Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Humanized mouse models for immuno-oncology research

Abstract

Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.

Key points

  • Humanized mouse models of cancer are immunodeficient mice co-engrafted with human tumours and immune cells, and are used in immuno-oncology research with potential for clinical translation.

  • The limitations of humanized mouse models include restricted development of mature innate immune cells, a lack of HLA molecules, limited ability to generate antigen-specific antibody responses, and a dearth of lymph node structures and germinal centres.

  • Given the complexity of generating humanized mice for experimental studies, the advantages and limitations of each specific model need to be carefully considered and assessed to ensure the highest probability of an effective study.

  • Next-generation humanized mouse models are being generated to better recapitulate the development of human innate and adaptive immunity. The development and use of novel humanized mouse platforms will accelerate the discovery and testing of new immunotherapies for patients with cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamics of human immune system development in humanized mouse models.
Fig. 2: Building resources for human tumour avatar studies.

Similar content being viewed by others

References

  1. Morton, J. J., Bird, G., Refaeli, Y. & Jimeno, A. Humanized mouse xenograft models: narrowing the tumor-microenvironment gap. Cancer Res. 76, 6153–6158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shilts, J. et al. A physical wiring diagram for the human immune system. Nature https://doi.org/10.1038/s41586-022-05028-x (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mun, J. Y., Leem, S. H., Lee, J. H. & Kim, H. S. Dual relationship between stromal cells and immune cells in the tumor microenvironment. Front. Immunol. 13, 864739 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Connolly, K. A., Fitzgerald, B., Damo, M. & Joshi, N. S. Novel mouse models for cancer immunology. Annu. Rev. Cancer Biol. 6, 269–291 (2022).

    Article  Google Scholar 

  5. Bareham, B., Georgakopoulos, N., Matas-Cespedes, A., Curran, M. & Saeb-Parsy, K. Modeling human tumor-immune environments in vivo for the preclinical assessment of immunotherapies. Cancer Immunol. Immunother. 70, 2737–2750 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zanella, E. R., Grassi, E. & Trusolino, L. Towards precision oncology with patient-derived xenografts. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-022-00682-6 (2022).

    Article  PubMed  Google Scholar 

  7. Wang, J. et al. Patient-derived tumor organoids: new progress and opportunities to facilitate precision cancer immunotherapy. Front. Oncol. 12, 872531 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ye, W. & Chen, Q. Potential applications and perspectives of humanized mouse models. Annu. Rev. Anim. Biosci. 10, 395–417 (2022).

    Article  PubMed  Google Scholar 

  9. Ito, M. et al. NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100, 3175–3182 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Shultz, L. D. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174, 6477–6489 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Pearson, T. et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin. Exp. Immunol. 154, 270–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Traggiai, E. et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304, 104–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Shultz, L. D. et al. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb. Protoc. 2014, 694–708 (2014).

    Article  PubMed  Google Scholar 

  14. Wege, A. K. Humanized mouse models for the preclinical assessment of cancer immunotherapy. BioDrugs 32, 245–266 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Yin, L., Wang, X. J., Chen, D. X., Liu, X. N. & Wang, X. J. Humanized mouse model: a review on preclinical applications for cancer immunotherapy. Am. J. Cancer Res. 10, 4568–4584 (2020).

    CAS  PubMed  Google Scholar 

  16. Vuyyuru, R., Patton, J. & Manser, T. Human immune system mice: current potential and limitations for translational research on human antibody responses. Immunol. Res. 51, 257–266 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Brehm, M. A., Shultz, L. D., Luban, J. & Greiner, D. L. Overcoming current limitations in humanized mouse research. J. Infect. Dis. 208 (Suppl. 2), S125–S130 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Akkina, R. et al. Improvements and limitations of humanized mouse models for HIV research: NIH/NIAID “Meet the Experts” 2015 Workshop Summary. AIDS Res. Hum. Retrovir. 32, 109–119 (2016).

    Article  PubMed  Google Scholar 

  19. Guil-Luna, S., Sedlik, C. & Piaggio, E. Humanized mouse models to evaluate cancer immunotherapeutics. Annu. Rev. Cancer Biol. 5, 119–136 (2021).

    Article  Google Scholar 

  20. Wunderlich, M. et al. Improved chemotherapy modeling with RAG-based immune deficient mice. PLoS ONE 14, e0225532 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Phung, S. K., Miller, J. S. & Felices, M. Bi-specific and Tri-specific NK cell engagers: the new avenue of targeted NK cell immunotherapy. Mol. Diagn. Ther. 25, 577–592 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Arvindam, U. S. et al. A trispecific killer engager molecule against CLEC12A effectively induces NK-cell mediated killing of AML cells. Leukemia 35, 1586–1596 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Yu, S. et al. Recent advances of bispecific antibodies in solid tumors. J. Hematol. Oncol. 10, 155 (2017).

    Article  PubMed  Google Scholar 

  24. Horowitz, N. B. et al. Humanized mouse models for the advancement of innate lymphoid cell-based cancer immunotherapies. Front. Immunol. 12, 648580 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Mhaidly, R. & Verhoeyen, E. Humanized mice are precious tools for preclinical evaluation of CAR T and CAR NK cell therapies. Cancers https://doi.org/10.3390/cancers12071915 (2020).

    Article  PubMed  Google Scholar 

  26. Akiyama, Y. et al. The anti-tumor activity of the STAT3 inhibitor STX-0119 occurs via promotion of tumor-infiltrating lymphocyte accumulation in temozolomide-resistant glioblastoma cell line. Immunol. Lett. 190, 20–25 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Tsoneva, D. et al. Humanized mice with subcutaneous human solid tumors for immune response analysis of vaccinia virus-mediated oncolysis. Mol. Ther. Oncolytics 5, 41–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, M. et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J. 32, 1537–1549 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Jin, K. T. et al. Development of humanized mouse with patient-derived xenografts for cancer immunotherapy studies: a comprehensive review. Cancer Sci. 112, 2592–2606 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Xu, X. et al. Large-cohort humanized NPI mice reconstituted with CD34+ hematopoietic stem cells are feasible for evaluating preclinical cancer immunotherapy. FASEB J. 36, e22244 (2022).

    CAS  PubMed  Google Scholar 

  31. Marin-Jimenez, J. A. et al. Testing cancer immunotherapy in a human immune system mouse model: correlating treatment responses to human chimerism, therapeutic variables and immune cell phenotypes. Front. Immunol. 12, 607282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yarmarkovich, M. et al. Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs. Nature 599, 477–484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van der Stegen, S. J. C. et al. Generation of T-cell-receptor-negative CD8αβ-positive CAR T cells from T-cell-derived induced pluripotent stem cells. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00915-0 (2022).

    Article  PubMed  Google Scholar 

  34. Milling, L. E. et al. Neoadjuvant STING activation, extended half-life IL2, and checkpoint blockade promote metastasis clearance via sustained NK-cell activation. Cancer Immunol. Res. 10, 26–39 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Cogels, M. M. et al. Humanized mice as a valuable pre-clinical model for cancer immunotherapy research. Front. Oncol. 11, 784947 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wunderlich, M. et al. PD-1 inhibition enhances blinatumomab response in a UCB/PDX model of relapsed pediatric B-cell acute lymphoblastic leukemia. Front. Oncol. 11, 642466 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rouse, R. et al. Translating new science into the drug review process: the US FDA’s division of applied regulatory science. Ther. Innov. Regul. Sci. 52, 244–255 (2018).

    Article  PubMed  Google Scholar 

  38. Barrett, D. M. et al. Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum. Gene Ther. 22, 1575–1586 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Horn, L. A. et al. CD3xPDL1 bi-specific T cell engager (BiTE) simultaneously activates T cells and NKT cells, kills PDL1+ tumor cells, and extends the survival of tumor-bearing humanized mice. Oncotarget 8, 57964–57980 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Circosta, P. et al. Tailoring CD19xCD3-DART exposure enhances T-cells to eradication of B-cell neoplasms. Oncoimmunology 7, e1341032 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lee, Y. G. et al. Use of a single CAR T cell and several bispecific adapters facilitates eradication of multiple antigenically different solid tumors. Cancer Res. 79, 387–396 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Lysenko, V. et al. Humanised mouse models for haematopoiesis and infectious diseases. Swiss Med. Wkly. 147, w14516 (2017).

    PubMed  Google Scholar 

  43. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Hope, K. J., Jin, L. & Dick, J. E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat. Immunol. 5, 738–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. Modeling the initiation and progression of human acute leukemia in mice. Science 316, 600–604 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat. Biotechnol. 25, 1315–1321 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Saito, Y., Shultz, L. D. & Ishikawa, F. Understanding normal and malignant human hematopoiesis using next-generation humanized mice. Trends Immunol. 41, 706–720 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mambet, C. et al. Murine models based on acute myeloid leukemia-initiating stem cells xenografting. World J. Stem Cell 10, 57–65 (2018).

    Article  Google Scholar 

  49. Marchand, T. & Pinho, S. Leukemic stem cells: from leukemic niche biology to treatment opportunities. Front. Immunol. 12, 775128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Walsh, N. C. et al. Humanized mouse models of clinical disease. Annu. Rev. Pathol. 12, 187–215 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Verma, B. & Wesa, A. Establishment of humanized mice from peripheral blood mononuclear cells or cord blood CD34+ hematopoietic stem cells for immune-oncology studies evaluating new therapeutic agents. Curr. Protoc. Pharmacol. 89, e77 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Pearson, T., Greiner, D. L. & Shultz, L. D. Creation of “humanized” mice to study human immunity. Curr. Protoc. Immunol. https://doi.org/10.1002/0471142735.im1521s81 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. King, M. A. et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin. Exp. Immunol. 157, 104–118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brehm, M. A. et al. Lack of acute xenogeneic graft- versus-host disease, but retention of T-cell function following engraftment of human peripheral blood mononuclear cells in NSG mice deficient in MHC class I and II expression. FASEB J. 33, 3137–3151 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Yanagawa, S. et al. Development of a humanized mouse model to analyze antibodies specific for human leukocyte antigen (HLA). PLoS ONE 16, e0236614 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morillon, Y. M. 2nd, Sabzevari, A., Schlom, J. & Greiner, J. W. The development of next-generation PBMC humanized mice for preclinical investigation of cancer immunotherapeutic agents. Anticancer Res. 40, 5329–5341 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Nagle, V. L. et al. Imaging tumor-infiltrating lymphocytes in brain tumors with [64Cu]Cu-NOTA-anti-CD8-positron emission tomography. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-20-3243 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Morton, J. J., Alzofon, N. & Jimeno, A. The humanized mouse: emerging translational potential. Mol. Carcinog. 59, 830–838 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Odunsi, A. et al. Fidelity of human ovarian cancer patient-derived xenografts in a partially humanized mouse model for preclinical testing of immunotherapies. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001237 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sanmamed, M. F. et al. Nivolumab and urelumab enhance antitumor activity of human T lymphocytes engrafted in Rag2−/−IL2Rγnull immunodeficient mice. Cancer Res. 75, 3466–3478 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Gitto, S. B. et al. An autologous humanized patient-derived-xenograft platform to evaluate immunotherapy in ovarian cancer. Gynecol. Oncol. 156, 222–232 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Jespersen, H. et al. Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model. Nat. Commun. 8, 707 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chang, D. K. et al. Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo. Mol. Cancer 14, 119 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pyo, K. H. et al. Promising preclinical platform for evaluation of immuno-oncology drugs using Hu-PBL-NSG lung cancer models. Lung Cancer 127, 112–121 (2019).

    Article  PubMed  Google Scholar 

  65. Lin, S. et al. Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy. mAbs 10, 1301–1311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, Y. et al. Discovery and preclinical characterization of the antagonist anti-PD-L1 monoclonal antibody LY3300054. J. Immunother. Cancer 6, 31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang, J. et al. Durable blockade of PD-1 signaling links preclinical efficacy of sintilimab to its clinical benefit. mAbs 11, 1443–1451 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zheng, B. et al. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse. J. Hematol. Oncol. 11, 16 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kotanides, H. et al. Bispecific targeting of PD-1 and PD-L1 enhances T-cell activation and antitumor immunity. Cancer Immunol. Res. 8, 1300–1310 (2020).

    Article  PubMed  Google Scholar 

  70. Adom, D. et al. ICOSL+ plasmacytoid dendritic cells as inducer of graft-versus-host disease, responsive to a dual ICOS/CD28 antagonist. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aay4799 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sondergaard, H., Kvist, P. H. & Haase, C. Human T cells depend on functional calcineurin, tumour necrosis factor-alpha and CD80/CD86 for expansion and activation in mice. Clin. Exp. Immunol. 172, 300–310 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Burger, D. R., Parker, Y., Guinta, K. & Lindner, D. PRO 140 monoclonal antibody to CCR5 prevents acute xenogeneic graft-versus-host disease in NOD-scid IL-2Rynull mice. Biol. Blood Marrow Transpl. 24, 260–266 (2018).

    Article  CAS  Google Scholar 

  73. Mutis, T. et al. Human regulatory T cells control xenogeneic graft-versus-host disease induced by autologous T cells in RAG2−/−γc−/− immunodeficient mice. Clin. Cancer Res. 12, 5520–5525 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Hahn, S. A., Bellinghausen, I., Trinschek, B. & Becker, C. Translating Treg therapy in humanized mice. Front. Immunol. 6, 623 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bezie, S. et al. Ex vivo expanded human non-cytotoxic CD8+CD45RClow/- Tregs efficiently delay skin graft rejection and GVHD in humanized mice. Front. Immunol. 8, 2014 (2017).

    Article  PubMed  Google Scholar 

  76. Ehx, G. et al. Azacytidine prevents experimental xenogeneic graft-versus-host disease without abrogating graft-versus-leukemia effects. Oncoimmunology 6, e1314425 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Raulet, D. H. MHC class I-deficient mice. Adv. Immunol. 55, 381–421 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Yaguchi, T. et al. Human PBMC-transferred murine MHC class I/II-deficient NOG mice enable long-term evaluation of human immune responses. Cell. Mol. Immunol. 15, 953–962 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Ashizawa, T. et al. Antitumor effect of programmed death-1 (PD-1) blockade in humanized the NOG-MHC double knockout mouse. Clin. Cancer Res. 23, 149–158 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Ka, Y. et al. Improved engraftment of human peripheral blood mononuclear cells in NOG MHC double knockout mice generated using CRISPR/Cas9. Immunol. Lett. 229, 55–61 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Zeng, Y. et al. Creation of an immunodeficient HLA-transgenic mouse (HUMAMICE) and functional validation of human immunity after transfer of HLA-matched human cells. PLoS ONE 12, e0173754 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Raghavan, M. & Bjorkman, P. J. Fc receptors and their interactions with immunoglobulins. Annu. Rev. Cell Dev. Biol. 12, 181–220 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Roopenian, D. C. & Akilesh, S. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7, 715–725 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Israel, E. J., Patel, V. K., Taylor, S. F., Marshak-Rothstein, A. & Simister, N. E. Requirement for a beta 2-microglobulin-associated Fc receptor for acquisition of maternal IgG by fetal and neonatal mice. J. Immunol. 154, 6246–6251 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Kametani, Y. et al. NOG-hIL-4-Tg, a new humanized mouse model for producing tumor antigen-specific IgG antibody by peptide vaccination. PLoS ONE 12, e0179239 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ashizawa, T. et al. Antitumor activity of the PD-1/PD-L1 binding inhibitor BMS-202 in the humanized MHC-double knockout NOG mouse. Biomed. Res. 40, 243–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Ashizawa, T. et al. Impact of combination therapy with anti-PD-1 blockade and a STAT3 inhibitor on the tumor-infiltrating lymphocyte status. Immunol. Lett. 216, 43–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Iizuka, A. et al. A T-cell-engaging B7-H4/CD3-bispecific Fab-scFv antibody targets human breast cancer. Clin. Cancer Res. 25, 2925–2934 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Shrestha, B. et al. Human CD83-targeted chimeric antigen receptor T cells prevent and treat graft-versus-host disease. J. Clin. Invest. 130, 4652–4662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jin, C. H. et al. Modeling anti-CD19 CAR T cell therapy in humanized mice with human immunity and autologous leukemia. EBioMedicine 39, 173–181 (2019).

    Article  PubMed  Google Scholar 

  91. Forsberg, E. M. V. et al. HER2 CAR-T cells eradicate uveal melanoma and T-cell therapy-resistant human melanoma in IL2 transgenic NOD/SCID IL2 receptor knockout mice. Cancer Res. 79, 899–904 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Cichocki, F. et al. iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo tumor control in concert with T cells and anti-PD-1 therapy. Sci. Transl. Med. 12, eaaz5618 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jing, R. et al. EZH1 repression generates mature iPSC-derived CAR T cells with enhanced antitumor activity. Cell Stem Cell 29, 1181–1196.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Sugimura, R. et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 545, 432–438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cheng, H., Zheng, Z. & Cheng, T. New paradigms on hematopoietic stem cell differentiation. Protein Cell 11, 34–44 (2020).

    Article  PubMed  Google Scholar 

  96. Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7, 118–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Shultz, L. D. et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol. 154, 180–191 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Greiner, D. L., Hesselton, R. A. & Shultz, L. D. SCID mouse models of human stem cell engraftment. Stem Cell 16, 166–177 (1998).

    Article  CAS  Google Scholar 

  99. Ishikawa, F. et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. Blood 106, 1565–1573 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hess, N. J. et al. Different human immune lineage compositions are generated in non-conditioned NBSGW mice depending on HSPC source. Front. Immunol. https://doi.org/10.3389/fimmu.2020.573406 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hasgur, S., Aryee, K. E., Shultz, L. D., Greiner, D. L. & Brehm, M. A. Generation of immunodeficient mice bearing human immune systems by the engraftment of hematopoietic stem cells. Methods Mol. Biol. 1438, 67–78 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brehm, M. A. et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rγnull mutation. Clin. Immunol. 135, 84–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Lepus, C. M. et al. Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/γc−/−, Balb/c-Rag1−/−γc−/−, and C.B-17-scid/bg immunodeficient mice. Hum. Immunol. 70, 790–802 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Mold, J. E. et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 330, 1695–1699 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Lennartsson, J. & Ronnstrand, L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol. Rev. 92, 1619–1649 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Miller, P. H. et al. Analysis of parameters that affect human hematopoietic cell outputs in mutant c-kit-immunodeficient mice. Exp. Hematol. 48, 41–49 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Waskow, C. et al. Hematopoietic stem cell transplantation without irradiation. Nat. Meth. 6, 267–269 (2009).

    Article  CAS  Google Scholar 

  108. Czechowicz, A., Kraft, D., Weissman, I. L. & Bhattacharya, D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science 318, 1296–1299 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cosgun, K. N. et al. Kit regulates HSC engraftment across the human-mouse species barrier. Cell Stem Cell 15, 227–238 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Rahmig, S. et al. Improved human erythropoiesis and platelet formation in humanized NSGW41 mice. Stem Cell Rep. 7, 591–601 (2016).

    Article  CAS  Google Scholar 

  111. Coppin, E. et al. Enhanced differentiation of functional human T cells in NSGW41 mice with tissue-specific expression of human interleukin-7. Leukemia 35, 3561–3567 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. McIntosh, B. E. & Brown, M. E. No irradiation required: the future of humanized immune system modeling in murine hosts. Chimerism 6, 40–45 (2015).

    Article  PubMed  Google Scholar 

  113. McIntosh, B. E. et al. Nonirradiated NOD,B6.SCID Il2rγ−/− Kit(W41/W41) (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Rep. 4, 171–180 (2015).

    Article  CAS  Google Scholar 

  114. Takenaka, K. et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat. Immunol. 8, 1313–1323 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Yurino, A. et al. Enhanced reconstitution of human erythropoiesis and thrombopoiesis in an immunodeficient mouse model with KitWv mutations. Stem Cell Rep. 7, 425–438 (2016).

    Article  CAS  Google Scholar 

  116. Rios-Doria, J., Stevens, C., Maddage, C., Lasky, K. & Koblish, H. K. Characterization of human cancer xenografts in humanized mice. J. Immunother. Cancer https://doi.org/10.1136/jitc-2019-000416 (2020).

    Article  PubMed  Google Scholar 

  117. Zumwalde, N. A. & Gumperz, J. E. Modeling human antitumor responses in vivo using umbilical cord blood-engrafted mice. Front. Immunol. 9, 54 (2018).

    Article  PubMed  Google Scholar 

  118. Fu, J. & Kim, Y. J. Autologously humanized mice for immune-oncologic studies. Curr. Protoc. Pharmacol. 89, e76 (2020).

    Article  PubMed  Google Scholar 

  119. Tian, H., Lyu, Y., Yang, Y. G. & Hu, Z. Humanized rodent models for cancer research. Front. Oncol. 10, 1696 (2020).

    Article  PubMed  Google Scholar 

  120. Morton, J. J. et al. Studying immunotherapy resistance in a melanoma autologous humanized mouse xenograft. Mol. Cancer Res. https://doi.org/10.1158/1541-7786.MCR-20-0686 (2020).

    Article  PubMed  Google Scholar 

  121. Kaur, M. et al. Induction and therapeutic targeting of human NPM1c+ myeloid leukemia in the presence of autologous immune system in mice. J. Immunol. 202, 1885–1894 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Najima, Y. et al. Induction of WT1-specific human CD8+ T cells from human HSCs in HLA class I Tg NOD/SCID/IL2rgKO mice. Blood 127, 722–734 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Park, N. et al. Preclinical platform for long-term evaluation of immuno-oncology drugs using hCD34+ humanized mouse model. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001513 (2020).

    Article  PubMed  Google Scholar 

  124. Meraz, I. M. et al. An improved patient-derived xenograft humanized mouse model for evaluation of lung cancer immune responses. Cancer Immunol. Res. 7, 1267–1279 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Zhao, Y. et al. Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy. Gut 67, 1845–1854 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Choi, B. et al. Anti-tumor effects of anti-PD-1 antibody, pembrolizumab, in humanized NSG PDX mice xenografted with dedifferentiated liposarcoma. Cancer Lett. 478, 56–69 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Rosato, R. R. et al. Evaluation of anti-PD-1-based therapy against triple-negative breast cancer patient-derived xenograft tumors engrafted in humanized mouse models. Breast Cancer Res. 20, 108 (2018).

    Article  PubMed  Google Scholar 

  128. Capasso, A. et al. Characterization of immune responses to anti-PD-1 mono and combination immunotherapy in hematopoietic humanized mice implanted with tumor xenografts. J. Immunother. Cancer 7, 37 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Liu, W. N. et al. Establishment and characterization of humanized mouse NPC-PDX model for testing immunotherapy. Cancers https://doi.org/10.3390/cancers12041025 (2020).

    Article  PubMed  Google Scholar 

  130. Pikor, N. B., Cheng, H. W., Onder, L. & Ludewig, B. Development and immunological function of lymph node stromal cells. J. Immunol. 206, 257–263 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Bando, J. K. & Colonna, M. Innate lymphoid cell function in the context of adaptive immunity. Nat. Immunol. 17, 783–789 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Takahashi, T. et al. Enhanced antibody responses in a novel NOG transgenic mouse with restored lymph node organogenesis. Front. Immunol. 8, 2017 (2017).

    Article  PubMed  Google Scholar 

  133. Li, Y. et al. A human immune system mouse model with robust lymph node development. Nat. Methods 15, 623–630 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Verstraete, K. et al. Structural basis of the proinflammatory signaling complex mediated by TSLP. Nat. Struct. Mol. Biol. 21, 375–382 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Chappaz, S. & Finke, D. The IL-7 signaling pathway regulates lymph node development independent of peripheral lymphocytes. J. Immunol. 184, 3562–3569 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Lee, J. Y., Han, A. R. & Lee, D. R. T lymphocyte development and activation in humanized mouse model. Dev. Reprod. 23, 79–92 (2019).

    Article  PubMed  Google Scholar 

  137. Danner, R. et al. Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS ONE 6, e19826 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Shultz, L. D. et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2rγnull humanized mice. Proc. Natl Acad. Sci. USA 107, 13022–13027 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Serr, I. et al. Type 1 diabetes vaccine candidates promote human Foxp3+ Treg induction in humanized mice. Nat. Commun. 7, 10991 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Strowig, T. et al. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J. Exp. Med. https://doi.org/10.1084/jem.20081720 (2009).

    Article  PubMed  Google Scholar 

  141. Suzuki, M. et al. Induction of human humoral immune responses in a novel HLA-DR-expressing transgenic NOD/Shi-scid/γcnull mouse. Int. Immunol. 24, 243–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Covassin, L. et al. Human peripheral blood CD4 T cell-engrafted non-obese diabetic-scid IL2rγnull H2-Ab1 (tm1Gru) Tg (human leucocyte antigen D-related 4) mice: a mouse model of human allogeneic graft-versus-host disease. Clin. Exp. Immunol. 166, 269–280 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Huang, J. et al. Human immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective human humoral immunity against malaria. J. Immunol. Methods 427, 42–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Goettel, J. A. et al. Fatal autoimmunity in mice reconstituted with human hematopoietic stem cells encoding defective FOXP3. Blood 125, 3886–3895 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Jaiswal, S. et al. Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rγnull mice. PLoS ONE 4, e7251 (2009).

    Article  PubMed  Google Scholar 

  146. Masemann, D., Ludwig, S. & Boergeling, Y. Advances in transgenic mouse models to study infections by human pathogenic viruses. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21239289 (2020).

    Article  PubMed  Google Scholar 

  147. Billerbeck, E. et al. Characterization of human antiviral adaptive immune responses during hepatotropic virus infection in HLA-transgenic human immune system mice. J. Immunol. 191, 1753–1764 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Majji, S. et al. Differential effect of HLA class-I versus class-II transgenes on human T and B cell reconstitution and function in NRG mice. Sci. Rep. 6, 28093 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Majji, S., Wijayalath, W., Shashikumar, S., Brumeanu, T. D. & Casares, S. Humanized DRAGA mice immunized with Plasmodium falciparum sporozoites and chloroquine elicit protective pre-erythrocytic immunity. Malar. J. 17, 114 (2018).

    Article  PubMed  Google Scholar 

  150. Mendoza, M. et al. Generation and testing anti-influenza human monoclonal antibodies in a new humanized mouse model (DRAGA: HLA-A2. HLA-DR4. Rag1 KO. IL-2Rγc KO. NOD). Hum. Vaccin. Immunother. 14, 345–360 (2018).

    Article  PubMed  Google Scholar 

  151. Mendoza, M. et al. The humanized DRAGA mouse (HLA-A2. HLA-DR4. RAG1 KO. IL-2R g c KO. NOD) establishes inducible and transmissible models for influenza type A infections. Hum. Vaccin. Immunother. 16, 2222–2237 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Jiang, L. et al. Dissemination of Orientia tsutsugamushi, a causative agent of scrub typhus, and immunological responses in the humanized DRAGA mouse. Front. Immunol. 9, 816 (2018).

    Article  PubMed  Google Scholar 

  153. Masse-Ranson, G. et al. Accelerated thymopoiesis and improved T-cell responses in HLA-A2/-DR2 transgenic BRGS-based human immune system mice. Eur. J. Immunol. 49, 954–965 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Halkias, J. et al. Conserved and divergent aspects of human T-cell development and migration in humanized mice. Immunol. Cell Biol. 93, 716–726 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. McCune, J. M. et al. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241, 1632–1639 (1988).

    Article  CAS  PubMed  Google Scholar 

  156. Melkus, M. W. et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat. Med. 12, 1316–1322 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Lan, P., Tonomura, N., Shimizu, A., Wang, S. & Yang, Y.-G. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 108, 487–492 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Lan, P. et al. Induction of human T-cell tolerance to porcine xenoantigens through mixed hematopoietic chimerism. Blood 103, 3964–3969 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Lockridge, J. L. et al. Mice engrafted with human fetal thymic tissue and hematopoietic stem cells develop pathology resembling chronic graft-versus-host disease. Biol. Blood Marrow Transpl. 19, 1310–1322 (2013).

    Article  Google Scholar 

  160. Madley, R. et al. Negative selection of human T cells recognizing a naturally-expressed tissue-restricted antigen in the human thymus. J. Transl. Autoimmun. 3, 100061 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Li, Y. et al. Humanized mice reveal new insights into the thymic selection of human autoreactive CD8+ T cells. Front. Immunol. 10, 63 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tang, Y., Yang, Y. G., Bai, O., Xia, J. & Hu, Z. Long-term survival and differentiation of human thymocytes in human thymus-grafted immunodeficient mice. Immunotherapy 11, 881–888 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tong, Q. Y. et al. Human thymic involution and aging in humanized mice. Front. Immunol. 11, 1399 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Biswas, S. et al. Humoral immune responses in humanized BLT mice immunized with West Nile virus and HIV-1 envelope proteins are largely mediated via human CD5+ B cells. Immunology 134, 419–433 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Jangalwe, S., Shultz, L. D., Mathew, A. & Brehm, M. A. Improved B cell development in humanized NOD-scid IL2Rγnull mice transgenically expressing human stem cell factor, granulocyte-macrophage colony-stimulating factor and interleukin-3. Immun. Inflamm. Dis. 4, 427–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Claiborne, D. T. et al. Immunization of BLT humanized mice redirects T cell responses to Gag and reduces acute HIV-1 viremia. J. Virol. https://doi.org/10.1128/JVI.00814-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Brainard, D. M. et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J. Virol. 83, 7305–7321 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Jaiswal, S. et al. Dengue virus infection induces broadly cross-reactive human IgM antibodies that recognize intact virions in humanized BLT-NSG mice. Exp. Biol. Med. 240, 67–78 (2015).

    Article  Google Scholar 

  169. Jaiswal, S. et al. Enhanced humoral and HLA-A2-restricted dengue virus-specific T cell responses in humanized BLT NSG mice. Immunology 136, 334–343 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gawron, M. A. et al. Human anti-HIV-1 gp120 monoclonal antibodies with neutralizing activity cloned from humanized mice infected with HIV-1. J. Immunol. 202, 799–804 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Covassin, L. et al. Human immune system development and survival of non-obese diabetic (NOD)-scid IL2rgamma(null) (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells. Clin. Exp. Immunol. 174, 372–388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Greenblatt, M. B. et al. Graft versus host disease in the bone marrow, liver and thymus humanized mouse model. PLoS ONE 7, e44664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kalscheuer, H. et al. A model for personalized in vivo analysis of human immune responsiveness. Sci. Transl. Med. 4, 125ra130 (2012).

    Article  Google Scholar 

  174. Koboziev, I. et al. Use of humanized mice to study the pathogenesis of autoimmune and inflammatory diseases. Inflamm. Bowel Dis. 21, 1652–1673 (2015).

    Article  PubMed  Google Scholar 

  175. Weaver, J. L. et al. BLT-Immune humanized mice as a model for nivolumab-induced immune-mediated adverse events: comparison of the NOG and NOG-EXL strains. Toxicol. Sci. 169, 194–208 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Lavender, K. J. et al. BLT-humanized C57BL/6 Rag2−/−γ−/−CD47−/− mice are resistant to GVHD and develop B- and T-cell immunity to HIV infection. Blood 122, 4013–4020 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sutter, K. et al. Concurrent administration of IFNα14 and cART in TKO-BLT mice enhances suppression of HIV-1 viremia but does not eliminate the latent reservoir. Sci. Rep. 9, 18089 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Smith, D. J. et al. Propagating humanized BLT mice for the study of human immunology and immunotherapy. Stem Cell Dev. 25, 1863–1873 (2016).

    Article  CAS  Google Scholar 

  179. Vatakis, D. N. et al. Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells. Proc. Natl Acad. Sci. USA 108, E1408–E1416 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hu, Z., Xia, J., Fan, W., Wargo, J. & Yang, Y. G. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice. Oncotarget 7, 6448–6459 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Kaur, K. et al. Super-charged NK cells inhibit growth and progression of stem-like/poorly differentiated oral tumors in vivo in humanized BLT mice; effect on tumor differentiation and response to chemotherapeutic drugs. Oncoimmunology 7, e1426518 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Moquin-Beaudry, G. et al. The tumor-immune response is not compromised by mesenchymal stromal cells in humanized mice. J. Immunol. 203, 2735–2745 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Xia, J. et al. Modeling human leukemia immunotherapy in humanized mice. EBioMedicine 10, 101–108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Martinov, T. et al. Building the next generation of humanized hemato-lymphoid system mice. Front. Immunol. 12, 643852 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Groth, C. et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br. J. Cancer 120, 16–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Barry, K. C. et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 24, 1178–1191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Liu, Y. et al. Targeting myeloid-derived suppressor cells for cancer immunotherapy. Cancer Immunol. Immunother. 67, 1181–1195 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Weber, R. et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front. Immunol. 9, 1310 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Stripecke, R. et al. Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Mol. Med. 12, e8662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Dou, A. & Fang, J. Heterogeneous myeloid cells in tumors. Cancers https://doi.org/10.3390/cancers13153772 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Chaib, M., Chauhan, S. C. & Makowski, L. Friend or Foe? Recent strategies to target myeloid cells in cancer. Front. Cell Dev. Biol. 8, 351 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Goswami, S., Anandhan, S., Raychaudhuri, D. & Sharma, P. Myeloid cell-targeted therapies for solid tumours. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00737-w (2022).

    Article  PubMed  Google Scholar 

  196. Barve, A. et al. Comparative utility of NRG and NRGS mice for the study of normal hematopoiesis, leukemogenesis, and therapeutic response. Exp. Hematol. 67, 18–31 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wunderlich, M. et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 24, 1785–1788 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Feuring-Buske, M. et al. Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia 17, 760–763 (2003).

    Article  CAS  PubMed  Google Scholar 

  199. Billerbeck, E. et al. Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rγnull humanized mice. Blood 117, 3076–3086 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wunderlich, M. et al. Improved multilineage human hematopoietic reconstitution and function in NSGS mice. PLoS ONE 13, e0209034 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wunderlich, M. et al. A xenograft model of macrophage activation syndrome amenable to anti-CD33 and anti-IL-6R treatment. JCI Insight 1, e88181 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Sippel, T. R., Radtke, S., Olsen, T. M., Kiem, H. P. & Rongvaux, A. Human hematopoietic stem cell maintenance and myeloid cell development in next-generation humanized mouse models. Blood Adv. 3, 268–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Yoshihara, S. et al. Posttransplant hemophagocytic lymphohistiocytosis driven by myeloid cytokines and vicious cycles of T-cell and macrophage activation in humanized mice. Front. Immunol. 10, 186 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018).

    Article  CAS  PubMed  Google Scholar 

  205. Ye, C. et al. A rapid, sensitive, and reproducible in vivo PBMC humanized murine model for determining therapeutic-related cytokine release syndrome. FASEB J. 34, 12963–12975 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Giavridis, T. et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24, 731–738 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Rongvaux, A. et al. Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 32, 364–372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Strowig, T. et al. Transgenic expression of human signal regulatory protein alpha in Rag2−/−γc−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc. Natl Acad. Sci. USA 108, 13218–13223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Voillet, V. et al. An in vivo model of human macrophages in metastatic melanoma. J. Immunol. 209, 606–620 (2022).

    Article  CAS  PubMed  Google Scholar 

  211. Ellegast, J. M. et al. inv(16) and NPM1mut AMLs engraft human cytokine knock-in mice. Blood 128, 2130–2134 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. Lysenko, V. et al. Enhanced engraftment of human myelofibrosis stem and progenitor cells in MISTRG mice. Blood Adv. 4, 2477–2488 (2020).

    Article  CAS  PubMed  Google Scholar 

  213. Song, Y. et al. A highly efficient and faithful MDS patient-derived xenotransplantation model for pre-clinical studies. Nat. Commun. 10, 366 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Kaur, S., Bansal, Y., Kumar, R. & Bansal, G. A panoramic review of IL-6: structure, pathophysiological roles and inhibitors. Bioorg. Med. Chem. 28, 115327 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Yu, H. et al. A novel humanized mouse model with significant improvement of class-switched, antigen-specific antibody production. Blood 129, 959–969 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Hanazawa, A. et al. Generation of human immunosuppressive myeloid cell populations in human interleukin-6 transgenic NOG mice. Front. Immunol. 9, 152 (2018).

    Article  PubMed  Google Scholar 

  217. Das, R. et al. Microenvironment-dependent growth of preneoplastic and malignant plasma cells in humanized mice. Nat. Med. 22, 1351–1357 (2016).

    Article  CAS  PubMed  Google Scholar 

  218. Tsapogas, P., Mooney, C. J., Brown, G. & Rolink, A. The cytokine Flt3-ligand in normal and malignant hematopoiesis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18061115 (2017).

    Article  PubMed  Google Scholar 

  219. Ding, Y. et al. FLT3-ligand treatment of humanized mice results in the generation of large numbers of CD141+ and CD1c+ dendritic cells in vivo. J. Immunol. 192, 1982–1989 (2014).

    Article  CAS  PubMed  Google Scholar 

  220. Douam, F. et al. Selective expansion of myeloid and NK cells in humanized mice yields human-like vaccine responses. Nat. Commun. 9, 5031 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Li, Y. et al. A novel Flt3-deficient HIS mouse model with selective enhancement of human DC development. Eur. J. Immunol. 46, 1291–1299 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Lee, Y. S. et al. Human CD141+ dendritic cells (cDC1) are impaired in patients with advanced melanoma but can be targeted to enhance anti-PD-1 in a humanized mouse model. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-001963 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Pan, R., Ryan, J., Pan, D., Wucherpfennig, K. W. & Letai, A. Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis. Cell 185, 1521–1538.e18 (2022).

    Article  CAS  PubMed  Google Scholar 

  224. Shimasaki, N., Jain, A. & Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov. 19, 200–218 (2020).

    Article  CAS  PubMed  Google Scholar 

  225. Huntington, N. D. et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J. Exp. Med. 206, 25–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  226. Herndler-Brandstetter, D. et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc. Natl Acad. Sci. USA 114, E9626–E9634 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. Aryee, K.-E. et al. Enhanced development of functional human NK cells in NOD-scid-IL2rgnull mice expressing human IL15. FASEB J. 36, e22476 (2022).

    Article  CAS  PubMed  Google Scholar 

  228. Matsuda, M. et al. Human NK cell development in hIL-7 and hIL-15 knockin NOD/SCID/IL2rgKO mice. Life Sci. Alliance 2, e201800195 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Katano, I. et al. Long-term maintenance of peripheral blood derived human NK cells in a novel human IL-15- transgenic NOG mouse. Sci. Rep. 7, 17230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Medetgul-Ernar, K. & Davis, M. M. Standing on the shoulders of mice. Immunity 55, 1343–1353 (2022).

    Article  CAS  PubMed  Google Scholar 

  231. Shultz, L. D. et al. Humanized mouse models of immunological diseases and precision medicine. Mamm. Genome 30, 123–142 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Michels, A., Ho, N. & Buchholz, C. J. Precision medicine: In vivo CAR therapy as a showcase for receptor-targeted vector platforms. Mol. Ther. 30, 2401–2415 (2022).

    Article  CAS  PubMed  Google Scholar 

  233. Ho, N. et al. In vivo generation of CAR T cells in the presence of human myeloid cells. Mol. Ther. Methods Clin. Dev. 26, 144–156 (2022).

    Article  CAS  PubMed  Google Scholar 

  234. Agarwal, S., Weidner, T., Thalheimer, F. B. & Buchholz, C. J. In vivo generated human CAR T cells eradicate tumor cells. Oncoimmunology 8, e1671761 (2019).

    Article  PubMed  Google Scholar 

  235. Maser, I. P. et al. The tumor milieu promotes functional human tumor-resident plasmacytoid dendritic cells in humanized mouse models. Front. Immunol. 11, 2082 (2020).

    Article  CAS  PubMed  Google Scholar 

  236. Morton, J. J. et al. XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene 35, 290–300 (2016).

    Article  CAS  PubMed  Google Scholar 

  237. Moquin-Beaudry, G. et al. Autologous humanized mouse models of iPSC-derived tumors enable characterization and modulation of cancer-immune cell interactions. Cell Rep. Methods 2, 100153 (2022).

    Article  CAS  PubMed  Google Scholar 

  238. Sun, L., Jin, C. H., Tan, S., Liu, W. & Yang, Y. G. Human immune system mice with autologous tumor for modeling cancer immunotherapies. Front. Immunol. 11, 591669 (2020).

    Article  CAS  PubMed  Google Scholar 

  239. Fu, J. et al. Autologous reconstitution of human cancer and immune system in vivo. Oncotarget 8, 2053–2068 (2017).

    Article  PubMed  Google Scholar 

  240. Mukaida, N., Sasaki, S. I. & Baba, T. Two-faced roles of tumor-associated neutrophils in cancer development and progression. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21103457 (2020).

    Article  PubMed  Google Scholar 

  241. Zheng, Y. et al. Human neutrophil development and functionality are enabled in a humanized mouse model. Proc. Natl Acad. Sci. USA 119, e2121077119 (2022).

    Article  CAS  PubMed  Google Scholar 

  242. Onoe, T. et al. Homeostatic expansion and phenotypic conversion of human T cells depend on peripheral interactions with APCs. J. Immunol. 184, 6756–6765 (2010).

    Article  CAS  PubMed  Google Scholar 

  243. Ito, R. et al. Establishment of a human allergy model using human IL-3/GM-CSF-transgenic NOG mice. J. Immunol. 191, 2890–2899 (2013).

    Article  CAS  PubMed  Google Scholar 

  244. Ye, W. et al. Quantitative evaluation of the immunodeficiency of a mouse strain by tumor engraftments. J. Hematol. Oncol. 8, 59 (2015).

    Article  PubMed  Google Scholar 

  245. Legrand, N. et al. Functional CD47/signal regulatory protein alpha (SIRP(alpha)) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc. Natl Acad. Sci. USA 108, 13224–13229 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported in part by grants from the US National Institutes of Health (CA034196 (to L.D.S.), AI132963 (to L.D.S. and M.A.B.), OD026440 (to D.L.G., L.D.S. and M.A.B.)) and funding from the Japan Society for the Promotion of Science (to F.I.).

Author information

Authors and Affiliations

Authors

Contributions

J.C., H.B., M.O.S., D.L.G., L.D.S. and M.A.B. researched data for the article; J.C., H.B., D.L.G., J.G.K., F.I., L.D.S. and M.A.B. contributed substantially to discussions of content; J.C., H.B., L.D.S. and M.A.B. wrote the article; and all authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Michael A. Brehm.

Ethics declarations

Competing interests

D.L.G. and M.A.B. receive research support and are consultants for The Jackson Laboratory. J.G.K. and L.D.S. are employees at The Jackson Laboratory. NSG is a branded name marketed by The Jackson Laboratory, which commercializes several NSG and NSG-related strains discussed in this Review. The Jackson Laboratory also provides commercial oncology services.

Peer review

Peer reviewer information

Nature Reviews Clinical Oncology thanks Q. Chen, T. Pitts and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Disclaimer The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuprin, J., Buettner, H., Seedhom, M.O. et al. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 20, 192–206 (2023). https://doi.org/10.1038/s41571-022-00721-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00721-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer