 40, 586–597 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Spigel, D. R. et al. Five-year survival outcomes from the PACIFIC trial: durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. J. Clin. Oncol. 40, 1301–1311 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schmid, P. et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 382, 810–821 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Kelly, R. J. et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N. Engl. J. Med. 384, 1191–1203 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Choueiri, T. K. et al. Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma. N. Engl. J. Med. 385, 683–694 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Bajorin, D. F. et al. Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma. N. Engl. J. Med. 384, 2102–2114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weber, J. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Eggermont, A. M. M. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N. Engl. J. Med. 378, 1789–1801 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Patel, S. P. et al. Neoadjuvant–adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N. Engl. J. Med. 388, 813–823 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cascone, T. et al. Superior efficacy of neoadjuvant compared to adjuvant immune checkpoint blockade in non-small cell lung cancer [abstract]. Cancer Res. 78 (Suppl. 13), 1719 (2018).

    Article  Google Scholar 

  11. Vansteenkiste, J. F. et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 17, 822–835 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Vansteenkiste, J. et al. Current status of immune checkpoint inhibition in early-stage NSCLC. Ann. Oncol. 30, 1244–1253 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Pignon, J. P. et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J. Clin. Oncol. 26, 3552–3559 (2006).

    Article  Google Scholar 

  14. Bakos, O. et al. Combining surgery and immunotherapy: turning an immunosuppressive effect into a therapeutic opportunity. J. Immunother. Cancer 6, 86 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Matzner, P. et al. Harnessing cancer immunotherapy during the unexploited immediate perioperative period. Nat. Rev. Clin. Oncol. 17, 313–326 (2020).

    Article  PubMed  Google Scholar 

  16. Chaft, J. E. et al. Evolution of systemic therapy for stages I-III non-metastatic non-small-cell lung cancer. Nat. Rev. Clin. Oncol. 18, 547–557 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharma, S. et al. Tumor cyclooxygenase-2/prostaglandin E-2-dependent promotion of FOXP3 expression and CD4+CD25+ T regulatory cell activities in lung cancer. Cancer Res. 65, 5211–5220 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Topalian, S. L., Taube, J. M. & Pardoll, D. M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 367, eaax0182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McGranahan, N. et al. Clonal neoantigens elIicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, J. et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 6, 1382–1399 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Martín-Ruiz, A. et al. Effects of anti-PD-1 immunotherapy on tumor regression: insights from a patient-derived xenograft model. Sci. Rep. 10, 7078 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Forde, P. M. et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 378, 1976–1986 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rosner, S. et al. Neoadjuvant nivolumab in early-stage non-small cell lung cancer (NSCLC): five-year outcomes [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 8537 (2022).

    Article  Google Scholar 

  24. Hellmann, M. D. et al. Pathological response after neoadjuvant chemotherapy in resectable non-small-cell lung cancers: proposal for the use of major pathological response as a surrogate endpoint. Lancet Oncol. 15, e42–e50 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cascone, T. et al. Neoadjuvant chemotherapy plus nivolumab with or without ipilimumab in operable non-small cell lung cancer: the phase 2 platform NEOSTAR trial. Nat. Med. 29, 593–604 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chaft, J. E. et al. Neoadjuvant atezolizumab for resectable non-small cell lung cancer: an open-label, single-arm phase II trial. Nat. Med. 28, 2155–2161 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Besse, B. et al. Neoadjuvant atezolizumab (A) for resectable non-small cell lung cancer (NSCLC): results from the phase II PRINCEPS trial [abstract 1215O - SC]. Ann. Oncol. 31(S4), S794–S795 (2020).

    Article  Google Scholar 

  28. Wislez, M. et al. Neoadjuvant durvalumab for resectable non- small-cell lung cancer (NSCLC): results from a multicenter study (IFCT-1601 IONESCO). J. Immunother. Cancer 10, e005636 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, F. et al. Three-year follow-up of neoadjuvant programmed cell death protein-1 inhibitor (sintilimab) in NSCLC. J. Thorac. Oncol. 17, 909–920 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Rusch, W. et al. Surgical results of the Lung Cancer Mutation Consortium 3 trial: a phase II multicenter single-arm study to investigate the efficacy and safety of atezolizumab as neoadjuvant therapy in patients with stages IB-select IIIB resectable non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 165, 828–839.e6 (2023).

    Article  Google Scholar 

  31. Cascone, T. et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial. Nat. Med. 27, 504–514 (2021).   

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aigner, C. et al. Surgical outcomes of patients with resectable non-small-cell lung cancer receiving neoadjuvant immunotherapy with nivolumab plus relatlimab or nivolumab: findings from the prospective, randomized, multicentric phase II study NEOpredict-Lung [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 8500 (2023).

    Article  Google Scholar 

  33. Reuss, J. E. et al. Neoadjuvant nivolumab plus ipilimumab in resectable non-small cell lung cancer. J. Immunother. Cancer 8, e001282 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mok, T. S. K. et al. CANOPY-N: A phase II trial of canakinumab (CAN) or pembrolizumab (PEM), alone or in combination, as neoadjuvant therapy in patients (pts) with resectable stage Ib–IIIa non-small-cell lung cancer [abstract LBA4]. Ann. Oncol. 33 (Suppl. 9), S1547–S1548 (2022).

    Article  Google Scholar 

  35. Reckamp, K. L. et al. Phase II randomized study of ramucirumab and pembrolizumab versus standard of care in advanced non-small-cell lung cancer previously treated with immunotherapy – Lung-MAP S1800A. J. Clin. Oncol. 40, 2295–2306 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aokage, K. et al. Pembrolizumab and ramucirumab neoadjuvant therapy for PD-L1-positive stage IB-IIIA lung cancer (EAST ENERGY) [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 8509 (2023).

    Article  Google Scholar 

  37. Rothschild, S. I. et al. SAKK 16/14: durvalumab in addition to neoadjuvant chemotherapy in patients with stage IIIA(N2) non-small-cell lung cancer – a multicenter single-arm phase II trial. J. Clin. Oncol. 39, 2872–2880 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, P. et al. Neoadjuvant sintilimab and chemotherapy for resectable stage IIIA non-small cell lung cancer. Ann. Thorac. Surg. 22, 949–958 (2022).

    Article  Google Scholar 

  39. Shu, C. A. et al. Neoadjuvant atezolizumab and chemotherapy in patients with resectable non-small-cell lung cancer: an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 21, 786–795 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Provencio, M. et al. Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (NADIM): an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 21, 1413–1422 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Provencio, M. et al. Overall survival and biomarker analysis of neoadjuvant nivolumab plus chemotherapy in operable stage IIIA non-small-cell lung cancer (NADIM phase II trial). J. Clin. Oncol. 40, 2924–2933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Provencio, M. et al. Perioperative nivolumab and chemotherapy in stage III non-small-cell lung cancer. New. Engl. J. Med., https://doi.org/10.1056/NEJMoa2215530 (2023).

    Article  PubMed  Google Scholar 

  43. Forde, P. M. et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 386, 1973–1985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heymach, J. et al. AEGEAN: a phase 3 trial of neoadjuvant durvalumab + chemotherapy followed by adjuvant durvalumab in patients with resectable NSCLC [abstract]. Cancer Res. 83 (Suppl. 8), CT005 (2023).

    Article  Google Scholar 

  45. Lu, S. et al. Perioperative toripalimab + platinum-doublet chemotherapy vs chemotherapy in resectable stage II/III non-small cell lung cancer (NSCLC): interim event-free survival (EFS) analysis of the phase III Neotorch study [abstract]. J. Clin. Oncol. 41 (Suppl. 36), 425126 (2023).

    Article  Google Scholar 

  46. Wakelee, H. et al. Perioperative pembrolizumab for early-stage non-small-cell lung cancer. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2302983 (2023).

    Article  PubMed  Google Scholar 

  47. US Food and Drug Administration. FDA approves neoadjuvant nivolumab and platinum-doublet chemotherapy for early-stage non-small cell lung cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-neoadjuvant-nivolumab-and-platinum-doublet-chemotherapy-early-stage-non-small-cell-lung (2022).

  48. Forde, P. M. et al. Neoadjuvant nivolumab (N) + platinum-doublet chemotherapy (C) for resectable NSCLC: 3-y update from CheckMate 816 [abstract 84O]. J. Thorac. Oncol. 18 (Suppl. 4), S89–S90 (2023).

    Article  Google Scholar 

  49. Spicer, J. et al. Clinical outcomes with neoadjuvant nivolumab (N) + chemotherapy (C) vs C by definitive surgery in patients (pts) with resectable NSCLC: 3-y results from the phase 3 CheckMate 816 trial. J. Clin. Oncol. 41, 8521 (2023).

    Article  Google Scholar 

  50. Qiu, F. et al. Two cycles versus three cycles of neoadjuvant sintilimab plus platinum-doublet chemotherapy in patients with resectable non-small-cell lung cancer (neoSCORE): a randomized, single center, two-arm phase II trial [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 8500 (2022).

    Article  Google Scholar 

  51. Altorki, N. K. et al. Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial. Lancet Oncol. 22, 824–835 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03924869 (2023).

  53. Felip, E. et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower 010): a randomised, multicentre, open-label, phase 3 trial. Lancet 398, 1344–1357 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Paz-Ares, L. et al. Pembrolizumab (pembro) versus placebo for early-stage non-small cell lung cancer (NSCLC) following complete resection and adjuvant chemotherapy (chemo) when indicated: randomized, triple-blind, phase III EORTC-1416-LCG/ETOP 8-15 – PEARLS/KEYNOTE-091 study [abstract VP3-2022]. Ann. Oncol. 33, 451–453 (2022).

    Article  Google Scholar 

  55. US Food and Drug Administration. FDA approves atezolizumab as adjuvant treatment for non-small cell lung cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-atezolizumab-adjuvant-treatment-non-small-cell-lung-cancer (2023).

  56. Felip, E. et al. IMpower010: Sites of relapse and subsequent therapy from a phase III study of atezolizumab vs best supportive care after adjuvant chemotherapy in stage IB-IIIA NSCLC [abstract LBA9]. Ann. Oncol. 32 (Suppl. 5), S1319 (2021).

    Article  Google Scholar 

  57. European Medicines Agency. Tecentriq: atezolizumab. European Medicines Agency https://www.ema.europa.eu/en/documents/smop/chmp-post-authorisation-summary-opinion-tecentriq-ii-64_en.pdf (2022).

  58. Wakelee, H. et al. IMpower010: Overall survival interim analysis of a phase III study of atezolizumab vs best supportive care in resected NSCLC [abstract PL03.09]. J. Thorac. Oncol. 17 (Suppl. 9), S2 (2022).

    Article  Google Scholar 

  59. O’Brien, M. et al. EORTC-1416-LCG/ETOP 8-15 – PEARLS/KEYNOTE-091 study of pembrolizumab versus placebo for completely resected early-stage non-small cell lung cancer (NSCLC): outcomes in subgroups related to surgery, disease burden, and adjuvant chemotherapy use [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 8512 (2022).

    Article  Google Scholar 

  60. US National Library of Medicine.ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04385368 (2023).

  61. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04642469 (2023).

  62. Garon, E. et al. CANOPY-A: A phase III study of canakinumab (CAN) as adjuvant therapy in patients (pts) with surgically resected non-small cell lung cancer (NSCLC) [abstract LBA49]. Ann. Oncol. 33 (Suppl. 7), S1414–S1415 (2022).

    Article  Google Scholar 

  63. Rami-Porta, R., Wittekind, C. & Goldstraw, P. International Association for the Study of Lung Cancer Staging Committee Complete resection in lung cancer surgery: proposed definition. Lung Cancer 49, 25–33 (2005).

    Article  PubMed  Google Scholar 

  64. Allaeys, T., Berzenji, L. & Schil, Van P. E. Surgery after induction targeted therapy and immunotherapy for lung cancer. Cancers 13, 2603 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bott, M. J. et al. Initial results of pulmonary resection after neoadjuvant nivolumab in patients with resectable non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 158, 269–276 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Provencio, M., Calvo, V., Romero, A., Spicer, J. D. & Cruz-Bermudez, A. Treatment sequencing in resectable lung cancer: the good and the bad of adjuvant versus neoadjuvant therapy. Am. Soc. Clin. Oncol. Educ. Book 42, 1–18 (2022).

    PubMed  Google Scholar 

  67. Felip, E. et al. Preoperative chemotherapy plus surgery versus surgery plus adjuvant chemotherapy versus surgery alone in early-stage non-small-cell lung cancer. J. Clin. Oncol. 28, 3138–3145 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Kehl, K. L. et al. Rates of guideline-concordant surgery and adjuvant chemotherapy among patients with early-stage lung cancer in the US Alchemist study. JAMA Oncol. 8, 717–728 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Carbone et al. Updated survival, efficacy and safety of adjuvant (adj) atezolizumab (atezo) after neoadjuvant (neoadj) atezo in the phase II LCMC3 study [abstract 145MO]. J. Thorac. Oncol. 18 (Suppl. 4), S90–S91 (2023).

    Article  Google Scholar 

  70. Mazieres, J. et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann. Oncol. 30, 1321–1328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ghamati, M. R. et al. Surgery without preoperative histological confirmation of lung cancer: what is the current clinical practice? J. Thorac. Dis. 13, 5765–5775 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Moding, E. J. et al. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small cell lung cancer. Nat. Cancer 1, 176–183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Anagnostou, V. et al. Dynamics of tumor and immune responses during immune checkpoint blockade in non-small cell lung cancer. Cancer Res. 79, 1214–1225 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Goldberg, S. B. et al. Early assessment of lung cancer immunotherapy response via circulating tumor DNA. Clin. Cancer Res. 24, 1872–1880 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nabet, B. Y. et al. Noninvasive early identification of therapeutic benefit from immune checkpoint inhibition. Cell 183, 363–376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xia, L. et al. Perioperative ctDNA-based molecular residual disease detection for non-small cell lung cancer: a prospective multicenter cohort study (LUNGCA-1). Clin. Cancer Res. 28, 3308–3317 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, J. T. et al. Longitudinal undetectable molecular residual disease defines potentially cured population in localized non-small cell lung cancer. Cancer Discov. 12, 1690–1701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tie, J. et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N. Engl. J. Med. 386, 2261–2272 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim, E. S. et al. Blood-based tumor mutational burden as a biomarker for atezolizumab in non-small cell lung cancer: the phase 2 B-F1RST trial. Nat. Med. 28, 939–945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kris, M. G. et al. Dynamic circulating tumour DNA (ctDNA) response to neoadjuvant atezolizumab and surgery and association with outcomes in patients with NSCLC. Ann. Oncol. 32, S1373–S1391 (2021).

    Article  Google Scholar 

  82. Chen, K. et al. Perioperative dynamic changes in circulating tumor DNA in patients with lung cancer (DYNAMIC). Clin. Cancer Res. 25, 7058–7067 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Zhou, C. et al. IMpower010: Biomarkers of disease-free survival (DFS) in a phase 3 study of atezolizumab (atezo) vs best supportive care (BSC) after adjuvant chemotherapy in stage IB-IIIA NSCLC [abstract 2O]. Ann. Oncol. 32 (Suppl. 7), S1374 (2021).

    Article  Google Scholar 

  84. West, H. J. et al. Clinical efficacy of atezolizumab plus bevacizumab and chemotherapy in KRAS-mutated non-small cell lung cancer with STK11, KEAP1, or TP53 comutations: subgroup results from the phase III IMpower150 trial. J. Immunother. Cancer 10, e003027 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Herbst, R. S. et al. Adjuvant osimertinib for resected EGFR-mutated stage IB-IIIA non-small-cell lung cancer: updated results from the phase III randomized ADAURA trial. J. Clin. Oncol. 41, 1830–1840 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tsuboi, M. et al. Overall survival with osimertinib in resected EGFR-mutated NSCLC. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2304594 (2023).

    Article  PubMed  Google Scholar 

  87. Wu, Y.-L. et al. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med. 383, 1711–1723 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, S. Y. et al. Perioperative targeted therapy for oncogene-driven NSCLC. Lung Cancer 172, 160–169 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Mielgo-Rubio, X. et al. Targeted therapy moves to earlier stages of non-small-cell lung cancer: emerging evidence, controversies and future challenges. Future Oncol. 17, 4011–4025 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Waterhouse, D. M. et al. Continuous versus 1-year fixed-duration nivolumab in previously treated advanced non-small-cell lung cancer: CheckMate 153. J. Clin. Oncol. 38, 3863–3873 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zalcman, G. et al. Nivolumab (Nivo) plus ipilimumab (Ipi) 6-months treatment versus continuation in patients with advanced non-small cell lung cancer (aNSCLC): results of the randomized IFCT-1701 phase III trial [abstract 972O]. Ann. Oncol. 33 (Suppl. 7), S992 (2022).

    Article  Google Scholar 

  92. Brahmer, J. R. et al. Five-year survival outcomes with nivolumab plus ipilimumab versus chemotherapy as first-line treatment for metastatic non-small cell lung cancer in CheckMate 227. J. Clin. Oncol. 41, 1200–1212 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Betticher, D. C. et al. Cisplatin neoadjuvant chemotherapy is prognostic of survival in patients with stage IIIA pN2 non-small-cell lung cancer: a multicenter phase II trial. J. Clin. Oncol. 21, 1752–1759 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Depierre, A. et al. Preoperative chemotherapy followed by surgery compared with primary surgery in resectable stage I (except T1N0), II, and IIIa non-small-cell lung cancer. J. Clin. Oncol. 20, 247–253 (2002).

    PubMed  Google Scholar 

  95. Betticher, D. C. et al. Prognostic factors affecting long-term outcomes in patients with resected stage IIIA pN2 non-small-cell lung cancer: 5-year follow-up of a phase II study. Br. J. Cancer 94, 1099–1106 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mouillet, G. et al. Pathologic complete response to preoperative chemotherapy predicts cure in early-stage non-small-cell lung cancer: combined analysis of two IFCT randomized trials. J. Thorac. Oncol. 7, 841–849 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Liao, W.-Y. et al. Neoadjuvant chemotherapy with docetaxel-cisplatin in patients with stage III N2 non-small-cell lung cancer. Clin. Lung Cancer 14, 418–424 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Dacic, S. et al. Artificial intelligence (AI)-powered pathologic response (PathR) assessment of resection specimens after neoadjuvant atezolizumab in patients with non-small cell lung cancer: results from the LCMC3 study [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 106 (2021).

    Article  Google Scholar 

  99. Sheth, S. et al. Durvalumab activity in previously treated patients who stopped durvalumab without disease progression. J. Immunother. Cancer 8, e000650 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rodriguez-Abreu, D. et al. Pooled analysis of outcomes with second-course pembrolizumab across 5 phase 3 studies of non-small-cell lung cancer. J. Thorac. Oncol. 17, S42–S43 (2022).

    Article  Google Scholar 

  101. Akamatsu, H. et al. Nivolumab re-treatment in non-small cell lung cancer patients who responded to prior immune-checkpoint inhibitors and had ICI-free intervals (WJOG9616L). Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-22-0602 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sezer, A. et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: a multicenter, open-label, global, phase 3, randomised, controlled trial. Lancet 397, 592–604 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Muthusamy, B. et al. Quantifying the value of multigene testing in resected early-stage lung adenocarcinoma. J. Thorac. Oncol. 18, 476–486 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Gao, S. et al. Neoadjuvant PD-1 inhibitor (sintilimab) in NSCLC. J. Thor. Oncol. 15, 816–826 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.M. dedicates this work to his father, who died of cancer during the preparation of this Review.

Author information

Authors and Affiliations

Authors

Contributions

G.M., J.R., L.E.L.H., R.G.-C. and S.P. contributed substantially to discussion of contents. All the authors researched data for the article, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Giannis Mountzios.

Ethics declarations

Competing interests

G.M. has acted as an adviser and/or consultant for Amgen, AstraZeneca, BMS, GSK, MSD, Novartis, Pfizer, Roche, Sanofi and Takeda; has received travel and accommodation fees from Amgen, AstraZeneca, BMS, GSK, Ipsen, MSD, Novartis, Roche, Sanofi and Takeda; and has been a principal investigator in clinical trials sponsored by Amgen, AstraZeneca, BMS, Gilead, GSK, Ιmmunomedics, Merck, MSD, Novartis, Roche and Sanofi. J.R. has acted as an adviser for Bayer, BMS, Boehringer Ingelheim, GenMab, Janssen, MSD and Takeda; has received speaker fees from Janssen and Pfizer; has received honoraria from MSD; and has received travel fees from AstraZeneca, BMS, OSE Immunotherapeutics and Roche. L.E.L.H. has received speaker fees from Benecke, Medtalks and VJOncology; has received personal fees from the committee that revised the Dutch guidelines on non-small-cell lung cancer, brain metastases and leptomeningeal metastases, AstraZeneca, Janssen and Roche; has received institutional fees from Amgen, AstraZeneca, Bayer, Beigene, BMS, Boehringer Eli Lilly, Ingelheim, high5oncology, Janssen, Merck, MSD, Novartis, Pfizer, Roche and Takeda; has received institutional research grants from AstraZeneca, Boehringer Ingelheim, Merck, Pfizer, Roche and Takeda; and has received institutional funding as a local principal investigator from AbbVie, AstraZeneca, Blueprint Medicines, Gilead, GSK, Merck Serono, Mirati, MSD, Novartis, Roche and Takeda. R.G.-C. has acted as an adviser and/or consultant for AstraZeneca, BMS, Eli Lilly, Janssen, MSD, Novartis, Pfizer, Roche, Sanofi and Takeda; has received speaker fees from AstraZeneca, BMS, Eli Lilly, Janssen, MSD, Novartis, Pfizer, Roche, Sanofi and Takeda; and has received research funding from BMS. C.R. has received consulting fees from Archer, Bayer, Boston Pharmaceuticals, Daiichi Sankyo, Eisai, EMD Serono, General Dynamics, Inviata, Janssen, Mirati, Novartis, Pfizer and Sanofi; has had stock options from Novartis; has been in the speaker’s bureau of AstraZeneca, COR2D, Guardanthealth, Intellisphere, MSD, Physician’s Education Resource, LLC and Roche; has received grant support from Pfizer; and has participated in the safety monitoring board of EMD Serono. P.V.S. is an adviser and/or has received honoraria for lectures from AstraZeneca, BMS, Janssen, MSD and Roche. P.M.F. receives institutional research funding from AstraZeneca, BMS, Corvus, Kyowa, Novartis and Regeneron; has been a consultant for Amgen, AstraZeneca, BMS, Daiichi, F-Star, G1, Roche Genentech, Janssen, Iteos, Merck, Novartis, Sanofi and Surface; and is a member of the data and safety monitoring board at Polaris. B.B. receives institutional grants from Abbvie, Amgen, AstraZeneca, Biogen, Blueprint Medicines, BMS, Celgene, Eli Lilly, GSK, Ignyta, Ipsen, Merck, MSD, Nektar, Onxeo, Pfizer, Pharma Mar, Sanofi, Spectrum Pharmaceuticals, Takeda and Tiziana Pharma. V.S. receives research funding and/or grant support for clinical trials from AbbVie, Agensys, Alfasigma, Altum, Amgen, Bayer, BERG Health, Blueprint Medicines, Boston Biomedical, Boston Pharmaceuticals, Celgene, D3 Bio, Dragonfly Therapeutics, Exelixis, Fujifilm, GSK, Idera Pharmaceuticals, Incyte Corporation, Inhibrx, Loxo Oncology, MedImmune, MultiVir, NanoCarrier, Northwest Biotherapeutics, Novartis, PharmaMar, Pfizer, Relay Therapeutics, Roche/Genentech, Takeda, Turning Point Therapeutics and Vegenics; has received travel support from Helsinn Healthcare, Incyte Corporation, Novartis and PharmaMar; has acted as a consultant and/or adviser for Eli Lilly, Helsinn Healthcare, Jazz Pharmaceuticals,  Incyte Corporation, Loxo Oncology, MedImmune, Novartis, QED Therapeutics, Relay Therapeutics, Daiichi-Sankyo and R-Pharm; and has other relationships with Medscape. M.R. has received personal honoraria for lectures and consultancy from Amgen, AstraZeneca, Beigene, BMS, Boehringer Ingelheim, Daiichi Sankyo, GSK, Elli Lilly, Merck, Mirati, MSD, Novartis, Pfizer, Regeneron, Roche and Sanofi; is a paid member of the data monitoring committee for Daiichi-Sankyo and Sanofi; and has received travel and accommodation fees from Amgen, AstraZeneca, Beigene, BMS, Boehringer Ingelheim, Daiichi Sankyo, Eli Lilly, GSK, Merck, Mirati, MSD, Novartis, Pfizer, Regeneron, Roche and Sanofi. J.-C.S. is a full-time employee at Amgen; and holds shares from Amgen, Gritstone Bio and Relay Therapeutics. S.P. has had consultant and/or advisory roles at AbbVie, Amgen, AstraZeneca, Bayer, Beigene, Biocartis, BMS, Boehringer Ingelheim, Clovis, Daiichi Sankyo, Debiopharm, ecancer, Eli Lilly, Foundation Medicine, Illumina, Imedex, Incyte, Janssen, Medscape, Merck Serono, Merrimack, MSD, Novartis, Pharma Mar, Phosplatin Therapeutics, Pfizer, Regeneron, Roche/Genentech, Sanofi, Seattle Genetics and Takeda; has been a speaker for AstraZeneca, BMS, Boehringer Ingelheim, ecancer, Eli Lilly, Illumina, Imedex, Medscape, Merck Sharp and Dohme, Novartis, Pfizer, Prime, Roche/Genentech, Sanofi and Takeda; and has received institutional grants and/or institutional financial support for clinical trials sponsored by Amgen, AstraZeneca, Biodesix, BMS, Boehringer Ingelheim, Clovis, Eli Lilly, GSK, Illumina, Merck Serono, Mirati, MSD, Novartis, Pfizer, Phosplatin Therapeutics and Roche/Genentech.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks J. Chaft, D. Tan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mountzios, G., Remon, J., Hendriks, L.E.L. et al. Immune-checkpoint inhibition for resectable non-small-cell lung cancer — opportunities and challenges. Nat Rev Clin Oncol 20, 664–677 (2023). https://doi.org/10.1038/s41571-023-00794-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00794-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing