Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitigating acute chemotherapy-associated adverse events in patients with cancer

Abstract

Despite the enthusiasm surrounding novel targeted agents and immunotherapies, chemotherapy remains the mainstay treatment for most human malignancies, either alone or in combination. Yet, the burden of chemotherapy-associated adverse events (CAAEs) remains high and, importantly, is associated with considerable morbidity, mortality and costs that affect patients across multiple dimensions, including physical, emotional and social functioning. CAAEs can directly affect patient outcomes and indirectly increase the risk of cancer recurrence by compromising treatment intensity and continuity. Systematic efforts to identify and critically summarize the evidence on management approaches for CAAEs remain limited. Herein, we review the most common acute CAAEs having a major effect on survival, quality of life, function and/or continuation of optimal therapy. We focus on selected acute toxicities that occur during treatment, summarizing their underlying pathophysiology, multifactorial aetiologies, evidenced-based treatments, prevention strategies and management recommendations. We also summarize the available evidence on risk factors, validated risk assessment tools and other efforts to optimize symptom control in patients most likely to benefit in order to personalize the prevention and treatment of acute CAAEs. Finally, we discuss innovative symptom monitoring and supportive care interventions that are under development to further improve the outcomes of patients with cancer.

Key points

  • The burden of chemotherapy-associated adverse events (CAAEs) remains high and is associated with considerable morbidity, mortality and costs.

  • CAAEs are frequently multifactorial in nature and often adversely affect multiple dimensions, including physical, emotional and social functioning domains.

  • CAAEs have a direct effect on patient symptoms, quality of life, and both physical and psychosocial functioning and can also compromise treatment intensity and continuity, potentially increasing the risk of cancer recurrence.

  • Continuing research into the underlying pathophysiology, emerging biomarkers, supportive care therapies and advances in patient risk stratification will further enable the personalized management of CAAEs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acute and chronic/late chemotherapy-associated adverse events in patients with cancer.
Fig. 2: Febrile neutropenia.
Fig. 3: Venous thromboembolism.
Fig. 4: Chemotherapy-induced nausea and vomiting.
Fig. 5: Chemotherapy-associated mucositis and oesophagitis.
Fig. 6: Tumour lysis syndrome.

Similar content being viewed by others

References

  1. Flowers, C. R. et al. Antimicrobial prophylaxis and outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 31, 794–810 (2013).

    Article  PubMed  Google Scholar 

  2. NCCN. Prevention and Treatment of Cancer-Related Infections https://www.nccn.org/professionals/physician_gls/pdf/growthfactors.pdf (NCCN, 2021).

  3. Klastersky, J. et al. Management of febrile neutropaenia: ESMO Clinical Practice Guidelines. Ann. Oncol. 27, v111–v118 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Taplitz, R. A. et al. Outpatient management of fever and neutropenia in adults treated for malignancy: American society of clinical oncology and infectious diseases society of America clinical practice guideline update. J. Clin. Oncol. 36, 1443–1453 (2018).

    Article  PubMed  Google Scholar 

  5. Lyman, G. H. & Sparreboom, A. Chemotherapy dosing in overweight and obese patients with cancer. Nat. Rev. Clin. Oncol. 10, 451–459 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Denduluri, N. et al. Dose delays, dose reductions, and relative dose intensity in patients with cancer who received adjuvant or neoadjuvant chemotherapy in community oncology practices. J. Natl Compr. Cancer Netw. 13, 1383–1393 (2015).

    Article  CAS  Google Scholar 

  7. Kuderer, N. M. et al. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 106, 2258–2266 (2006).

    Article  PubMed  Google Scholar 

  8. Pfreundschuh, M. et al. Two-weekly or 3-weekly CHOP chemotherapy with or without etoposide for the treatment of elderly patients with aggressive lymphomas: results of the NHL-B2 trial of the DSHNHL. Blood 104, 634–641 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Pettengell, R., Schwenkglenks, M. & Bosly, A. Association of reduced relative dose intensity and survival in lymphoma patients receiving CHOP-21 chemotherapy. Ann. Hematol. 87, 429–430 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kwak, L. W. et al. Prognostic significance of actual dose intensity in diffuse large-cell lymphoma: results of a tree-structured survival analysis. J. Clin. Oncol. 8, 963–977 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Hanna, R. K. et al. Predictors of reduced relative dose intensity and its relationship to mortality in women receiving multi-agent chemotherapy for epithelial ovarian cancer. Gynecol. Oncol. 129, 74–80 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Citron, M. L. et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J. Clin. Oncol. 21, 1431–1439 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Budman, D. R. et al. Dose and dose intensity as determinants of outcome in the adjuvant treatment of breast cancer. The Cancer and Leukemia Group B. J. Natl Cancer Inst. 90, 1205–1211 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Bosly, A. et al. Achievement of optimal average relative dose intensity and correlation with survival in diffuse large B-cell lymphoma patients treated with CHOP. Ann. Hematol. 87, 277–283 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Bonneterre, J. et al. Epirubicin increases long-term survival in adjuvant chemotherapy of patients with poor-prognosis, node-positive, early breast cancer: 10-year follow-up results of the French Adjuvant Study Group 05 randomized trial. J. Clin. Oncol. 23, 2686–2693 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Bonadonna, G. et al. Adjuvant cyclophosphamide, methotrexate, and fluorouracil in node-positive breast cancer: the results of 20 years of follow-up. N. Engl. J. Med. 332, 901–906 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Hryniuk, W. & Levine, M. N. Analysis of dose intensity for adjuvant chemotherapy trials in stage II breast cancer. J. Clin. Oncol. 4, 1162–1170 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Hryniuk, W., Frei, E. III & Wright, F. A. A single scale for comparing dose-intensity of all chemotherapy regimens in breast cancer: summation dose-intensity. J. Clin. Oncol. 16, 3137–3147 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Hryniuk, W. & Bush, H. The importance of dose intensity in chemotherapy of metastatic breast cancer. J. Clin. Oncol. 2, 1281–1288 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Frei, E. III et al. The relationship between high-dose treatment and combination chemotherapy: the concept of summation dose intensity. Clin. Cancer Res. 4, 2027–2037 (1998).

    CAS  PubMed  Google Scholar 

  21. Lyman, G. H., Dale, D. C. & Crawford, J. Incidence and predictors of low dose-intensity in adjuvant breast cancer chemotherapy: a nationwide study of community practices. J. Clin. Oncol. 21, 4524–4531 (2003).

    Article  PubMed  Google Scholar 

  22. Lyman, G. H. et al. Incidence and predictors of low chemotherapy dose-intensity in aggressive non-Hodgkin’s lymphoma: a nationwide study. J. Clin. Oncol. 22, 4302–4311 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Lyman, G. H. Impact of chemotherapy dose intensity on cancer patient outcomes. J. Natl Compr. Cancer Netw. 7, 99–108 (2009).

    Article  Google Scholar 

  24. Shayne, M. et al. Dose intensity and hematologic toxicity in older breast cancer patients receiving systemic chemotherapy. Cancer 115, 5319–5328 (2009).

    Article  PubMed  Google Scholar 

  25. Shayne, M. et al. Dose intensity and hematologic toxicity in older cancer patients receiving systemic chemotherapy. Cancer 110, 1611–1620 (2007).

    Article  PubMed  Google Scholar 

  26. Lyman, G. H. Issues on the use of white blood cell growth factors in oncology practice. Am. Soc. Clin. Oncol. Educ. Book 35, e528–e532 (2016).

    Article  PubMed  Google Scholar 

  27. Lyman, G. H. Risk assessment in oncology clinical practice. From risk factors to risk models. Oncology 17, 8–13 (2003).

    PubMed  Google Scholar 

  28. Dale, D., Crawford, J. & Lyman, G. H. Myelotoxicity and dose intensity of chemotherapy: reporting practices from randomized clinical trials. J. Natl Compr. Cancer Netw. 1, 440–454 (2003).

    Article  CAS  Google Scholar 

  29. Kuderer, N. M. & Wolff, A. C. Enhancing therapeutic decision making when options abound: toxicities matter. J. Clin. Oncol. 32, 1990–1993 (2014).

    Article  PubMed  Google Scholar 

  30. Truong, J. et al. Interpreting febrile neutropenia rates from randomized controlled trials for consideration of primary prophylaxis in the real world: a systematic review and meta-analysis. Ann. Oncol. 27, 608–618 (2015).

    Article  PubMed  Google Scholar 

  31. Gonzalez-Barca, E. et al. Prognostic factors influencing mortality in cancer patients with neutropenia and bacteremia. Eur. J. Clin. Microbiol. Infect. Dis. 18, 539–544 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Darmon, M. et al. Impact of neutropenia duration on short-term mortality in neutropenic critically ill cancer patients. Intensive Care Med. 28, 1775–1780 (2002).

    Article  PubMed  Google Scholar 

  33. Carratala, J. et al. Bacteremic pneumonia in neutropenic patients with cancer: causes, empirical antibiotic therapy, and outcome. Arch. Intern. Med. 158, 868–872 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Kuderer, N. M. et al. Impact of primary prophylaxis with granulocyte colony-stimulating factor on febrile neutropenia and mortality in adult cancer patients receiving chemotherapy: a systematic review. J. Clin. Oncol. 25, 3158–3167 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Bodey, G. P. et al. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann. Intern. Med. 64, 328–340 (1966).

    Article  CAS  PubMed  Google Scholar 

  36. Crawford, J., Dale, D. C. & Lyman, G. H. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer 100, 228–237 (2004).

    Article  PubMed  Google Scholar 

  37. Blackwell S., Crawford J. In Filgrastim (r-metHuG-CSF) in Clinical Practice (eds Morsten G., Dexter T.) pp 103–116 (Marcel Dekker, 1994).

  38. Lyman, G. H. et al. Risk of febrile neutropenia among patients with intermediate-grade non-Hodgkin’s lymphoma receiving CHOP chemotherapy. Leuk. Lymphoma 44, 2069–2076 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Lyman, G. H. & Delgado, D. J. Risk and timing of hospitalization for febrile neutropenia in patients receiving CHOP, CHOP-R, or CNOP chemotherapy for intermediate-grade non-Hodgkin lymphoma. Cancer 98, 2402–2409 (2003).

    Article  PubMed  Google Scholar 

  40. Crawford, J. et al. Risk and timing of neutropenic events in adult cancer patients receiving chemotherapy: the results of a prospective nationwide study of oncology practice. J. Natl Compr. Cancer Netw. 6, 109–118 (2008).

    Article  Google Scholar 

  41. Culakova, E. et al. Patterns of chemotherapy-associated toxicity and supportive care in US oncology practice: a nationwide prospective cohort study. Cancer Med. 3, 434–444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Crawford, J. et al. Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N. Engl. J. Med. 325, 164–170 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Lyman, G. H. et al. Predicting individual risk of neutropenic complications in patients receiving cancer chemotherapy. Cancer 117, 1917–1927 (2011).

    Article  PubMed  Google Scholar 

  44. Jenkins, P., Scaife, J. & Freeman, S. Validation of a predictive model that identifies patients at high risk of developing febrile neutropaenia following chemotherapy for breast cancer. Ann. Oncol. 23, 1766–1771 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Bozcuk, H. et al. A prospectively validated nomogram for predicting the risk of chemotherapy-induced febrile neutropenia: a multicenter study. Support. Care Cancer 23, 1759–1767 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Becker, P. S. et al. NCCN Guidelines Insights: hematopoietic growth factors, version 1.2020. J. Natl Compr. Cancer Netw. 18, 12–22 (2020).

    Article  Google Scholar 

  47. Lyman, G. H., Abella, E. & Pettengell, R. Risk factors for febrile neutropenia among patients with cancer receiving chemotherapy: a systematic review. Crit. Rev. Oncol. Hematol. 90, 190–199 (2014).

    Article  PubMed  Google Scholar 

  48. Lyman, G. H., Lyman, C. H. & Agboola, O. Risk models for predicting chemotherapy-induced neutropenia. Oncologist 10, 427–437 (2005).

    Article  PubMed  Google Scholar 

  49. Smith, T. J. et al. Recommendations for the use of WBC growth factors: American Society of Clinical Oncology clinical practice guideline update. J. Clin. Oncol. 33, 3199–3212 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Lyman, G. H. et al. Assessing patients’ risk of febrile neutropenia: is there a correlation between physician-assessed risk and model-predicted risk? Cancer Med. 4, 1153–1160 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kahneman, D., Sibony, O. & Sunstein, C. Noise: A Flaw in Human Judgment (Little Brown & Company, 2021).

  52. Pawloski, P. A. et al. Predicting neutropenia risk in patients with cancer using electronic data. J. Am. Med. Inf. Assoc. 24, e129–e135 (2017).

    Article  Google Scholar 

  53. Li, Y. et al. Value of incorporating newly identified risk factors into risk prediction for chemotherapy-induced febrile neutropenia. Cancer Med. 7, 4121–4131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Laskey, R. A. et al. Predictors of severe and febrile neutropenia during primary chemotherapy for ovarian cancer. Gynecol. Oncol. 125, 625–630 (2012).

    Article  PubMed  Google Scholar 

  55. Weycker, D. et al. Importance of risk factors for febrile neutropenia among patients receiving chemotherapy regimens not classified as high-risk in guidelines for myeloid growth factor use. J. Natl Compr. Cancer Netw. 13, 979–986 (2015).

    Article  Google Scholar 

  56. Weycker, D. et al. Risk of febrile neutropenia in patients receiving emerging chemotherapy regimens. Support. Care Cancer 22, 3275–3285 (2014).

    Article  PubMed  Google Scholar 

  57. Crawford, J. et al. Myeloid growth factors. Clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 5, 188–202 (2007).

    Article  CAS  Google Scholar 

  58. Aapro, M. S. et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur. J. Cancer 47, 8–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Kuderer, N. M. & Lyman, G. H. Personalized medicine and cancer supportive care: appropriate use of colony-stimulating factor support of chemotherapy. J. Natl Cancer Inst. 103, 910–913 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lyman, G. H. et al. Risk of mortality in patients with cancer who experience febrile neutropenia. Cancer 116, 5555–5563 (2010).

    Article  PubMed  Google Scholar 

  61. Klastersky, J. & Paesmans, M. The multinational association for supportive care in cancer (MASCC) risk index score: 10 years of use for identifying low-risk febrile neutropenic cancer patients. Support. Care Cancer 21, 1487–1495 (2013).

    Article  PubMed  Google Scholar 

  62. Klastersky, J. et al. The Multinational Association for supportive care in cancer risk index: a multinational scoring system for identifying low-risk febrile neutropenic cancer patients. J. Clin. Oncol. 18, 3038–3051 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. de Souza Viana, L. et al. Performance of a modified MASCC index score for identifying low-risk febrile neutropenic cancer patients. Support. Care Cancer 16, 841–846 (2008).

    Article  PubMed  Google Scholar 

  64. Hui, E. P. et al. Prediction of outcome in cancer patients with febrile neutropenia: a prospective validation of the Multinational Association for supportive care in cancer risk index in a Chinese population and comparison with the Talcott model and artificial neural network. Support. Care Cancer 19, 1625–1635 (2011).

    Article  PubMed  Google Scholar 

  65. Carmona-Bayonas, A. et al. Prediction of serious complications in patients with seemingly stable febrile neutropenia: validation of the Clinical Index of Stable Febrile Neutropenia in a prospective cohort of patients from the FINITE study. J. Clin. Oncol. 33, 465–471 (2015).

    Article  PubMed  Google Scholar 

  66. Carmona-Bayonas, A. et al. Prognostic evaluation of febrile neutropenia in apparently stable adult cancer patients. Br. J. Cancer 105, 612–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Taplitz, R. A. et al. Antimicrobial prophylaxis for adult patients with cancer-related immunosuppression: ASCO and IDSA clinical practice guideline update. J. Clin. Oncol. 36, 3043–3054 (2018).

    Article  PubMed  Google Scholar 

  68. Cullen, M. et al. Antibacterial prophylaxis after chemotherapy for solid tumors and lymphomas. N. Engl. J. Med. 353, 988–998 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Lyman, G. H. et al. Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a systematic review. J. Clin. Oncol. 28, 2914–2924 (2010).

    Article  PubMed  Google Scholar 

  70. Lyman, G. H. et al. The impact of the granulocyte colony-stimulating factor on chemotherapy dose intensity and cancer survival: a systematic review and meta-analysis of randomized controlled trials. Ann. Oncol. 24, 2475–2484 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rajan, S. S. et al. Short-term costs associated with primary prophylactic G-CSF use during chemotherapy. Am. J. Manag. Care 19, 150–159 (2013).

    PubMed  Google Scholar 

  72. Hershman, D. et al. Acute myeloid leukemia or myelodysplastic syndrome following use of granulocyte colony-stimulating factors during breast cancer adjuvant chemotherapy. J. Natl Cancer Inst. 99, 196–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Agiro, A. et al. Risk of neutropenia-related hospitalization in patients who received colony-stimulating factors with chemotherapy for breast cancer. J. Clin. Oncol. 34, 3872–3879 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Weycker, D. et al. Burden of chemotherapy-induced febrile neutropenia hospitalizations in US Clinical Practice, by use and patterns of prophylaxis with colony-stimulating factor. Support. Care Cancer 25, 439–447 (2017).

    Article  PubMed  Google Scholar 

  75. Dinan, M. A., Hirsch, B. R. & Lyman, G. H. Management of chemotherapy-induced neutropenia: measuring quality, cost, and value. J. Natl Compr. Cancer Netw. 13, e1–e7 (2015).

    Article  Google Scholar 

  76. Lyman, G. H. et al. Changing patterns of chemotherapy relative dose intensity and supportive care for aggressive B-cell non-Hodgkin lymphoma. Leuk. Lymphoma 57, 283–290 (2015).

    Article  PubMed  Google Scholar 

  77. Fust, K. et al. Granulocyte colony-stimulating factors in the prevention of febrile neutropenia: review of cost-effectiveness models. Expert Rev. Pharmacoecon. Outcomes Res. 17, 39–52 (2017).

    Article  PubMed  Google Scholar 

  78. Schnipper, L. E. et al. American Society of Clinical Oncology identifies five key opportunities to improve care and reduce costs: the top five list for oncology. J. Clin. Oncol. 30, 1715–1724 (2012).

    Article  PubMed  Google Scholar 

  79. Crawford, J. et al. Myeloid growth factors. J. Natl Compr. Cancer Netw. 11, 1266–1290 (2013).

    Article  CAS  Google Scholar 

  80. Vogel, C. L. et al. First and subsequent cycle use of pegfilgrastim prevents febrile neutropenia in patients with breast cancer: a multicenter, double-blind, placebo-controlled phase III study. J. Clin. Oncol. 23, 1178–1184 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Mahtani, R. L. et al. A prospective cohort study to evaluate the incidence of febrile neutropenia in patients receiving pegfilgrastim on-body injector versus other options for prophylaxis of febrile neutropenia: breast cancer subgroup analysis. Support. Care Cancer 30, 6135–6144 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lyman, G. H., Kuderer, N. M. & Aapro, M. Improving outcomes of chemotherapy: established and novel options for myeloprotection in the COVID-19 era. Front. Oncol. 11, 697908 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shayne, M., Harvey, R. D. & Lyman, G. H. Prophylaxis and treatment strategies for optimizing chemotherapy relative dose intensity. Expert Rev. Anticancer Ther. 21, 1145–1159 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Natoli, M. et al. Plinabulin, a distinct microtubule-targeting chemotherapy, promotes M1-like macrophage polarization and anti-tumor immunity. Front. Oncol. 11, 644608 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Blayney, D. W. et al. Efficacy of plinabulin vs pegfilgrastim for prevention of chemotherapy-induced neutropenia in adults with non-small cell lung cancer: a phase 2 randomized clinical trial. JAMA Oncol. 6, e204429 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Blayney, D. W., Mohanlal, R. & Huang, L. Protective-2 (BPI-2358-106): a confirmatory trial to demonstrate superiority of the plinabulin+pegfilgrastim (Plin/Peg) combination versus standard of care pegfilgrastim for the prevention of chemotherapy-induced neutropenia (CIN) in breast cancer (BC) patients (pts). Blood 136 (Suppl. 1), 16 (2020).

    Article  Google Scholar 

  87. Mohile, S. G. et al. Evaluation of geriatric assessment and management on the toxic effects of cancer treatment (GAP70+): a cluster-randomised study. Lancet 398, 1894–1904 (2021).

    Article  PubMed  Google Scholar 

  88. Ambrus, J. L. et al. Causes of death in cancer patients. J. Med. 6, 61–64 (1975).

    CAS  PubMed  Google Scholar 

  89. Chew, H. K. et al. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch. Intern. Med. 166, 458–464 (2006).

    Article  PubMed  Google Scholar 

  90. Lyman, G. H. et al. Morbidity, mortality and costs associated with venous thromboembolism in hospitalized patients with cancer. Thromb. Res. 164 (Suppl. 1), S112–S118 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Guerin, L. et al. Prevalence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Prevalence of CTEPH after pulmonary embolism. Thromb. Haemost. 112, 598–605 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Rabinovich, A. & Kahn, S. R. The postthrombotic syndrome: current evidence and future challenges. J. Thromb. Haemost. 15, 230–241 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Elting, L. S. et al. Outcomes and cost of deep venous thrombosis among patients with cancer. Arch. Intern. Med. 164, 1653–1661 (2004).

    Article  PubMed  Google Scholar 

  94. Kuderer, N. M., Ortel, T. L. & Francis, C. W. Impact of venous thromboembolism and anticoagulation on cancer and cancer survival. J. Clin. Oncol. 27, 4902–4911 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Falanga, A. Mechanisms of hypercoagulation in malignancy and during chemotherapy. Haemostasis 28 (Suppl. 3), 50–60 (1998).

    CAS  PubMed  Google Scholar 

  96. Dhami, S. P. S., Patmore, S. & O’Sullivan, J. M. Advances in the management of cancer-associated thrombosis. Semin. Thromb. Hemost. 47, 139–149 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Lyman, G. H. & Khorana, A. A. Cancer, clots and consensus: new understanding of an old problem. J. Clin. Oncol. 27, 4821–4826 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ay, C. et al. Prediction of venous thromboembolism in patients with cancer by measuring thrombin generation: results from the Vienna Cancer and Thrombosis Study. J. Clin. Oncol. 29, 2099–2103 (2011).

    Article  PubMed  Google Scholar 

  99. Dunbar, A. et al. Genomic profiling identifies somatic mutations predicting thromboembolic risk in patients with solid tumors. Blood 137, 2103–2113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ahlbrecht, J. et al. Tumor grade is associated with venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J. Clin. Oncol. 30, 3870–3875 (2012).

    Article  PubMed  Google Scholar 

  101. White, R. H. et al. Incidence of venous thromboembolism in the year before the diagnosis of cancer in 528,693 adults. Arch. Intern. Med. 165, 1782–1787 (2005).

    Article  PubMed  Google Scholar 

  102. Lyman, G. H. et al. Venous thromboembolism risk in patients with cancer receiving chemotherapy: a real-world analysis. Oncologist 18, 1321–1329 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lyman, G. H. The incidence of venous thromboembolism in cancer patients: a real-world analysis. Clin. Adv. Hematol. Oncol. 10, 40–42 (2012).

    PubMed  Google Scholar 

  104. Khorana, A. A. et al. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer 104, 2822–2829 (2005).

    Article  PubMed  Google Scholar 

  105. Cavo, M. et al. Deep-vein thrombosis in patients with multiple myeloma receiving first-line thalidomide-dexamethasone therapy. Blood 100, 2272–2273 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Kuenen, B. C. et al. Potential role of platelets in endothelial damage observed during treatment with cisplatin, gemcitabine, and the angiogenesis inhibitor SU5416. J. Clin. Oncol. 21, 2192–2198 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Hurwitz, H. I. et al. Venous thromboembolic events with chemotherapy plus bevacizumab: a pooled analysis of patients in randomized phase II and III studies. J. Clin. Oncol. 29, 1757–1764 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Khorana, A. A. et al. Cancer associated thrombosis and mortality in patients with cancer stratified by Khorana score risk levels. Cancer Med. 9, 8062–8073 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kuderer, N. M. et al. Venous thromboembolism represents a major risk factor for early all-cause mortality in patients receiving cancer chemotherapy. J. Clin. Oncol. 26 (Suppl. 15), 9521 (2008).

    Article  Google Scholar 

  110. Lyman, G. H. Venous thromboembolism in the patient with cancer: focus on burden of disease and benefits of thromboprophylaxis. Cancer 117, 1334–1349 (2011).

    Article  PubMed  Google Scholar 

  111. Bohlius, J. et al. Recombinant human erythropoietins and cancer patients: updated meta-analysis of 57 studies including 9353 patients. J. Natl Cancer Inst. 98, 708–714 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Khorana, A. A. et al. Blood transfusions, thrombosis, and mortality in hospitalized patients with cancer. Arch. Intern. Med. 168, 2377–2381 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Khorana, A. A. et al. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 111, 4902–4907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ay, C. et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood 112, 2703–2708 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. van Es, N. et al. The Khorana score for prediction of venous thromboembolism in cancer patients: an individual patient data meta-analysis. J. Thromb. Haemost. 18, 1940–1951 (2020).

    Article  PubMed  Google Scholar 

  116. Ay, C. et al. Prediction of venous thromboembolism in cancer patients. Blood 116, 5377–5382 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Verso, M. et al. A modified Khorana risk assessment score for venous thromboembolism in cancer patients receiving chemotherapy: the Protecht score. Intern. Emerg. Med. 7, 291–292 (2012).

    Article  PubMed  Google Scholar 

  118. Kuderer, N. M. et al. Predictors of venous thromboembolism and early mortality in lung cancer: results from a global prospective study (CANTARISK). Oncologist 23, 247–255 (2018).

    Article  PubMed  Google Scholar 

  119. Mansfield, A. S. et al. Predictors of active cancer thromboembolic outcomes: validation of the Khorana score among patients with lung cancer. J. Thromb. Haemost. 14, 1773–1778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rupa-Matysek, J. et al. Evaluation of risk factors and assessment models for predicting venous thromboembolism in lung cancer patients. Med. Oncol. 35, 63 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kuderer, N. M. et al. A validated risk score for venous thromboembolism is predictive of cancer progression and mortality. Oncologist 21, 861–867 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Pabinger, I. et al. A clinical prediction model for cancer-associated venous thromboembolism: a development and validation study in two independent prospective cohorts. Lancet Haematol. 5, e289–e298 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Li, A. et al. Derivation and validation of a risk assessment model for immunomodulatory drug-associated thrombosis among patients with multiple myeloma. J. Natl Compr. Cancer Netw. 17, 840–847 (2019).

    Article  CAS  Google Scholar 

  124. Sanfilippo, K. M. et al. Predicting venous thromboembolism in multiple myeloma: development and validation of the IMPEDE VTE score. Am. J. Hematol. 94, 1176–1184 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lyman, G. H. & Kuderer, N. M. Clinical practice guidelines for the treatment and prevention of cancer-associated thrombosis. Thromb. Res. 191 (Suppl. 1), S79–S84 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Schunemann, H. J. et al. Use of heparins in patients with cancer: individual participant data meta-analysis of randomised trials study protocol. BMJ Open 6, e010569 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Khorana, A. A. et al. Dalteparin thromboprophylaxis in cancer patients at high risk for venous thromboembolism: a randomized trial. Thromb. Res. 151, 89–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Carrier, M. et al. Apixaban to prevent venous thromboembolism in patients with cancer. N. Engl. J. Med. 380, 711–719 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Khorana, A. A. et al. Rivaroxaban for thromboprophylaxis in high-risk ambulatory patients with cancer. N. Engl. J. Med. 380, 720–728 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Li, A. et al. Direct oral anticoagulant for the prevention of thrombosis in ambulatory patients with cancer: a systematic review and meta-analysis. J. Thromb. Haemost. 17, 2141–2151 (2019).

    Article  PubMed  Google Scholar 

  131. Key, N. S. et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO clinical practice guideline update. J. Clin. Oncol. 38, 496–520 (2019).

    Article  PubMed  Google Scholar 

  132. Lyman, G. H. et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: prevention and treatment in patients with cancer. Blood Adv. 5, 927–974 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Verso, M. & Di Nisio, M. Management of venous thromboembolism in cancer patients: Considerations about the clinical practice guideline update of the American Society of Clinical Oncology. Eur. J. Intern. Med. 71, 4–7 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Aapro, M. et al. Supportive care in patients with cancer during the COVID-19 pandemic. ESMO Open 6, 100038 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Navari, R. M. & Aapro, M. Antiemetic prophylaxis for chemotherapy-induced nausea and vomiting. N. Engl. J. Med. 374, 1356–1367 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Trigg, M. E. & Inverso, D. M. Nausea and vomiting with high-dose chemotherapy and stem cell rescue therapy: a review of antiemetic regimens. Bone Marrow Transpl. 42, 501–506 (2008).

    Article  CAS  Google Scholar 

  137. Wickham, R. J. Revisiting the physiology of nausea and vomiting-challenging the paradigm. Support. Care Cancer 28, 13–21 (2020).

    Article  PubMed  Google Scholar 

  138. Smith, P., Lavery, A. & Turkington, R. C. An overview of acute gastrointestinal side effects of systemic anti-cancer therapy and their management. Best Pract. Res. Clin. Gastroenterol. 48-49, 101691 (2020).

    Article  PubMed  Google Scholar 

  139. Gupta, K., Walton, R. & Kataria, S. P. Chemotherapy-induced nausea and vomiting: pathogenesis, recommendations, and new trends. Cancer Treat. Res. Commun. 26, 100278 (2021).

    Article  PubMed  Google Scholar 

  140. Crowder, S. L. et al. Metagenomics and chemotherapy-induced nausea: a roadmap for future research. Cancer 128, 461–470 (2021).

    Article  PubMed  Google Scholar 

  141. Clemons, M. et al. Risk model-guided antiemetic prophylaxis vs physician’s choice in patients receiving chemotherapy for early-stage breast cancer: a randomized clinical trial. JAMA Oncol. 2, 225–231 (2016).

    Article  PubMed  Google Scholar 

  142. Schwartzberg, L. et al. Resource utilization for chemotherapy-induced nausea and vomiting events in patients with solid tumors treated with antiemetic regimens. Am. Health Drug Benefits 8, 273–282 (2015).

    PubMed  PubMed Central  Google Scholar 

  143. Hesketh, P. J. et al. Antiemetics: ASCO guideline update. J. Clin. Oncol. 38, 2782–2797 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Roila, F. et al. 2016 MASCC and ESMO guideline update for the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting and of nausea and vomiting in advanced cancer patients. Ann. Oncol. 27, v119–v133 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Benson, A. B. III et al. Recommended guidelines for the treatment of cancer treatment-induced diarrhea. J. Clin. Oncol. 22, 2918–2926 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Andreyev, J. et al. Guidance on the management of diarrhoea during cancer chemotherapy. Lancet Oncol. 15, e447–e460 (2014).

    Article  PubMed  Google Scholar 

  147. O’Brien, B. E., Kaklamani, V. G. & Benson, A. B. 3rd. The assessment and management of cancer treatment-related diarrhea. Clin. Colorectal Cancer 4, 375–381 (2005).

    Article  PubMed  Google Scholar 

  148. Rothenberg, M. L. et al. Phase II trial of irinotecan in patients with progressive or rapidly recurrent colorectal cancer. J. Clin. Oncol. 14, 1128–1135 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. Wadler, S. et al. Recommended guidelines for the treatment of chemotherapy-induced diarrhea. J. Clin. Oncol. 16, 3169–3178 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Rutledge, D. N. & Engelking, C. Cancer-related diarrhea: selected findings of a national survey of oncology nurse experiences. Oncol. Nurs. Forum 25, 861–873 (1998).

    CAS  PubMed  Google Scholar 

  151. Ikuno, N. et al. Irinotecan (CPT-11) and characteristic mucosal changes in the mouse ileum and cecum. J. Natl Cancer Inst. 87, 1876–1883 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Abigerges, D. et al. Phase I and pharmacologic studies of the camptothecin analog irinotecan administered every 3 weeks in cancer patients. J. Clin. Oncol. 13, 210–221 (1995).

    Article  CAS  PubMed  Google Scholar 

  153. Saliba, F. et al. Pathophysiology and therapy of irinotecan-induced delayed-onset diarrhea in patients with advanced colorectal cancer: a prospective assessment. J. Clin. Oncol. 16, 2745–2751 (1998).

    Article  CAS  PubMed  Google Scholar 

  154. Arbuckle, R. B., Huber, S. L. & Zacker, C. The consequences of diarrhea occurring during chemotherapy for colorectal cancer: a retrospective study. Oncologist 5, 250–259 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Anand, A. & Glatt, A. E. Clostridium difficile infection associated with antineoplastic chemotherapy: a review. Clin. Infect. Dis. 17, 109–113 (1993).

    Article  CAS  PubMed  Google Scholar 

  156. Aksoy, D. Y. et al. Diarrhea in neutropenic patients: a prospective cohort study with emphasis on neutropenic enterocolitis. Ann. Oncol. 18, 183–189 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Zidan, J. et al. Octreotide in the treatment of severe chemotherapy-induced diarrhea. Ann. Oncol. 12, 227–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Morton, A. J. & Durrant, S. T. Efficacy of octreotide in controlling refractory diarrhea following bone marrow transplantation. Clin. Transpl. 9, 205–208 (1995).

    CAS  Google Scholar 

  159. Kornblau, S. et al. Management of cancer treatment-related diarrhea. Issues and therapeutic strategies. J. Pain Symptom Manag. 19, 118–129 (2000).

    Article  CAS  Google Scholar 

  160. Grace, E. et al. Review article: small intestinal bacterial overgrowth–prevalence, clinical features, current and developing diagnostic tests, and treatment. Aliment. Pharmacol. Ther. 38, 674–688 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Sonis, S. T. The pathobiology of mucositis. Nat. Rev. Cancer 4, 277–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Bowen, J. et al. The pathogenesis of mucositis: updated perspectives and emerging targets. Support. Care Cancer 27, 4023–4033 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Sonis, S. T. et al. Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100, 1995–2025 (2004).

    Article  PubMed  Google Scholar 

  164. Menezes-Garcia, Z. et al. Mechanisms underlying chemotherapy-associated mucositis: the role of inflammatory mediators and potential therapeutic targets. EMJ Gastroenterol. 7, 82–91 (2018).

    Google Scholar 

  165. Epstein, J. B. & Schubert, M. M. Oropharyngeal mucositis in cancer therapy. Review of pathogenesis, diagnosis, and management. Oncology 17, 1767–1779 (2003).

    PubMed  Google Scholar 

  166. National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) v5.0 (NCI, 2017).

  167. Maria, O. M., Eliopoulos, N. & Muanza, T. Radiation-induced oral mucositis. Front. Oncol. 7, 89 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Rapoport, A. P. et al. Analysis of factors that correlate with mucositis in recipients of autologous and allogeneic stem-cell transplants. J. Clin. Oncol. 17, 2446–2453 (1999).

    Article  CAS  PubMed  Google Scholar 

  169. Sonis, S. T. et al. Validation of a new scoring system for the assessment of clinical trial research of oral mucositis induced by radiation or chemotherapy. Cancer 85, 2103–2113 (1999).

    Article  CAS  PubMed  Google Scholar 

  170. Kushner, J. A. et al. Development and validation of a patient-reported oral mucositis symptom (PROMS) scale. J. Can. Dent. Assoc. 74, 59 (2008).

    PubMed  Google Scholar 

  171. Wardill, H. R. et al. Prediction of mucositis risk secondary to cancer therapy: a systematic review of current evidence and call to action. Support. Care Cancer 28, 5059–5073 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Elting, L. S. et al. Risk of oral and gastrointestinal mucosal injury among patients receiving selected targeted agents: a meta-analysis. Support. Care Cancer 21, 3243–3254 (2013).

    Article  PubMed  Google Scholar 

  173. Watters, A. L., Epstein, J. B. & Agulnik, M. Oral complications of targeted cancer therapies: a narrative literature review. Oral. Oncol. 47, 441–448 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Riley, P. et al. Interventions for preventing oral mucositis in patients with cancer receiving treatment: oral cryotherapy. Cochrane Database Syst. Rev. 2015, CD011552 (2015).

    PubMed Central  Google Scholar 

  175. Nawi, R. I. M. et al. Oral cryotherapy: prevention of oral mucositis and pain among patients with colorectal cancer undergoing chemotherapy. Clin. J. Oncol. Nurs. 22, 555–560 (2018).

    Article  Google Scholar 

  176. Farrell, C. L. et al. Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res. 58, 933–939 (1998).

    CAS  PubMed  Google Scholar 

  177. Spielberger, R. et al. Palifermin for oral mucositis after intensive therapy for hematologic cancers. N. Engl. J. Med. 351, 2590–2598 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Logan, R. M. et al. Systematic review of growth factors and cytokines for the management of oral mucositis in cancer patients and clinical practice guidelines. Support. Care Cancer 28, 2485–2498 (2020).

    Article  PubMed  Google Scholar 

  179. Blijlevens, N. et al. In a high-dose melphalan setting, palifermin compared with placebo had no effect on oral mucositis or related patient’s burden. Bone Marrow Transpl. 48, 966–971 (2013).

    Article  CAS  Google Scholar 

  180. Rosen, L. S. et al. Palifermin reduces the incidence of oral mucositis in patients with metastatic colorectal cancer treated with fluorouracil-based chemotherapy. J. Clin. Oncol. 24, 5194–5200 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Zadik, Y. et al. Systematic review of photobiomodulation for the management of oral mucositis in cancer patients and clinical practice guidelines. Support. Care Cancer 27, 3969–3983 (2019).

    Article  PubMed  Google Scholar 

  182. Elad, S. et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 126, 4423–4431 (2020).

    Article  PubMed  Google Scholar 

  183. Peterson, D. E. et al. Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up. Ann. Oncol. 26 (Suppl. 5), v139–v151 (2015).

    Article  PubMed  Google Scholar 

  184. Uderzo, C. et al. Glutamine-enriched nutrition does not reduce mucosal morbidity or complications after stem-cell transplantation for childhood malignancies: a prospective randomized study. Transplantation 91, 1321–1325 (2011).

    Article  CAS  PubMed  Google Scholar 

  185. McGinnis, W. L. et al. Placebo-controlled trial of sucralfate for inhibiting radiation-induced esophagitis. J. Clin. Oncol. 15, 1239–1243 (1997).

    Article  CAS  PubMed  Google Scholar 

  186. Movsas, B. et al. Randomized trial of amifostine in locally advanced non–small-cell lung cancer patients receiving chemotherapy and hyperfractionated radiation: Radiation Therapy Oncology Group trial 98-01. J. Clin. Oncol. 23, 2145–2154 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Dodd, M. J. et al. Randomized clinical trial of the effectiveness of 3 commonly used mouthwashes to treat chemotherapy-induced mucositis. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 90, 39–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  188. McGuire, D. B. et al. Systematic review of basic oral care for the management of oral mucositis in cancer patients. Support. Care Cancer 21, 3165–3177 (2013).

    Article  PubMed  Google Scholar 

  189. Lalla, R. V. et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 120, 1453–1461 (2014).

    Article  PubMed  Google Scholar 

  190. Nursing AAo. Magic Mouthwash (2021).

  191. Uberoi, A. S., Brown, T. J. & Gupta, A. Magic mouthwash for oral mucositis: a teachable moment. JAMA Intern. Med. 179, 104–105 (2019).

    Article  PubMed  Google Scholar 

  192. Rugo, H. S. et al. Prevention of everolimus-related stomatitis in women with hormone receptor-positive, HER2-negative metastatic breast cancer using dexamethasone mouthwash (SWISH): a single-arm, phase 2 trial. Lancet Oncol. 18, 654–662 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Carnel, S. B. et al. Treatment of radiation-and chemotherapy-induced stomatitis. Otolaryngol. Head Neck Surg. 102, 326–330 (1990).

    Article  CAS  PubMed  Google Scholar 

  194. Epstein, J. B. et al. Oral topical doxepin rinse: analgesic effect in patients with oral mucosal pain due to cancer or cancer therapy. Oral. Oncol. 37, 632–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  195. Saunders, D. P. et al. Systematic review of antimicrobials, mucosal coating agents, anesthetics, and analgesics for the management of oral mucositis in cancer patients and clinical practice guidelines. Support. Care Cancer 28, 2473–2484 (2020).

    Article  PubMed  Google Scholar 

  196. Cerchietti, L. C. et al. Effect of topical morphine for mucositis-associated pain following concomitant chemoradiotherapy for head and neck carcinoma. Cancer 95, 2230–2236 (2002).

    Article  CAS  PubMed  Google Scholar 

  197. Coda, B. A. et al. Comparative efficacy of patient-controlled administration of morphine, hydromorphone, or sufentanil for the treatment of oral mucositis pain following bone marrow transplantation. Pain 72, 333–346 (1997).

    Article  CAS  PubMed  Google Scholar 

  198. Yarom, N. et al. Systematic review of natural and miscellaneous agents for the management of oral mucositis in cancer patients and clinical practice guidelines-part 1: vitamins, minerals, and nutritional supplements. Support. Care Cancer 27, 3997–4010 (2019).

    Article  PubMed  Google Scholar 

  199. Payne, A. S., James, W. D. & Weiss, R. B. Dermatologic toxicity of chemotherapeutic agents. Semin. Oncol. 33, 86–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  200. Susser, W. S., Whitaker-Worth, D. L. & Grant-Kels, J. M. Mucocutaneous reactions to chemotherapy. J. Am. Acad. Dermatol. 40, 367–398 (1999).

    Article  CAS  PubMed  Google Scholar 

  201. Thodtmann, R. et al. A phase II trial of pemetrexed in patients with metastatic renal cancer. Invest. New Drugs 21, 353–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  202. Hanna, N. et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J. Clin. Oncol. 22, 1589–1597 (2004).

    Article  CAS  PubMed  Google Scholar 

  203. Singal, R. et al. Discrete pigmentation after chemotherapy. Pediatr. Dermatol. 8, 231–235 (1991).

    Article  CAS  PubMed  Google Scholar 

  204. Issaivanan, M. et al. Cutaneous manifestations of hydroxyurea therapy in childhood: case report and review. Pediatr. Dermatol. 21, 124–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  205. Hendrix, J. D. Jr. & Greer, K. E. Cutaneous hyperpigmentation caused by systemic drugs. Int. J. Dermatol. 31, 458–466 (1992).

    Article  PubMed  Google Scholar 

  206. Bronner, A. K. & Hood, A. F. Cutaneous complications of chemotherapeutic agents. J. Am. Acad. Dermatol. 9, 645–663 (1983).

    Article  CAS  PubMed  Google Scholar 

  207. Rosen, A. C. et al. Life-threatening dermatologic adverse events in oncology. Anticancer. Drugs 25, 225–234 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Nassif, A. et al. Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J. Allergy Clin. Immunol. 114, 1209–1215 (2004).

    Article  CAS  PubMed  Google Scholar 

  209. Frey, N. et al. The epidemiology of Stevens-Johnson syndrome and toxic epidermal necrolysis in the UK. J. Invest. Dermatol. 137, 1240–1247 (2017).

    Article  CAS  PubMed  Google Scholar 

  210. Alley, E., Green, R. & Schuchter, L. Cutaneous toxicities of cancer therapy. Curr. Opin. Oncol. 14, 212–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  211. Robert, C. et al. Nail toxicities induced by systemic anticancer treatments. Lancet Oncol. 16, e181–e189 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Alimonti, A. et al. Nail disorders in a woman treated with ixabepilone for metastatic breast cancer. Anticancer. Res. 25, 3531–3532 (2005).

    PubMed  Google Scholar 

  213. Marks, D. H., Qureshi, A. & Friedman, A. Evaluation of prevention interventions for taxane-induced dermatologic adverse events: a systematic review. JAMA Dermatol. 154, 1465–1472 (2018).

    Article  PubMed  Google Scholar 

  214. Ishiguro, H. et al. Degree of freezing does not affect efficacy of frozen gloves for prevention of docetaxel-induced nail toxicity in breast cancer patients. Support. Care Cancer 20, 2017–2024 (2012).

    Article  CAS  PubMed  Google Scholar 

  215. Miller, K. K., Gorcey, L. & McLellan, B. N. Chemotherapy-induced hand-foot syndrome and nail changes: a review of clinical presentation, etiology, pathogenesis, and management. J. Am. Acad. Dermatol. 71, 787–794 (2014).

    Article  PubMed  Google Scholar 

  216. Farr, K. P. & Safwat, A. Palmar-plantar erythrodysesthesia associated with chemotherapy and its treatment. Case Rep. Oncol. 4, 229–235 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Drake, R. D. et al. Oral dexamethasone attenuates Doxil-induced palmar-plantar erythrodysesthesias in patients with recurrent gynecologic malignancies. Gynecol. Oncol. 94, 320–324 (2004).

    Article  CAS  PubMed  Google Scholar 

  218. Hesketh, P. J. et al. Chemotherapy-induced alopecia: psychosocial impact and therapeutic approaches. Support. Care Cancer 12, 543–549 (2004).

    Article  PubMed  Google Scholar 

  219. Choi, E. K. et al. Impact of chemotherapy-induced alopecia distress on body image, psychosocial well-being, and depression in breast cancer patients. Psychooncology 23, 1103–1110 (2014).

    Article  PubMed  Google Scholar 

  220. Prevezas, C. et al. Irreversible and severe alopecia following docetaxel or paclitaxel cytotoxic therapy for breast cancer. Br. J. Dermatol. 160, 883–885 (2009).

    Article  CAS  PubMed  Google Scholar 

  221. Paus, R. & Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 341, 491–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  222. Kluger, N. et al. Permanent scalp alopecia related to breast cancer chemotherapy by sequential fluorouracil/epirubicin/cyclophosphamide (FEC) and docetaxel: a prospective study of 20 patients. Ann. Oncol. 23, 2879–2884 (2012).

    Article  CAS  PubMed  Google Scholar 

  223. Hrin, M. L. & McMichael, A. J. Chemotherapy-induced alopecia in African American women: a literature review demonstrates a knowledge gap. J. Am. Acad. Dermatol. 86, 1434–1435 (2022).

    Article  PubMed  Google Scholar 

  224. Westgate, G. E., Ginger, R. S. & Green, M. R. The biology and genetics of curly hair. Exp. Dermatol. 26, 483–490 (2017).

    Article  PubMed  Google Scholar 

  225. Dilawari, A. et al. Does scalp cooling have the same efficacy in black patients receiving chemotherapy for breast cancer? Oncologist 26, 292–e548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Rugo, H. S., Melin, S. A. & Voigt, J. Scalp cooling with adjuvant/neoadjuvant chemotherapy for breast cancer and the risk of scalp metastases: systematic review and meta-analysis. Breast Cancer Res. Treat. 163, 199–205 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Kruse, M. & Abraham, J. Management of chemotherapy-induced alopecia with scalp cooling. J. Oncol. Pract. 14, 149–154 (2018).

    Article  PubMed  Google Scholar 

  228. Nangia, J. et al. Effect of a scalp cooling device on alopecia in women undergoing chemotherapy for breast cancer: the SCALP randomized clinical trial. JAMA 317, 596–605 (2017).

    Article  PubMed  Google Scholar 

  229. Cairo, M. S. & Bishop, M. Tumour lysis syndrome: new therapeutic strategies and classification. Br. J. Haematol. 127, 3–11 (2004).

    Article  PubMed  Google Scholar 

  230. Howard, S. C., Pui, C.-H. & Ribeiro, R. C. Tumor Lysis Syndrome. Renal Disease in Cancer Patients. 39–64 (Elsevier, 2014).

  231. Coiffier, B. et al. Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. J. Clin. Oncol. 26, 2767–2778 (2008).

    Article  CAS  PubMed  Google Scholar 

  232. Cairo, M. S. et al. Recommendations for the evaluation of risk and prophylaxis of tumour lysis syndrome (TLS) in adults and children with malignant diseases: an expert TLS panel consensus. Br. J. Haematol. 149, 578–586 (2010).

    Article  CAS  PubMed  Google Scholar 

  233. Halfdanarson, T. R., Hogan, W. J. & Moynihan, T. J. In Mayo Clinic Proceedings Vol. 81, pp 835–848 (Elsevier, 2006).

  234. Krakoff, I. H. & Meyer, R. L. Prevention of hyperuricemia in leukemia and lymphoma: use of alopurinol, a xanthine oxidase inhibitor. JAMA 193, 1–6 (1965).

    Article  CAS  PubMed  Google Scholar 

  235. Ko, T. M. et al. Use of HLA-B*58:01 genotyping to prevent allopurinol induced severe cutaneous adverse reactions in Taiwan: national prospective cohort study. BMJ 351, h4848 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Cortes, J. et al. Control of plasma uric acid in adults at risk for tumor lysis syndrome: efficacy and safety of rasburicase alone and rasburicase followed by allopurinol compared with allopurinol alone–results of a multicenter phase III study. J. Clin. Oncol. 28, 4207–4213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Bellos, I. et al. Febuxostat administration for the prevention of tumour lysis syndrome: a meta-analysis. J. Clin. Pharm. Ther. 44, 525–533 (2019).

    CAS  PubMed  Google Scholar 

  238. Ganz, P. A. Cancer survivors: a look backward and forward. J. Oncol. Pract. 10, 289–293 (2014).

    Article  PubMed  Google Scholar 

  239. Gyawali, B. et al. Reporting harms more transparently in trials of cancer drugs. BMJ 363, k4383 (2018).

    Article  PubMed  Google Scholar 

  240. Gyawali, B. et al. In American Society of Clinical Oncology Educational Book 374–387 (ASCO, 2019).

  241. Roy, U. B. et al. Learning from patients: reflection on use of patient-reported outcomes in lung cancer trials. J. Thorac. Oncol. 13, 1815–1817 (2018).

    Article  Google Scholar 

  242. Wallis, C. J. D. et al. Association of treatment modality, functional outcomes, and baseline characteristics with treatment-related regret among men with localized prostate cancer. JAMA Oncol. 8, 50–59 (2021).

    Article  Google Scholar 

  243. Basch, E. et al. Symptom monitoring with patient-reported outcomes during routine cancer treatment: a randomized controlled trial. J. Clin. Oncol. 34, 557–565 (2016).

    Article  CAS  PubMed  Google Scholar 

  244. Basch, E., Charlot, M. & Dueck, A. C. Population-level evidence of survival benefits of patient-reported outcome symptom monitoring software systems in routine cancer care. Cancer Med. 9, 7797–7799 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Mohile, S. G. et al. Practical assessment and management of vulnerabilities in older patients receiving chemotherapy: ASCO guideline for geriatric oncology. J. Clin. Oncol. 36, 2326–2347 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Kabbinavar, F. et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol. 21, 60–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  247. Scappaticci, F. A. et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J. Natl Cancer Inst. 99, 1232–1239 (2007).

    Article  PubMed  Google Scholar 

  248. Nalluri, S. R. et al. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 300, 2277–2285 (2008).

    Article  CAS  PubMed  Google Scholar 

  249. Zangari, M. et al. Thrombotic events in patients with cancer receiving antiangiogenesis agents. J. Clin. Oncol. 27, 4865–4873 (2009).

    Article  CAS  PubMed  Google Scholar 

  250. Lyman, G. H. Impact of venous thromboembolism on survival in patients with advanced cancer: an unmet clinical need. Intern. Emerg. Med. 9, 497–499 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank the peer reviewers for their thoughtful and constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to all aspects of the preparation of the article.

Corresponding authors

Correspondence to Nicole M. Kuderer or Gary H. Lyman.

Ethics declarations

Competing interests

N.M.K. reports personal fees from BeyondSpring, BMS, G1 Therapeutics, Invitae, Sandoz, Seattle Genetics, Spectrum and Total Health, all outside the submitted work. M.B.L. is on the physician advisory board for Infinite Strength, Project Life, and The Right Dose and has been a consultant for AstraZeneca, Biotheranostics, Novartis, and Pfizer outside of the current subject. G.H.L. reports institutional research funding from Amgen, honoraria for lectures from Merck, Partners Healthcare, ER Squibb, Samsung, Sandoz, Seattle Genetics and TEVA, and honoraria for consulting from BeyondSpring, G1 Therapeutics and Jazz Pharm. A.D. declares no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks P. Gascon, M. Shayne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuderer, N.M., Desai, A., Lustberg, M.B. et al. Mitigating acute chemotherapy-associated adverse events in patients with cancer. Nat Rev Clin Oncol 19, 681–697 (2022). https://doi.org/10.1038/s41571-022-00685-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00685-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer