Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy

Abstract

Oncogenesis is associated with intestinal dysbiosis, and stool shotgun metagenomic sequencing in individuals with this condition might constitute a non-invasive approach for the early diagnosis of several cancer types. The prognostic relevance of antibiotic intake and gut microbiota composition urged investigators to develop tools for the detection of intestinal dysbiosis to enable patient stratification and microbiota-centred clinical interventions. Moreover, since the advent of immune-checkpoint inhibitors (ICIs) in oncology, the identification of biomarkers for predicting their efficacy before starting treatment has been an unmet medical need. Many previous studies addressing this question, including a meta-analysis described herein, have led to the description of Gut OncoMicrobiome Signatures (GOMS). In this Review, we discuss how patients with cancer across various subtypes share several GOMS with individuals with seemingly unrelated chronic inflammatory disorders who, in turn, tend to have GOMS different from those of healthy individuals. We discuss findings from the aforementioned meta-analysis of GOMS patterns associated with clinical benefit from or resistance to ICIs across different cancer types (in 808 patients), with a focus on metabolic and immunological surrogate markers of intestinal dysbiosis, and propose practical guidelines to incorporate GOMS in decision-making for prospective clinical trials in immuno-oncology.

Key points

  • Oncogenesis can cause a stress ileopathy (characterized by an ectopic accumulation of enteroendocrine cells and an imbalance between sympathetic and cholinergic signalling) associated with an intestinal dysbiosis.

  • Studies of the links between intestinal dysbiosis and microbial tissue colonization or infection could provide novel insights relevant to the aetiology, prevention and treatment of various cancer types, such as pancreatic adenocarcinomas and urothelial carcinomas.

  • Patients with cancer share gut microbiome signatures with individuals with seemingly unrelated disorders characterized by an imbalance between health-related and chronic inflammatory disease-related commensals.

  • In the past decade, investigators have identified Gut OncoMicrobiome signatures (GOMS) that share profile commonalities across cancer histotypes.

  • GOMS might constitute a promising, non-invasive and cost-effective approach for early diagnosis of various different cancer types.

  • GOMS are candidate predictors of resistance to immune-checkpoint inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cancer-associated confounding factors (ageing, comorbidities and comedications) associated with or causatively link to intestinal dysbiosis.
Fig. 2: Pan-cancer GOMS compared with healthy metagenomic profiles.
Fig. 3: GOMS related to response or lack of response to immune checkpoint inhibitors identified by mega-analysis.
Fig. 4: GOMS related to response or lack of response to immune checkpoint inhibitors identified by meta-analysis.
Fig. 5: Challenges in using microbiota-related biomarkers in oncology.
Fig. 6: Proposed pathway to define GOMS-based clinical guidelines.

Similar content being viewed by others

References

  1. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Cassidy, L. D. et al. Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk. Nat. Commun. 11, 307 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. López-Otín, C. & Kroemer, G. Hallmarks of health. Cell 184, 33–63 (2021).

    Article  PubMed  Google Scholar 

  5. Derosa, L. et al. The immuno-oncological challenge of COVID-19. Nat. Cancer 1, 946–964 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Rutkowski, M. R. et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27, 27–40 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. McKee, A. M. et al. Antibiotic-induced disturbances of the gut microbiota result in accelerated breast tumor growth. iScience 24, 103012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buchta Rosean, C. et al. Preexisting commensal dysbiosis is a host-intrinsic regulator of tissue inflammation and tumor cell dissemination in hormone receptor-positive breast cancer. Cancer Res. 79, 3662–3675 (2019).

    Article  PubMed  Google Scholar 

  9. Ghosh, T. S., Das, M., Jeffery, I. B. & O’Toole, P. W. Adjusting for age improves identification of gut microbiome alterations in multiple diseases. eLife 9, e50240 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bindels, L. B. et al. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. Oncotarget 9, 18224–18238 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ubachs, J. et al. Gut microbiota and short-chain fatty acid alterations in cachectic cancer patients. J. Cachexia Sarcopenia Muscle 12, 2007–2021 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G. & Gajewski, T. F. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 359, 1366–1370 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl Acad. Sci. USA 108, 4586–4591 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sonowal, R. et al. Indoles from commensal bacteria extend healthspan. Proc. Natl Acad. Sci. USA 114, E7506–E7515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alexeev, E. E. et al. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am. J. Pathol. 188, 1183–1194 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bindels, L. B. et al. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME J. 10, 1456–1470 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Fidelle, M. et al. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science 380, eabo2296 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Jackson, M. A. et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut 65, 749–756 (2016).

    Article  PubMed  Google Scholar 

  25. Yonekura, S. et al. Cancer induces a stress ileopathy depending on β-adrenergic receptors and promoting dysbiosis that contributes to carcinogenesis. Cancer Discov. 12, 1128–1151 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Derosa, L. et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur. Urol. 78, 195–206 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Terrisse, S. et al. Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment. Cell Death Differ. 28, 2778–2796 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Terrisse, S. et al. Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer. J. Immunother. Cancer 10, e004191 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pernigoni, N. et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science 374, 216–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Collins, J. R. Small intestinal mucosal damage with villous atrophy: a review of the literature. Am. J. Clin. Pathol. 44, 36–44 (1965).

    Article  CAS  PubMed  Google Scholar 

  32. Gilat, T., Fischel, B., Danon, J. & Loewenthal, M. Morphology of small bowel mucosa in malignancy. Digestion 7, 147–155 (1972).

    Article  CAS  PubMed  Google Scholar 

  33. Stanley, D. et al. Translocation and dissemination of commensal bacteria in post-stroke infection. Nat. Med. 22, 1277–1284 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Singh, V. et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 36, 7428–7440 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Gupta, V. K. et al. A predictive index for health status using species-level gut microbiome profiling. Nat. Commun. 11, 4635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blanco-Míguez, A. et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01688-w (2023)

  38. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McCulloch, J. A. et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 28, 545–556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 28, 315–324 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Wind, T. T. et al. Gut microbial species and metabolic pathways associated with response to treatment with immune checkpoint inhibitors in metastatic melanoma. Melanoma Res. 30, 235–246 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Frankel, A. E. et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 19, 848–855 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nagata, N. et al. Metagenomic identification of microbial signatures predicting pancreatic cancer from a multinational study. Gastroenterology 163, 222–238 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Feng, Q. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun. 6, 6528 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679–689 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25, 667–678 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vogtmann, E. et al. Colorectal cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing. PLoS ONE 11, e0155362 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kartal, E. et al. A faecal microbiota signature with high specificity for pancreatic cancer. Gut 71, 1359–1372 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Peters, B. A. et al. Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients. Genome Med. 11, 61 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321–332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. De Filippis, F. et al. Distinct genetic and functional traits of human intestinal Prevotella copri strains are associated with different habitual diets. Cell Host Microbe 25, 444–453.e3 (2019).

    Article  PubMed  Google Scholar 

  58. Dhakan, D. B. et al. The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches. Gigascience 8, giz004 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  Google Scholar 

  60. Keohane, D. M. et al. Microbiome and health implications for ethnic minorities after enforced lifestyle changes. Nat. Med. 26, 1089–1095 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Nielsen, H. B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1897 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Xie, H. et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. 3, 572–584.e3 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bogert, B., van den, Meijerink, M., Zoetendal, E. G., Wells, J. M. & Kleerebezem, M. Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota. PLoS ONE 9, e114277 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hong, H.-E., Kim, A.-S., Kim, M.-R., Ko, H.-J. & Jung, M. K. Does the use of proton pump inhibitors increase the risk of pancreatic cancer? A systematic review and meta-analysis of epidemiologic studies. Cancers 12, 2220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zackular, J. P., Rogers, M. A. M., Ruffin, M. T. & Schloss, P. D. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev. Res. 7, 1112–1121 (2014).

    Article  CAS  Google Scholar 

  73. Beghini, F. et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife 10, e65088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Long, X. et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat. Microbiol. 4, 2319–2330 (2019).

    Article  PubMed  Google Scholar 

  76. Drewes, J. L. et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes 3, 34 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Flemer, B. et al. The oral microbiota in colorectal cancer is distinctive and predictive. Gut 67, 1454–1463 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Schmidt, T. S. et al. Extensive transmission of microbes along the gastrointestinal tract. Elife 8, e42693 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nakatsu, G. et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology 155, 529–541.e5 (2018).

    Article  PubMed  Google Scholar 

  80. Tomkovich, S. et al. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. J. Clin. Invest. 129, 1699–1712 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl Acad. Sci. USA 111, 18321–18326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lui, R. N. et al. Global increasing incidence of young-onset colorectal cancer across 5 continents: a joinpoint regression analysis of 1,922,167 cases. Cancer Epidemiol. Biomark. Prev. 28, 1275–1282 (2019).

    Article  Google Scholar 

  83. Yang, Y. et al. Dysbiosis of human gut microbiome in young-onset colorectal cancer. Nat. Commun. 12, 6757 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kong, C. et al. Integrated metagenomic and metabolomic analysis reveals distinct gut-microbiome-derived phenotypes in early-onset colorectal cancer. Gut https://doi.org/10.1136/gutjnl-2022-327156 (2022).

    Article  PubMed  Google Scholar 

  85. Thomas, A. M. & Segata, N. Multiple levels of the unknown in microbiome research. BMC Biol. 17, 48 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lin, Y. et al. Altered mycobiota signatures and enriched pathogenic Aspergillus rambellii are associated with colorectal cancer based on multicohort fecal metagenomic analyses. Gastroenterology 163, 908–921 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Liu, N.-N. et al. Multi-kingdom microbiota analyses identify bacterial-fungal interactions and biomarkers of colorectal cancer across cohorts. Nat. Microbiol. 7, 238–250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Topalian, S. L., Taube, J. M. & Pardoll, D. M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 367, eaax0182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Matson, V., Chervin, C. S. & Gajewski, T. F. Cancer and the microbiome–influence of the commensal microbiota on cancer, immune responses, and immunotherapy. Gastroenterology 160, 600–613 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Derosa, L. et al. Microbiota-centered interventions: the next breakthrough in immuno-oncology? Cancer Discov. 11, 2396–2412 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hakozaki, T. et al. The gut microbiome associates with immune checkpoint inhibition outcomes in patients with advanced non-small cell lung cancer. Cancer Immunol. Res. 8, 1243–1250 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Cascone, T. et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial. Nat. Med. 27, 504–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Salgia, N. J. et al. Stool microbiome profiling of patients with metastatic renal cell carcinoma receiving anti-PD-1 immune checkpoint inhibitors. Eur. Urol. 78, 498–502 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Jin, Y. et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in chinese patients with NSCLC. J. Thorac. Oncol. 14, 1378–1389 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Newsome, R. C. et al. Interaction of bacterial genera associated with therapeutic response to immune checkpoint PD-1 blockade in a United States cohort. Genome Med. 14, 35 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Park, E. M. et al. Targeting the gut and tumor microbiota in cancer. Nat. Med. 28, 690–703 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Mao, J. et al. Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers. J. Immunother. Cancer 9, e003334 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Peng, Z. et al. The gut microbiome is associated with clinical response to anti-PD-1/PD-L1 immunotherapy in gastrointestinal cancer. Cancer Immunol. Res. 8, 1251–1261 (2020).

    Article  PubMed  Google Scholar 

  100. Zheng, Y. et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J. Immunother. Cancer 7, 193 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. de Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022).

    Article  PubMed  Google Scholar 

  103. Schneider, K. M. et al. Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment. Nat. Commun. 13, 3964 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ansaldo, E. et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 364, 1179–1184 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cascone, T. et al. Neoadjuvant chemotherapy plus nivolumab with or without ipilimumab in operable non-small cell lung cancer: the phase 2 platform NEOSTAR trial. Nat. Med. 29, 593–604 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shaikh, F. Y. et al. Murine fecal microbiota transfer models selectively colonize human microbes and reveal transcriptional programs associated with response to neoadjuvant checkpoint inhibitors. Cancer Immunol. Immunother. 71, 2405–2420 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Shaikh, F. Y. et al. A uniform computational approach improved on existing pipelines to reveal microbiome biomarkers of nonresponse to immune checkpoint inhibitors. Clin. Cancer Res. 27, 2571–2583 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Limeta, A., Ji, B., Levin, M., Gatto, F. & Nielsen, J. Meta-analysis of the gut microbiota in predicting response to cancer immunotherapy in metastatic melanoma. JCI Insight 5, 140940 (2020).

    Article  PubMed  Google Scholar 

  109. He, Y. et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat. Med. 24, 1532–1535 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Simpson, R. C. et al. Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome. Nat. Med. https://doi.org/10.1038/s41591-022-01965-2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hegazy, A. N. et al. Circulating and tissue-resident CD4+ T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology 153, 1320–1337.e16 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Bourgonje, A. R. et al. Patients with inflammatory bowel disease show IgG immune responses towards specific intestinal bacterial genera. Front. Immunol. 13, 842911 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lodes, M. J. et al. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest. 113, 1296–1306 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rengarajan, S. et al. Dynamic immunoglobulin responses to gut bacteria during inflammatory bowel disease. Gut Microbes 11, 405–420 (2020).

    Article  PubMed  Google Scholar 

  117. Overacre-Delgoffe, A. E. et al. Microbiota-specific T follicular helper cells drive tertiary lymphoid structures and anti-tumor immunity against colorectal cancer. Immunity 54, 2812–2824.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Noble, A. et al. Altered immunity to microbiota, B cell activation and depleted γδ/resident memory T cells in colorectal cancer. Cancer Immunol. Immunother. https://doi.org/10.1007/s00262-021-03135-8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Meylan, M. et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55, 527–541.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Goubet, A.-G. et al. Escherichia coli-specific CXCL13-producing TFH are associated with clinical efficacy of neoadjuvant PD-1 blockade against muscle-invasive bladder cancer. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-22-0201 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wu, J. et al. A highly polarized TH2 bladder response to infection promotes epithelial repair at the expense of preventing new infections. Nat. Immunol. 21, 671–683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yacouba, A., Tidjani Alou, M., Lagier, J.-C., Dubourg, G. & Raoult, D. Urinary microbiota and bladder cancer: a systematic review and a focus on uropathogens. Semin. Cancer Biol. https://doi.org/10.1016/j.semcancer.2021.12.010 (2022).

    Article  PubMed  Google Scholar 

  123. Zitvogel, L. & Kroemer, G. Cross-reactivity between microbial and tumor antigens. Curr. Opin. Immunol. 75, 102171 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Daillère, R. et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45, 931–943 (2016).

    Article  PubMed  Google Scholar 

  127. Rong, Y. et al. Reactivity toward Bifidobacterium longum and Enterococcus hirae demonstrate robust CD8+ T cell response and better prognosis in HBV-related hepatocellular carcinoma. Exp. Cell Res. 358, 352–359 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Smith, M. et al. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat. Med. 28, 713–723 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Whitfield-Cargile, C. M. et al. The non-invasive exfoliated transcriptome (exfoliome) reflects the tissue-level transcriptome in a mouse model of NSAID enteropathy. Sci. Rep. 7, 14687 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Haenen, D. et al. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J. Nutr. 143, 274–283 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Park, J., Goergen, C. J., HogenEsch, H. & Kim, C. H. Chronically elevated levels of short-chain fatty acids induce T cell-mediated ureteritis and hydronephrosis. J. Immunol. 196, 2388–2400 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Kespohl, M. et al. The microbial metabolite butyrate induces expression of Th1-associated factors in CD4+ T cells. Front. Immunol. 8, 1036 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Mariño, E. et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 18, 552–562 (2017).

    Article  PubMed  Google Scholar 

  138. Mathewson, N. D. et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat. Immunol. 17, 505–513 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Trompette, A. et al. Dietary fiber confers protection against flu by shaping Ly6c patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity 48, 992–1005.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Bachem, A. et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51, 285–297.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Luu, M. et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 10, 760 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yuille, S., Reichardt, N., Panda, S., Dunbar, H. & Mulder, I. E. Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS ONE 13, e0201073 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Luu, M. et al. Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat. Commun. 12, 4077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nomura, M. et al. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw. Open 3, e202895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Coutzac, C. et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat. Commun. 11, 2168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Uribe-Herranz, M. et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J. Clin. Invest. 130, 466–479 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Munn, D. H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Uyttenhove, C. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9, 1269–1274 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Wang, Y., Hu, G.-F. & Wang, Z.-H. The status of immunosuppression in patients with stage IIIB or IV non-small-cell lung cancer correlates with the clinical characteristics and response to chemotherapy. Onco Targets Ther. 10, 3557–3566 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Holmgaard, R. B., Zamarin, D., Munn, D. H., Wolchok, J. D. & Allison, J. P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210, 1389–1402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Botticelli, A. et al. Can IDO activity predict primary resistance to anti-PD-1 treatment in NSCLC? J. Transl. Med. 16, 219 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li, H. et al. Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nat. Commun. 10, 4346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Kaur, H., Bose, C. & Mande, S. S. Tryptophan metabolism by gut microbiome and gut-brain-axis: an in silico analysis. Front. Neurosci. 13, 1365 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bender, M. J. et al. Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell 186, 1846–1862.e26 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Laurans, L. et al. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat. Med. 24, 1113–1120 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Goubet, A.-G. et al. Prolonged SARS-CoV-2 RNA virus shedding and lymphopenia are hallmarks of COVID-19 in cancer patients with poor prognosis. Cell Death Differ. 28, 3297–3315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Danlos, F.-X. et al. Metabolomic analyses of COVID-19 patients unravel stage-dependent and prognostic biomarkers. Cell Death Dis. 12, 258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Peyraud, F. et al. Circulating L-arginine predicts the survival of cancer patients treated with immune checkpoint inhibitors. Ann. Oncol. 33, 1041–1051 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Geiger, R. et al. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Canale, F. P. et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598, 662–666 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Messaoudene, M. et al. A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota. Cancer Discov. 12, 1070–1087 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Grajeda-Iglesias, C. et al. Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites. Aging 13, 6375–6405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Montégut, L., de Cabo, R., Zitvogel, L. & Kroemer, G. Science-driven nutritional interventions for the prevention and treatment of cancer. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-22-0504 (2022).

    Article  PubMed  Google Scholar 

  165. Pietrocola, F. et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 30, 147–160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bourgin, M. et al. Circulating acetylated polyamines correlate with Covid-19 severity in cancer patients. Aging 13, 20860–20885 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Nie, X. et al. Serum metabolite biomarkers predictive of response to PD-1 blockade therapy in non-small cell lung cancer. Front. Mol. Biosci. 8, 678753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wu, K. et al. The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood 136, 501–515 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mirji, G. et al. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. Sci. Immunol. 7, eabn0704 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Narunsky-Haziza, L. et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 185, 3789–3806.e17 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Stein-Thoeringer, C. K. et al. A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy. Nat. Med. 29, 906–916 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Mok, T. et al. Phase 3 KEYNOTE-042 trial of pembrolizumab (MK-3475) versus platinum doublet chemotherapy in treatment-naive patients (pts) with PD-L1–positive advanced non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. 33 (Suppl. 15), TPS8105 (2015).

    Article  Google Scholar 

  175. Center for Devices and Radiological Health. List of cleared or approved companion diagnostic devices (in vitro and imaging tools) (FDA, 2023).

  176. Marabelle, A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Rizvi, H. et al. Molecular determinants of response to anti-programmed cell death (PD)−1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J. Clin. Oncol. 36, 633–641 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Rousseau, B. et al. The spectrum of benefit from checkpoint blockade in hypermutated tumors. N. Engl. J. Med. 384, 1168–1170 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Hellmann, M. D. et al. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Mezquita, L. et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol. 4, 351–357 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Yoon, H.-Y. et al. Association between neutrophil-to-lymphocyte ratio and gut microbiota in a large population: a retrospective cross-sectional study. Sci. Rep. 8, 16031 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Schalper, K. A. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat. Med. 26, 688–692 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yuen, K. C. et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 26, 693–698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tintelnot, J. et al. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature 615, 168–174 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hezaveh, K. et al. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity 55, 324–340.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Moor, K. et al. Analysis of bacterial-surface-specific antibodies in body fluids using bacterial flow cytometry. Nat. Protoc. 11, 1531–1553 (2016).

    Article  PubMed  Google Scholar 

  188. Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Mizukoshi, E. et al. Peptide vaccine-treated, long-term surviving cancer patients harbor self-renewing tumor-specific CD8+ T cells. Nat. Commun. 13, 3123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Liang, J. et al. Personalized cancer vaccines from bacteria-derived outer membrane vesicles with antibody-mediated persistent uptake by dendritic cells. Fundam. Res. 2, 23–36 (2022).

    Article  CAS  Google Scholar 

  191. Cheng, K. et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via plug-and-display technology. Nat. Commun. 12, 2041 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Li, C. et al. Deep insights into the gut microbial community of extreme longevity in south Chinese centenarians by ultra-deep metagenomics and large-scale culturomics. NPJ Biofilms Microbiomes 8, 28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Rampelli, S. et al. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems 5, e00124-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Wang, J. et al. The landscape in the gut microbiome of long-lived families reveals new insights on longevity and aging – relevant neural and immune function. Gut Microbes 14, 2107288 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Luan, Z. et al. Metagenomics study reveals changes in gut microbiota in centenarians: a cohort study of Hainan centenarians. Front. Microbiol. 11, 1474 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Zhang, X. et al. Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities. Nat. Aging 1, 87–100 (2021).

    Article  PubMed  Google Scholar 

  197. Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Wang, Q. et al. A metagenome-wide association study of gut microbiota in asthma in UK adults. BMC Microbiol. 18, 114 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Cui, X. et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci. Rep. 8, 635 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Crovesy, L., Masterson, D. & Rosado, E. L. Profile of the gut microbiota of adults with obesity: a systematic review. Eur. J. Clin. Nutr. 74, 1251–1262 (2020).

    Article  PubMed  Google Scholar 

  201. Bowerman, K. L. et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat. Commun. 11, 5886 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Calderón-Pérez, L. et al. Gut metagenomic and short chain fatty acids signature in hypertension: a cross-sectional study. Sci. Rep. 10, 6436 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Ni, Y. et al. Distinct composition and metabolic functions of human gut microbiota are associated with cachexia in lung cancer patients. ISME J. 15, 3207–3220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Jiao, N. et al. Alterations in bile acid metabolizing gut microbiota and specific bile acid genes as a precision medicine to subclassify NAFLD. Physiol. Genom. 53, 336–348 (2021).

    Article  CAS  Google Scholar 

  205. Behary, J. et al. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat. Commun. 12, 187 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Solé, C. et al. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: relationship with acute-on-chronic liver failure and prognosis. Gastroenterology 160, 206–218.e13 (2021).

    Article  PubMed  Google Scholar 

  207. Nakai, M. et al. Essential hypertension is associated with changes in gut microbial metabolic pathways: a multisite analysis of ambulatory blood pressure. Hypertension 78, 804–815 (2021).

    Article  CAS  PubMed  Google Scholar 

  208. Aasmets, O., Krigul, K. L., Lüll, K., Metspalu, A. & Org, E. Gut metagenome associations with extensive digital health data in a volunteer-based Estonian microbiome cohort. Nat. Commun. 13, 869 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Clooney, A. G. et al. A comparison of the gut microbiome between long-term users and non-users of proton pump inhibitors. Aliment. Pharmacol. Ther. 43, 974–984 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Imhann, F. et al. Proton pump inhibitors affect the gut microbiome. Gut 65, 740–748 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Lin, Y.-T. et al. Anti-acid drug treatment induces changes in the gut microbiome composition of hemodialysis patients. Microorganisms 9, 286 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265 (2018).

    Article  CAS  PubMed  Google Scholar 

  213. Parker, E. P. K. et al. Changes in the intestinal microbiota following the administration of azithromycin in a randomised placebo-controlled trial among infants in south India. Sci. Rep. 7, 9168 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Singh, G. et al. The effect of gastric acid suppression on probiotic colonization in a double blinded randomized clinical trial. Clin. Nutr. ESPEN 47, 70–77 (2022).

    Article  PubMed  Google Scholar 

  215. Vich Vila, A. et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11, 362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Li, J. K. M. et al. A cross-sectional study on gut microbiota in prostate cancer patients with prostatectomy or androgen deprivation therapy. Prostate Cancer Prostatic Dis. 24, 1063–1072 (2021).

    Article  CAS  PubMed  Google Scholar 

  217. Thompson, N. A. et al. The MITRE trial protocol: a study to evaluate the microbiome as a biomarker of efficacy and toxicity in cancer patients receiving immune checkpoint inhibitor therapy. BMC Cancer 22, 99 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Shoji, F. et al. Chronological analysis of the gut microbiome for efficacy of atezolizumab-based immunotherapy in non-small cell lung cancer: protocol for a multicenter prospective observational study. Thorac. Cancer 13, 2829–2833 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.F. has received funding from the Seerave Foundation. B.R. has received support from the Canadian Institute for Health Research (CIHR), Fonds de la Recherche Québec-Santé (FRQS), the Seerave Foundation, the Terry Fox Marathon of Hope Program and the Weston Foundation. J.A.W. receives support from the American Association for Cancer Research Stand Up To Cancer (SU2C-AACR-IRG-19–17), MD Anderson Cancer Center’s Melanoma Moon Shots Program, Melanoma Research Alliance (4022024) and the National Institutes of Health (NIH) (1 R01 CA219896–01A1). N.S. has received support from the European Union Horizon 2020 programme (ONCOBIOME-825410 project, MASTER-818368 project and IHMCSA-964590), European Research Council (ERC-STG project MetaPG-716575 and ERC-CoG microTOUCH-101045015), the National Cancer Institute of the NIH (1U01CA230551) and Premio Internazionale Lombardia e Ricerca 2019. L.Z. has received support from ANR grant–French-German Ileobiome 19-CE15-0029-01, European Union Horizon 2020 research and innovation programme under grant agreement number 825410 (project acronym ONCOBIOME, project title Gut OncoMicrobiome Signatures (GOMS) associated with cancer incidence, prognosis, and prediction of treatment response), European Union Horizon Europe research and innovation programme under grant agreement number 101095604–GAP-101095604 (project acronym PREVALUNG-EU, project title Personalized lung cancer risk assessment leading to stratified Interception), RHU5 “ANR-21-RHUS-0017” IMMUNOLIFE, SIGN’IT ARC foundation and SIRIC Stratified Oncology Cell DNA Repair and Tumour Immune Elimination (SOCRATE). L.Z. and G.K. have received donations from Elior and the Seerave Foundation; and.support from ANR projets blancs, Badinter Philantropia, Cancéopole Ile-de-France; Dassault, FHU CARE, Fondation pour la Recherche Médicale (FRM), Inserm (HTE), Institut National du Cancer (INCa), Institut Universitaire de France, LabEx Immuno-Oncology and Ligue contre le Cancer (Equipe labelisée).

Author information

Authors and Affiliations

Authors

Contributions

L.Z. wrote the main text except the description of the CRC and melanoma GOMS performed by A.M.T. and N.S. A.M.T. and N.S. performed the meta-analysis and mega-analysis. G.K. and J.A.W. language-edited the manuscript. M.F. and B.R. prepared the display items for the submitted manuscript.

Corresponding author

Correspondence to Laurence Zitvogel.

Ethics declarations

Competing interests

A.M.T. is a new employee of Microbiotica. B.R. has received grants from AstraZeneca, Bristol Myers Squibb, Davoltera, Kaleido, Merck and Vedanta outside the submitted work; and has a patent pending (G17004–00006-AD, use of castalagin or analogues thereof for anticancer efficacy and to increase the response to immune-checkpoint inhibitors). G.K. has held research contracts with Daiichi Sankyo, Elior, Kaleido, Lytix Pharma, PharmaMar, Samsara, Sanofi, Tollys, Vascage and Vasculox/Tioma; is on the Board of Directors of the Bristol Myers Squibb Foundation in France; is a scientific co-founder of EverImmune, Osasona Therapeutics, Samsara Therapeutics and Therafast Bio; and is an inventor in patents covering therapeutic targeting of ageing, cancer, cystic fibrosis and metabolic disorders. J.A.W. is an inventor on a US patent application (PCT/US17/53.717) submitted by the University of Texas MD Anderson Cancer Center, which covers methods to enhance immune-checkpoint inhibitor responses by modulating the microbiome; reports compensation for speaker’s bureau and honoraria from Bristol Myers Squibb, Dava Oncology, Exelixis, Gilead, Illumina, Imedex, MedImmune, Omniprex, PeerView and Physician Education Resource; has served as a consultant or advisory board member for AstraZeneca, Bristol Myers Squibb, EverImmune, GlaxoSmithKline, Merck Novartis, Roche/Genentech, Micronoma and OSE therapeutics; and receives stock options from Micronoma and OSE therapeutics. L.Z. is the scientific cofounder and President of the scientific advisory board of EverImmune, a company devoted to the use of commensal microorganisms (Oncobax) for the treatment of cancers; has received research grants from 9 meters, Daichi Sankyo, EverImmune and Pileje; is a former member of the board of directors of Transgene; and is a former consulting expert for Bristol Myers Squibb, GlaxoSmithKline, Lytix biotherapeutics and Tusk. M.F. and N.S. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks G. Trinchieri, M. van den Brink and J. Yu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

Supplementary information

Glossary

16S ribosomal RNA sequencing

Targeted, high-throughput method that consists of amplifying and sequencing the small-subunit ribosomal 16S RNA (rRNA) gene present in a sample (for example, a microbial community in stools). Sequences are generally the result of targeted amplification of one or more variable regions within the 16S rRNA gene, and can be used to profile the taxonomic composition of both archaeal and eubacterial members of the microbial community. This method provides lower taxonomic resolution than shotgun metagenomics but is generally less computationally intensive. Nevertheless, a variety of processing steps can introduce bias and limit the ability to combine data from different studies.

Alpha and beta diversities

Alpha diversity or richness measures the variability of species within a faecal sample while beta diversity accounts for the differences in composition between individuals.

Dysbiosis

Imbalance of microbiota that involves changes in composition and/or functions.

Exfoliome

Shed intestinal luminal cells contained within faecal samples.

Exposome

Encompasses the large number of individual exposures from various origins, such as chemical, physical, biological or psychological stimuli, and also takes into account the time dimension of the exposure (short or long, early or late, punctual or repeated). The exposome has an impact on individual physiology and, to a larger extent, overall health.

Leave-one-dataset-out

Analytical approach in which data from one cohort are set aside as an external validation set whereas data from the remaining cohorts are pooled together as a single training set, iterating along all the cohorts.

Linear discriminant analysis effect size

Determines the features (organisms, clades, operational taxonomic units, genes or functions) most likely to explain differences between classes by coupling standard tests for statistical significance with additional tests encoding biological consistency and effect relevance.

Mega-analysis

Analysis that gathers raw data across multiple studies.

Random forest model

Supervised machine learning algorithm used to solve classification and regression problems that averages multiple decision trees.

Short-chain fatty acids

Metabolic by-products derived from the fermentation of carbohydrates by anaerobic bacteria in the gut.

Shotgun metagenomic sequencing

Non-targeted, high-throughput method that consists of sequencing all DNA present in a sample (for example, a microbial community). These DNA sequences are computationally analysed and can be used to profile the taxonomic composition of members of the microbial community, including bacteria, fungi and viruses.

Species-level genome bins

Large-scale metagenomic analyses have uncovered a myriad of bacteria never before described. The species-level genome bin (SGB) nomenclature enables the annotation of bacterial sequences to the species level.

Stress ileopathy

Ileal mucosa atrophy associated with dominance of sympathetic over cholinergic signalling provoked by intra-intestinal and extra-intestinal malignancies or chronic inflammatory disorders (inflammatory bowel disease, stroke).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, A.M., Fidelle, M., Routy, B. et al. Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. Nat Rev Clin Oncol 20, 583–603 (2023). https://doi.org/10.1038/s41571-023-00785-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00785-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer