Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment landscape of triple-negative breast cancer — expanded options, evolving needs

Abstract

Tumour heterogeneity and a long-standing paucity of effective therapies other than chemotherapy have contributed to triple-negative breast cancer (TNBC) being the subtype with the least favourable outcomes. In the past few years, advances in omics technologies have shed light on the relevance of the TNBC microenvironment heterogeneity, unveiling a close dynamic relationship with cancer cell features. An improved understanding of tumour–immune system co-evolution supports the need to adopt a more comprehensive view of TNBC as an ecosystem that encompasses the intrinsic and extrinsic features of cancer cells. This new appreciation of the biology of TNBC has already led to the development of novel targeted agents, including PARP inhibitors, antibody–drug conjugates and immune-checkpoint inhibitors, which are revolutionizing the therapeutic landscape and providing new opportunities both for patients with early-stage TNBC and for those with advanced-stage disease. The current therapeutic scenario is only the tip of the iceberg, as hundreds of new compounds and combinations are in development. The translation of these experimental therapies into clinical benefit is a welcome and ongoing challenge. In this Review, we describe the current and upcoming therapeutic landscape of TNBC and discuss how an integrated view of the TNBC ecosystem can define different levels of risk and provide improved opportunities for tailoring treatment.

Key points

  • Improved understanding of the interplay between triple-negative breast cancer (TNBC) tumour cells and their microenvironment supports the adoption of a new comprehensive view of this cancer type as an ecosystem.

  • Tumour–immune co-evolution from early-stage disease through to the metastatic process is accompanied by profound changes in immune cell dynamics that explain variations in the activity of immune-checkpoint inhibitors in different disease settings.

  • Chemotherapy remains the reference treatment of TNBC, although the optimal use of platinum-based agents, dose-dense therapy and post-neoadjuvant capecitabine remains to be clarified.

  • Targeted agents, such as PARP inhibitors and antibody–drug conjugates, are established additions in the therapeutic landscape of TNBC.

  • The key role of immune-checkpoint inhibitors in the treatment of TNBC is being defined and a plethora of ongoing trials testing different combination approaches will provide additional insights to improve the efficacy of immunotherapy.

  • The application of a breast cancer immunogram describing the TNBC ecosystem will help to successfully implement precision immunology and fulfil the promise of immunotherapy in TNBC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular features of the TNBC ecosystem.
Fig. 2: Targeting signalling pathways and oncogenic vulnerabilities in TNBC.
Fig. 3: The challenge of optimizing immunotherapies for TNBC.
Fig. 4: Landscape of immunotherapy trials in TNBC.

Similar content being viewed by others

References

  1. Bianchini, G., Balko, J. M., Mayer, I. A., Sanders, M. E. & Gianni, L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 13, 674–690 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Ali, H. R. et al. Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer. Nat. Cancer 1, 163–175 (2020).

    PubMed  Google Scholar 

  4. Wagner, J. et al. A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell 177, 1330–1345.e18 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387.e19 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Savas, P. et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 24, 986–993 (2018).

    CAS  PubMed  Google Scholar 

  7. Wellenstein, M. D. & de Visser, K. E. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48, 399–416 (2018).

    CAS  PubMed  Google Scholar 

  8. Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).

    CAS  PubMed  Google Scholar 

  9. Bareche, Y. et al. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: towards an optimized treatment approach. J. Natl Cancer Inst. 112, 708–719 (2020).

    PubMed  Google Scholar 

  10. Lehmann, B. D. et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Lehmann, B. D. et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE 11, e0157368 (2016).

    PubMed Central  PubMed  Google Scholar 

  12. Jiang, Y. Z. et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell 35, 428–440.e5 (2019).

    CAS  PubMed  Google Scholar 

  13. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  14. Safonov, A. et al. Immune gene expression is associated with genomic aberrations in breast cancer. Cancer Res. 77, 3317–3324 (2017).

    CAS  PubMed  Google Scholar 

  15. Karn, T. et al. Association between genomic metrics and immune infiltration in triple-negative breast cancer. JAMA Oncol. 3, 1707–1711 (2017).

    PubMed Central  PubMed  Google Scholar 

  16. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    PubMed Central  PubMed  Google Scholar 

  17. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614.e14 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Wellenstein, M. D. et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 572, 538–542 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Ghosh, M. et al. Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell 39, 494–508.e5 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, Y. et al. Targeted immunotherapy for HER2-low breast cancer with 17p loss. Sci. Transl. Med. 13, eabc6894 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Parkes, E. E. et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J. Natl Cancer Inst. 109, djw199 (2016).

    PubMed Central  Google Scholar 

  22. Sharma, P. et al. Validation of the DNA damage immune response signature in patients with triple-negative breast cancer from the SWOG 9313c trial. J. Clin. Oncol. 37, 3484–3492 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Samstein, R. M. et al. Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. Nat. Cancer 1, 1188–1203 (2020).

    PubMed Central  PubMed  Google Scholar 

  24. Prestipino, A. & Zeiser, R. Clinical implications of tumor-intrinsic mechanisms regulating PD-L1. Sci. Transl. Med. 11, eaav4810 (2019).

    CAS  PubMed  Google Scholar 

  25. Bachelot, T. et al. Durvalumab compared to maintenance chemotherapy in metastatic breast cancer: the randomized phase II SAFIR02-BREAST IMMUNO trial. Nat. Med. 27, 250–255 (2021).

    CAS  PubMed  Google Scholar 

  26. Qin, G. et al. NPM1 upregulates the transcription of PD-L1 and suppresses T cell activity in triple-negative breast cancer. Nat. Commun. 11, 1669 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Sayaman, R. W. et al. Germline genetic contribution to the immune landscape of cancer. Immunity 54, 367–386.e8 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Loi, S. et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J. Clin. Oncol. 37, 559–569 (2019).

    PubMed Central  PubMed  Google Scholar 

  29. Bianchini, G. et al. Molecular anatomy of breast cancer stroma and its prognostic value in estrogen receptor-positive and -negative cancers. J. Clin. Oncol. 28, 4316–4323 (2010).

    PubMed  Google Scholar 

  30. Callari, M. et al. Subtype-specific metagene-based prediction of outcome after neoadjuvant and adjuvant treatment in breast cancer. Clin. Cancer Res. 22, 337–345 (2016).

    CAS  PubMed  Google Scholar 

  31. Gruosso, T. et al. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. J. Clin. Invest. 129, 1785–1800 (2019).

    PubMed Central  PubMed  Google Scholar 

  32. Bertucci, F. et al. Genomic characterization of metastatic breast cancers. Nature 569, 560–564 (2019).

    CAS  PubMed  Google Scholar 

  33. Hutchinson, K. E. et al. Comprehensive profiling of poor-risk paired primary and recurrent triple-negative breast cancers reveals immune phenotype shifts. Clin. Cancer Res. 26, 657–668 (2020).

    CAS  PubMed  Google Scholar 

  34. Zhu, L. et al. Metastatic breast cancers have reduced immune cell recruitment but harbor increased macrophages relative to their matched primary tumors. J. Immunother. Cancer 7, 265 (2019).

    PubMed Central  PubMed  Google Scholar 

  35. Stover, D. G. et al. Association of cell-free DNA tumor fraction and somatic copy number alterations with survival in metastatic triple-negative breast cancer. J. Clin. Oncol. 36, 543–553 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Szekely, B. et al. Immunological differences between primary and metastatic breast cancer. Ann. Oncol. 29, 2232–2239 (2018).

    CAS  PubMed  Google Scholar 

  37. Hu, Z., Li, Z., Ma, Z. & Curtis, C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 52, 701–708 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Ogiya, R. et al. Comparison of immune microenvironments between primary tumors and brain metastases in patients with breast cancer. Oncotarget 8, 103671–103681 (2017).

    PubMed Central  PubMed  Google Scholar 

  39. Rozenblit, M. et al. Comparison of PD-L1 protein expression between primary tumors and metastatic lesions in triple negative breast cancers. J. Immunother. Cancer 8, e001558 (2020).

    PubMed Central  PubMed  Google Scholar 

  40. Li, Y. et al. Prevalence study of PD-L1 SP142 assay in metastatic triple-negative breast cancer. Appl. Immunohistochem. Mol. Morphol. 29, 258–264 (2021).

    CAS  PubMed  Google Scholar 

  41. Rugo, H. S. et al. LBA20 - Performance of PD-L1 immunohistochemistry (IHC) assays in unresectable locally advanced or metastatic triple-negative breast cancer (mTNBC): post-hoc analysis of IMpassion130. Ann. Oncol. 30, v858–v859 (2019).

    Google Scholar 

  42. Crispe, I. N. Hepatic T cells and liver tolerance. Nat. Rev. Immunol. 3, 51–62 (2003).

    CAS  PubMed  Google Scholar 

  43. Poggio, F. et al. Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: a systematic review and meta-analysis. Ann. Oncol. 29, 1497–1508 (2018).

    CAS  PubMed  Google Scholar 

  44. Fu, D., Calvo, J. A. & Samson, L. D. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat. Rev. Cancer 12, 104–120 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Tung, N. et al. TBCRC 031: randomized phase II study of neoadjuvant cisplatin versus doxorubicin-cyclophosphamide in germline BRCA carriers with HER2-negative breast cancer (the INFORM trial). J. Clin. Oncol. 38, 1539–1548 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Yu, K.-D. et al. Effect of adjuvant paclitaxel and carboplatin on survival in women with triple-negative breast cancer: a phase 3 randomized clinical trial. JAMA Oncol. 6, 1390–1396 (2020).

    PubMed  Google Scholar 

  47. Pandy, J. G. P., Balolong-Garcia, J. C., Cruz-Ordinario, M. V. B. & Que, F. V. F. Triple negative breast cancer and platinum-based systemic treatment: a meta-analysis and systematic review. BMC Cancer 19, 1065 (2019).

    PubMed Central  PubMed  Google Scholar 

  48. Tutt, A. et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat. Med. 24, 628–637 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Diéras, V. et al. Veliparib with carboplatin and paclitaxel in BRCA-mutated advanced breast cancer (BROCADE3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 21, 1269–1282 (2020).

    PubMed  Google Scholar 

  50. Joensuu, H. et al. Adjuvant capecitabine in combination with docetaxel, epirubicin, and cyclophosphamide for early breast cancer: the randomized clinical FinXX Trial. JAMA Oncol. 3, 793–800 (2017).

    PubMed Central  PubMed  Google Scholar 

  51. Masuda, N. et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N. Engl. J. Med. 376, 2147–2159 (2017).

    CAS  PubMed  Google Scholar 

  52. O’Shaughnessy, J. et al. Patients with slowly proliferative early breast cancer have low five-year recurrence rates in a phase III adjuvant trial of capecitabine. Clin. Cancer Res. 21, 4305–4311 (2015).

    PubMed  Google Scholar 

  53. Ohno, S. et al. Randomized trial of preoperative docetaxel with or without capecitabine after 4 cycles of 5-fluorouracil–epirubicin–cyclophosphamide (FEC) in early-stage breast cancer: exploratory analyses identify Ki67 as a predictive biomarker for response to neoadjuvant chemotherapy. Breast Cancer Res. Treat. 142, 69–80 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  54. von Minckwitz, G. et al. Response-guided neoadjuvant chemotherapy for breast cancer. J. Clin. Oncol. 31, 3623–3630 (2013).

    Google Scholar 

  55. von Minckwitz, G. et al. Survival after adding capecitabine and trastuzumab to neoadjuvant anthracycline-taxane-based chemotherapy for primary breast cancer (GBG 40 — GeparQuattro). Ann. Oncol. 25, 81–89 (2014).

    Google Scholar 

  56. Lluch, A. et al. Phase III trial of adjuvant capecitabine after standard neo-/adjuvant chemotherapy in patients with early triple-negative breast cancer (GEICAM/2003-11_CIBOMA/2004-01). J. Clin. Oncol. 38, 203–213 (2020).

    CAS  PubMed  Google Scholar 

  57. Wang, X. et al. Effect of capecitabine maintenance therapy using lower dosage and higher frequency vs observation on disease-free survival among patients with early-stage triple-negative breast cancer who had received standard treatment: the SYSUCC-001 randomized clinical trial. JAMA 325, 50–58 (2021).

    CAS  PubMed  Google Scholar 

  58. van Mackelenbergh, M. et al. Abstract GS1-07: Effects of capecitabine as part of neo-/adjuvant chemotherapy. A meta-analysis of individual patient data from 12 randomized trials including 15,457 patients. Cancer Res. 80, GS1-07 (2020).

    Google Scholar 

  59. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG).Increasing the dose intensity of chemotherapy by more frequent administration or sequential scheduling: a patient-level meta-analysis of 37 298 women with early breast cancer in 26 randomised trials. Lancet 393, 1440–1452 (2019).

    Google Scholar 

  60. Cameron, D. et al. Accelerated versus standard epirubicin followed by cyclophosphamide, methotrexate, and fluorouracil or capecitabine as adjuvant therapy for breast cancer in the randomised UK TACT2 trial (CRUK/05/19): a multicentre, phase 3, open-label, randomised, controlled trial. Lancet Oncol. 18, 929–945 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Citron, M. L. et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J. Clin. Oncol. 21, 1431–1439 (2003).

    CAS  PubMed  Google Scholar 

  62. Del Mastro, L. et al. Fluorouracil and dose-dense chemotherapy in adjuvant treatment of patients with early-stage breast cancer: an open-label, 2 × 2 factorial, randomised phase 3 trial. Lancet 385, 1863–1872 (2015).

    PubMed  Google Scholar 

  63. Venturini, M. et al. Dose-dense adjuvant chemotherapy in early breast cancer patients: results from a randomized trial. J. Natl Cancer Inst. 97, 1724–1733 (2005).

    CAS  PubMed  Google Scholar 

  64. Polak, P. et al. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat. Genet. 49, 1476–1486 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Staaf, J. et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat. Med. 25, 1526–1533 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  66. den Brok, W. D. et al. Homologous recombination deficiency in breast cancer: a clinical review. JCO Precis. Oncol. https://doi.org/10.1200/PO.16.00031 (2017).

  67. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    CAS  PubMed  Google Scholar 

  69. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    CAS  PubMed  Google Scholar 

  70. Robson, M. et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med. 377, 523–533 (2017).

    CAS  PubMed  Google Scholar 

  71. Litton, J. K. et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N. Engl. J. Med. 379, 753–763 (2018).

    CAS  PubMed  Google Scholar 

  72. Robson, M. E. et al. OlympiAD final overall survival and tolerability results: olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann. Oncol. 30, 558–566 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Litton, J. K. et al. Talazoparib versus chemotherapy in patients with germline BRCA1/2-mutated HER2-negative advanced breast cancer: final overall survival results from the EMBRACA trial. Ann. Oncol. 31, 1526–1535 (2020).

    CAS  PubMed  Google Scholar 

  74. Lord, C. J. & Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science 355, 1152–1158 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Murai, J. et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72, 5588–5599 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Rugo, H. S. et al. Adaptive randomization of veliparib-carboplatin treatment in breast cancer. N. Engl. J. Med. 375, 23–34 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Loibl, S. et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol. 19, 497–509 (2018).

    CAS  PubMed  Google Scholar 

  78. Fasching, P. A. et al. Neoadjuvant paclitaxel/olaparib in comparison to paclitaxel/carboplatinum in patients with HER2-negative breast cancer and homologous recombination deficiency (GeparOLA study). Ann. Oncol. 32, 49–57 (2021).

    CAS  PubMed  Google Scholar 

  79. Litton, J. K. et al. Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant. J. Clin. Oncol. 38, 388–394 (2020).

    CAS  PubMed  Google Scholar 

  80. Litton, J. K. et al. Neoadjuvant talazoparib in patients with germline BRCA1/2 (gBRCA1/2) mutation-positive, early HER2-negative breast cancer (BC): results of a phase 2 study. J. Clin. Oncol. 39, 505 (2021).

    Google Scholar 

  81. Tutt, A. N. J. et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N. Engl. J. Med. 384, 2394–2405 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tung, N. M., Zakalik, D. & Somerfield, M. R. Adjuvant PARP inhibitors in patients with high-risk early-stage HER2-negative breast cancer and germline BRCA mutations: ASCO Hereditary Breast Cancer Guideline Rapid Recommendation Update. J. Clin. Oncol. 39, 2959–2961 (2021).

    PubMed  Google Scholar 

  83. Sharma, P. et al. Results of a phase II randomized trial of cisplatin +/- veliparib in metastatic triple-negative breast cancer (TNBC) and/or germline BRCA-associated breast cancer (SWOG S1416). J. Clin. Oncol. 38, 1001 (2020).

    Google Scholar 

  84. Tung, N. M. et al. TBCRC 048: phase II study of olaparib for metastatic breast cancer and mutations in homologous recombination-related genes. J. Clin. Oncol. 38, 4274–4282 (2020).

    CAS  PubMed  Google Scholar 

  85. Diamond, J. R. et al. A phase II clinical trial of the Aurora and angiogenic kinase inhibitor ENMD-2076 for previously treated, advanced, or metastatic triple-negative breast cancer. Breast Cancer Res. 20, 82 (2018).

    PubMed Central  PubMed  Google Scholar 

  86. Drago, J. Z., Modi, S. & Chandarlapaty, S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 18, 327–344 (2021).

    PubMed  Google Scholar 

  87. Bardia, A. et al. Efficacy and safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J. Clin. Oncol. 35, 2141–2148 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Cubas, R., Zhang, S., Li, M., Chen, C. & Yao, Q. Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway. Mol. Cancer 9, 253 (2010).

    PubMed Central  PubMed  Google Scholar 

  89. Lin, H. et al. Significantly upregulated TACSTD2 and cyclin D1 correlate with poor prognosis of invasive ductal breast cancer. Exp. Mol. Pathol. 94, 73–78 (2013).

    CAS  PubMed  Google Scholar 

  90. Bardia, A. et al. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N. Engl. J. Med. 380, 741–751 (2019).

    CAS  PubMed  Google Scholar 

  91. Bardia, A. et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N. Engl. J. Med. 384, 1529–1541 (2021).

    CAS  PubMed  Google Scholar 

  92. Bardia, A. et al. Biomarker analyses in the phase III ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Ann. Oncol. 32, 1148–1156 (2021).

    CAS  PubMed  Google Scholar 

  93. Taylor, K. M. et al. The emerging role of the LIV-1 subfamily of zinc transporters in breast cancer. Mol. Med. 13, 396–406 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Manning, D. L. et al. Oestrogen-regulated genes in breast cancer: association of pLIV1 with lymph node involvement. Eur. J. Cancer 30a, 675–678 (1994).

    CAS  PubMed  Google Scholar 

  95. Yamashita, S. et al. Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature 429, 298–302 (2004).

    CAS  PubMed  Google Scholar 

  96. Modi, S. et al. Abstract PD3-14: phase 1 study of the antibody-drug conjugate SGN-LIV1A in patients with heavily pretreated triple-negative metastatic breast cancer. Cancer Res. 78, PD3-14 (2018).

    Google Scholar 

  97. Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl. J. Med. 382, 610–621 (2020).

    CAS  PubMed  Google Scholar 

  98. Modi, S. et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ib study. J. Clin. Oncol. 38, 1887–1896 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Cardillo, T. M. et al. Synthetic lethality exploitation by an anti-trop-2-SN-38 antibody-drug conjugate, IMMU-132, plus PARP inhibitors in BRCA1/2-wild-type triple-negative breast cancer. Clin. Cancer Res. 23, 3405–3415 (2017).

    CAS  PubMed  Google Scholar 

  100. Coats, S. et al. Antibody–drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin. Cancer Res. 25, 5441–5448 (2019).

    CAS  PubMed  Google Scholar 

  101. Yonemori, K. et al. Single agent activity of U3-1402, a HER3-targeting antibody-drug conjugate, in HER3-overexpressing metastatic breast cancer: updated results from a phase I/II trial. Ann. Oncol. 30, iii48 (2019).

    Google Scholar 

  102. Hoxhaj, G. & Manning, B. D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).

    CAS  PubMed  Google Scholar 

  103. Janku, F., Yap, T. A. & Meric-Bernstam, F. Targeting the PI3K pathway in cancer: are we making headway? Nat. Rev. Clin. Oncol. 15, 273–291 (2018).

    CAS  PubMed  Google Scholar 

  104. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Google Scholar 

  105. Dent, R. et al. Abstract GS3-04: double-blind placebo (PBO)-controlled randomized phase III trial evaluating first-line ipatasertib (IPAT) combined with paclitaxel (PAC) for PIK3CA/AKT1/PTEN-altered locally advanced unresectable or metastatic triple-negative breast cancer (aTNBC): primary results from IPATunity130 Cohort A. Cancer Res. 81, GS3-04 (2021).

    Google Scholar 

  106. Pascual, J. & Turner, N. C. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann. Oncol. 30, 1051–1060 (2019).

    CAS  PubMed  Google Scholar 

  107. Sharma, P. et al. Clinical and biomarker results from phase I/II study of PI3K inhibitor alpelisib plus nab-paclitaxel in HER2-negative metastatic breast cancer. Clin. Cancer Res. 27, 3896–3904 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Davies, B. R. et al. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol. Cancer Ther. 11, 873–887 (2012).

    CAS  PubMed  Google Scholar 

  109. Kim, S. B. et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 18, 1360–1372 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Schmid, P. et al. Capivasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer: the PAKT trial. J. Clin. Oncol. 38, 423–433 (2020).

    CAS  PubMed  Google Scholar 

  111. Oliveira, M. et al. FAIRLANE, a double-blind placebo-controlled randomized phase II trial of neoadjuvant ipatasertib plus paclitaxel for early triple-negative breast cancer. Ann. Oncol. 30, 1289–1297 (2019).

    CAS  PubMed  Google Scholar 

  112. Kalinsky, K. et al. Effect of capivasertib in patients with an AKT1 E17K-mutated tumor: NCI-MATCH subprotocol EAY131-Y nonrandomized trial. JAMA Oncol. 7, 271–278 (2021).

    PubMed  Google Scholar 

  113. Dhillon, A. S., Hagan, S., Rath, O. & Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 26, 3279–3290 (2007).

    CAS  PubMed  Google Scholar 

  114. Sinkala, M., Nkhoma, P., Mulder, N. & Martin, D. P. Integrated molecular characterisation of the MAPK pathways in human cancers reveals pharmacologically vulnerable mutations and gene dependencies. Commun. Biol. 4, 9 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Schafer, J. M. et al. Targeting MYCN-expressing triple-negative breast cancer with BET and MEK inhibitors. Sci. Transl. Med. 12, eaaw8275 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Logue, J. S. & Morrison, D. K. Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Genes Dev. 26, 641–650 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Schmid, P. et al. A study of vistusertib in combination with selumetinib in patients with advanced cancers: TORCMEK phase Ib results. J. Clin. Oncol. 35, 2548 (2017).

    Google Scholar 

  118. Burstein, M. D. et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin. Cancer Res. 21, 1688–1698 (2015).

    CAS  PubMed  Google Scholar 

  119. Bareche, Y. et al. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Ann. Oncol. 29, 895–902 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Michmerhuizen, A. R., Spratt, D. E., Pierce, L. J. & Speers, C. W. ARe we there yet? Understanding androgen receptor signaling in breast cancer. NPJ Breast Cancer 6, 47 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Kono, M. et al. Androgen receptor function and androgen receptor-targeted therapies in breast cancer: a review. JAMA Oncol. 3, 1266–1273 (2017).

    PubMed  Google Scholar 

  122. Traina, T. A. et al. Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer. J. Clin. Oncol. 36, 884–890 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Gucalp, A. et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin. Cancer Res. 19, 5505–5512 (2013).

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Bonnefoi, H. et al. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Ann. Oncol. 27, 812–818 (2016).

    CAS  PubMed  Google Scholar 

  125. Lehmann, B. D. et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 16, 406 (2014).

    PubMed Central  PubMed  Google Scholar 

  126. Gordon, M. A. et al. Synergy between androgen receptor antagonism and inhibition of mTOR and HER2 in breast cancer. Mol. Cancer Ther. 16, 1389–1400 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Lehmann, B. D. et al. TBCRC 032 IB/II multicenter study: molecular insights to AR antagonist and PI3K inhibitor efficacy in patients with AR+ metastatic triple-negative breast cancer. Clin. Cancer Res. 26, 2111–2123 (2020).

    CAS  PubMed  Google Scholar 

  128. Asghar, U. S. et al. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin. Cancer Res. 23, 5561–5572 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Fassl, A. et al. Increased lysosomal biomass is responsible for the resistance of triple-negative breast cancers to CDK4/6 inhibition. Sci. Adv. 6, eabb2210 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Gucalp, A. et al. Phase II trial of bicalutamide in combination with palbociclib for the treatment of androgen receptor+ metastatic breast cancer. J. Clin. Oncol. 38, 1017 (2020).

    Google Scholar 

  131. Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15, 731–747 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Okamura, R. et al. Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: implications for NTRK-targeted therapeutics. JCO Precis. Oncol. https://doi.org/10.1200/po.18.00183 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  133. Wilson, T., Sokol, E. S., Ross, J. S. & Maund, S. L. 131P NTRK1/2/3 fusions in secretory versus non-secretory breast cancers. Ann. Oncol. 31, S292 (2020).

    Google Scholar 

  134. Drilon, A. et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med. 378, 731–739 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Pereira, B. et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat. Commun. 7, 11479 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Smyth, L. M. et al. Efficacy and determinants of response to HER kinase inhibition in HER2-mutant metastatic breast cancer. Cancer Discov. 10, 198–213 (2020).

    CAS  PubMed  Google Scholar 

  137. Adams, S. et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study. Ann. Oncol. 30, 405–411 (2019).

    CAS  PubMed  Google Scholar 

  138. Adams, S. et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann. Oncol. 30, 397–404 (2019).

    CAS  PubMed  Google Scholar 

  139. Bian, L. et al. JS001, an anti-PD-1 mAb for advanced triple negative breast cancer patients after multi-line systemic therapy in a phase I trial. Ann. Transl. Med. 7, 435 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Dirix, L. Y. et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res. Treat. 167, 671–686 (2018).

    CAS  PubMed  Google Scholar 

  141. Emens, L. A. et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study. JAMA Oncol. 5, 74–82 (2019).

    PubMed  Google Scholar 

  142. Nanda, R. et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 Study. J. Clin. Oncol. 34, 2460–2467 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  143. O’Shaughnessy, J. et al. Results of ENCORE 602 (TRIO025), a phase II, randomized, placebo-controlled, double-blinded, multicenter study of atezolizumab with or without entinostat in patients with advanced triple-negative breast cancer (aTNBC). J. Clin. Oncol. 38, 1014 (2020).

    Google Scholar 

  144. Voorwerk, L. et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat. Med. 25, 920–928 (2019).

    CAS  PubMed  Google Scholar 

  145. Winer, E. P. et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial. Lancet Oncol. 22, 499–511 (2021).

    CAS  PubMed  Google Scholar 

  146. Park, Y. H. et al. Chemotherapy induces dynamic immune responses in breast cancers that impact treatment outcome. Nat. Commun. 11, 6175 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Loi, S. et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res. 22, 1499–1509 (2016).

    CAS  PubMed  Google Scholar 

  148. Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    CAS  PubMed  Google Scholar 

  149. Bianchini, G. et al. LBA13 Tumour infiltrating lymphocytes (TILs), PD-L1 expression and their dynamics in the NeoTRIPaPDL1 trial. Ann. Oncol. 31, S1145–S1146 (2020).

    Google Scholar 

  150. Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 17, 725–741 (2020).

    PubMed  Google Scholar 

  151. Schmid, P. et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018).

    CAS  PubMed  Google Scholar 

  152. Emens, L. A. et al. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann. Oncol. 32, 983–993 (2021).

    CAS  PubMed  Google Scholar 

  153. Cortes, J. et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 396, 1817–1828 (2020).

    PubMed  Google Scholar 

  154. Rugo, H. S. et al. Abstract GS3-01: additional efficacy endpoints from the phase 3 KEYNOTE-355 study of pembrolizumab plus chemotherapy vs placebo plus chemotherapy as first-line therapy for locally recurrent inoperable or metastatic triple-negative breast cancer. Cancer Res. 81, GS3-01 (2021).

    Google Scholar 

  155. Merck. Merck announces phase 3 KEYNOTE-355 trial met primary endpoint of overall survival (OS) in patients with metastatic triple-negative breast cancer whose tumors expressed PD-L1 (CPS ≥10). Merck https://www.merck.com/news/merck-announces-phase-3-keynote-355-trial-met-primary-endpoint-of-overall-survival-os-in-patients-with-metastatic-triple-negative-breast-cancer-whose-tumors-expressed-pd-l1-cps-≥10/ (2021).

  156. Miles, D. et al. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Ann. Oncol. 32, 994–1004 (2021).

    CAS  PubMed  Google Scholar 

  157. FDA. Final summary minutes of the oncologic drugs advisory committee meeting April 27–29, 2021. FDA https://www.fda.gov/media/150755/download (2021).

  158. Roche. Roche provides update on Tecentriq US indication for PD-L1-positive, metastatic triple-negative breast cancer. Roche https://www.roche.com/media/releases/med-cor-2021-08-27.htm (2021).

  159. Arbour, K. C. et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non–small-cell lung cancer. J. Clin. Oncol. 36, 2872–2878 (2018).

    CAS  PubMed  Google Scholar 

  160. Iorgulescu, J. B. et al. Concurrent dexamethasone limits the clinical benefit of immune checkpoint blockade in glioblastoma. Clin. Cancer Res. 27, 276–287 (2021).

    CAS  PubMed  Google Scholar 

  161. Cullis, J. et al. Macropinocytosis of Nab-paclitaxel drives macrophage activation in pancreatic cancer. Cancer Immunol. Res. 5, 182–190 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Brufsky, A. et al. A phase II randomized trial of cobimetinib plus chemotherapy, with or without atezolizumab, as first-line treatment for patients with locally advanced or metastatic triple-negative breast cancer (COLET): primary analysis. Ann. Oncol. 32, 652–660 (2021).

    CAS  PubMed  Google Scholar 

  163. Tolaney, S. M. et al. A phase Ib/II study of eribulin (ERI) plus pembrolizumab (PEMBRO) in metastatic triple-negative breast cancer (mTNBC) (ENHANCE 1). J. Clin. Oncol. 38, 1015 (2020).

    Google Scholar 

  164. Sohn, J. et al. Preliminary safety and efficacy of GX-I7, a long-acting interleukin-7, in combination with pembrolizumab in patients with refractory or recurrent metastatic triple negative breast cancer (mTNBC): dose escalation period of phase Ib/II study (KEYNOTE-899). J. Clin. Oncol. 38, 1072 (2020).

    Google Scholar 

  165. Miles, D. W. et al. LBA15 Primary results from IMpassion131, a double-blind placebo-controlled randomised phase III trial of first-line paclitaxel (PAC) atezolizumab (atezo) for unresectable locally advanced/metastatic triple-negative breast cancer (mTNBC). Ann. Oncol. 31, S1147–S1148 (2020).

    Google Scholar 

  166. Lwin, Z. et al. LBA41 LEAP-005: phase II study of lenvatinib (len) plus pembrolizumab (pembro) in patients (pts) with previously treated advanced solid tumours. Ann. Oncol. 31, S1170 (2020).

    Google Scholar 

  167. Han, H. et al. Abstract PD1-06: open label phase 1b/2 study of ladiratuzumab vedotin in combination with pembrolizumab for first-line treatment of patients with unresectable locally-advanced or metastatic triple-negative breast cancer. Cancer Res. 80, PD1-06 (2020).

    Google Scholar 

  168. Domchek, S. M. et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 21, 1155–1164 (2020).

    CAS  PubMed  Google Scholar 

  169. Vinayak, S. et al. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol. 5, 1132–1140 (2019).

    PubMed Central  PubMed  Google Scholar 

  170. Schmid, P. et al. Abstract CT049: phase Ib study evaluating a triplet combination of ipatasertib (IPAT), atezolizumab (atezo), and paclitaxel (PAC) or nab-PAC as first-line (1L) therapy for locally advanced/metastatic triple-negative breast cancer (TNBC). Cancer Res. 79, CT049 (2019).

    Google Scholar 

  171. Adams, S. et al. Atezolizumab plus nab-paclitaxel in the treatment of metastatic triple-negative breast cancer with 2-year survival follow-up: a phase 1b clinical trial. JAMA Oncol. 5, 334–342 (2019).

    PubMed  Google Scholar 

  172. Schmid, P. et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: results from the phase 1b open-label, multicohort KEYNOTE-173 study. Ann. Oncol. 31, 569–581 (2020).

    CAS  PubMed  Google Scholar 

  173. Schmid, P. et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 382, 810–821 (2020).

    CAS  PubMed  Google Scholar 

  174. Nanda, R. et al. Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: an analysis of the ongoing phase 2 adaptively randomized I-SPY2 Trial. JAMA Oncol. 6, 676–684 (2020).

    PubMed  Google Scholar 

  175. Mittendorf, E. A. et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. Lancet 396, 1090–1100 (2020).

    CAS  PubMed  Google Scholar 

  176. Gianni, L. et al. Abstract GS3-04: pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple negative, early high-risk and locally advanced breast cancer. NeoTRIPaPDL1 Michelangelo randomized study. Cancer Res. 80, GS3-04 (2020).

    Google Scholar 

  177. Loibl, S. et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study. Ann. Oncol. 30, 1279–1288 (2019).

    CAS  PubMed  Google Scholar 

  178. Patel, S. A. & Minn, A. J. Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies. Immunity 48, 417–433 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Lee, W. S., Yang, H., Chon, H. J. & Kim, C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp. Mol. Med. 52, 1475–1485 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Petroni, G., Buqué, A., Zitvogel, L., Kroemer, G. & Galluzzi, L. Immunomodulation by targeted anticancer agents. Cancer Cell 39, 310–345 (2021).

    CAS  PubMed  Google Scholar 

  181. Schmid, P. et al. BEGONIA: phase 1b/2 study of durvalumab (D) combinations in locally advanced/metastatic triple-negative breast cancer (TNBC) — initial results from arm 1, d+paclitaxel (P), and arm 6, d+trastuzumab deruxtecan (T-DXd). J. Clin. Oncol. 39, 1023 (2021).

    Google Scholar 

  182. Messenheimer, D. J. et al. Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clin. Cancer Res. 23, 6165–6177 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Schmid, P. et al. VP7-2021: KEYNOTE-522: phase III study of neoadjuvant pembrolizumab + chemotherapy vs. placebo + chemotherapy, followed by adjuvant pembrolizumab vs. placebo for early-stage TNBC. Ann. Oncol. 32, 1198–1200 (2021).

    Google Scholar 

  184. FDA. Pembrolizumab oncologic drugs advisory committee briefing document. FDA https://www.fda.gov/media/145654/download (2021).

  185. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007).

    CAS  PubMed  Google Scholar 

  186. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    PubMed  Google Scholar 

  187. Hegde, P. S. & Chen, D. S. Top 10 challenges in cancer immunotherapy. Immunity 52, 17–35 (2020).

    CAS  PubMed  Google Scholar 

  188. Loibl, S. et al. Durvalumab improves long-term outcome in TNBC: results from the phase II randomized GeparNUEVO study investigating neodjuvant durvalumab in addition to an anthracycline/taxane based neoadjuvant chemotherapy in early triple-negative breast cancer (TNBC). J. Clin. Oncol. 39, 506 (2021).

    Google Scholar 

  189. Korn, E. L., Sachs, M. C. & McShane, L. M. Statistical controversies in clinical research: assessing pathologic complete response as a trial-level surrogate end point for early-stage breast cancer. Ann. Oncol. 27, 10–15 (2016).

    CAS  PubMed  Google Scholar 

  190. Cortazar, P. et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384, 164–172 (2014).

    PubMed  Google Scholar 

  191. Dieci, M. V. et al. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann. Oncol. 25, 611–618 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Pusztai, L., Karn, T., Safonov, A., Abu-Khalaf, M. M. & Bianchini, G. New strategies in breast cancer: immunotherapy. Clin. Cancer Res. 22, 2105–2110 (2016).

    CAS  PubMed  Google Scholar 

  193. Gianni, L. et al. Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol. 15, 640–647 (2014).

    CAS  PubMed  Google Scholar 

  194. Bianchini, G. & Gianni, L. The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncol. 15, e58–e68 (2014).

    CAS  PubMed  Google Scholar 

  195. Liu, J. et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 6, 1382–1399 (2016).

    CAS  PubMed  Google Scholar 

  196. Brockwell, N. K. et al. Neoadjuvant interferons: critical for effective PD-1-based immunotherapy in TNBC. Cancer Immunol. Res. 5, 871–884 (2017).

    CAS  PubMed  Google Scholar 

  197. O’Donnell, J. S., Hoefsmit, E. P., Smyth, M. J., Blank, C. U. & Teng, M. W. L. The promise of neoadjuvant immunotherapy and surgery for cancer treatment. Clin. Cancer Res. 25, 5743–5751 (2019).

    PubMed  Google Scholar 

  198. Oliver, A. J. et al. Primary and metastatic breast tumors cross-talk to influence immunotherapy responses. Oncoimmunology 9, 1802979 (2020).

    PubMed Central  PubMed  Google Scholar 

  199. Blank, C. U. et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 24, 1655–1661 (2018).

    CAS  PubMed  Google Scholar 

  200. Loi, S. et al. Relationship between tumor infiltrating lymphocyte (TIL) levels and response to pembrolizumab (pembro) in metastatic triple-negative breast cancer (mTNBC): results from KEYNOTE-086. Ann. Oncol. 28, v608 (2017).

    Google Scholar 

  201. Alva, A. S. et al. Pembrolizumab (P) in patients (pts) with metastatic breast cancer (MBC) with high tumor mutational burden (HTMB): results from the Targeted Agent and Profiling Utilization Registry (TAPUR) study. J. Clin. Oncol. 37, 1014 (2019).

    Google Scholar 

  202. Emens, L. A. et al. 296P Tumour mutational burden and clinical outcomes with first-line atezolizumab and nab-paclitaxel in triple-negative breast cancer: exploratory analysis of the phase III IMpassion130 trial. Ann. Oncol. 31, S360–S361 (2020).

    Google Scholar 

  203. Karn, T. et al. Tumor mutational burden and immune infiltration as independent predictors of response to neoadjuvant immune checkpoint inhibition in early TNBC in GeparNuevo. Ann. Oncol. 31, 1216–1222 (2020).

    CAS  PubMed  Google Scholar 

  204. Winer, E. P. et al. Association of tumor mutational burden (TMB) and clinical outcomes with pembrolizumab (pembro) versus chemotherapy (chemo) in patients with metastatic triple-negative breast cancer (mTNBC) from KEYNOTE-119. J. Clin. Oncol. 38, 1013 (2020).

    Google Scholar 

  205. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    PubMed Central  PubMed  Google Scholar 

  206. Blank, C. U., Haanen, J. B., Ribas, A. & Schumacher, T. N. The “cancer immunogram”. Science 352, 658–660 (2016).

    CAS  PubMed  Google Scholar 

  207. McGrail, D. J. et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann. Oncol. 32, 661–672 (2021).

    CAS  PubMed  Google Scholar 

  208. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    CAS  PubMed  Google Scholar 

  209. Goodman, A. M. et al. Prevalence of PDL1 amplification and preliminary response to immune checkpoint blockade in solid tumors. JAMA Oncol. 4, 1237–1244 (2018).

    PubMed Central  PubMed  Google Scholar 

  210. Doroshow, D. B. et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021).

    CAS  PubMed  Google Scholar 

  211. Rugo, H. S. et al. PD-L1 immunohistochemistry assay comparison in atezolizumab plus nab-paclitaxel-treated advanced triple-negative breast cancer. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djab108 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  212. Sobral-Leite, M. et al. Assessment of PD-L1 expression across breast cancer molecular subtypes, in relation to mutation rate, BRCA1-like status, tumor-infiltrating immune cells and survival. Oncoimmunology 7, e1509820 (2018).

    PubMed Central  PubMed  Google Scholar 

  213. Loibl, S. et al. Abstract PD2-07: mRNA signatures predict response to durvalumab therapy in triple negative breast cancer (TNBC) — results of the translational biomarker programme of the neoadjuvant double-blind placebo controlled GeparNuevo trial. Cancer Res. 79, PD2-07 (2019).

    Google Scholar 

  214. Loi, S. et al. Abstract PD5-03: relationship between tumor-infiltrating lymphocytes (TILs) and outcomes in the KEYNOTE-119 study of pembrolizumab vs chemotherapy for previously treated metastatic triple-negative breast cancer (mTNBC). Cancer Res. 80, PD5-03 (2020).

    Google Scholar 

  215. Emens, L. A. et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer: biomarker evaluation of the IMpassion130 study. J. Natl Cancer Inst. 113, 1005–1016 (2021).

    PubMed Central  PubMed  Google Scholar 

  216. Zou, Y. et al. Efficacy and predictive factors of immune checkpoint inhibitors in metastatic breast cancer: a systematic review and meta-analysis. Ther. Adv. Med. Oncol. 12, 1758835920940928 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  217. Hiam-Galvez, K. J., Allen, B. M. & Spitzer, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 21, 345–359 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Elinav, E., Garrett, W. S., Trinchieri, G. & Wargo, J. The cancer microbiome. Nat. Rev. Cancer 19, 371–376 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors receive support from the Associazione Italiana per la Ricerca sul Cancro (IG2018–ID21787 project grant to G.B.), Breast Cancer Research Foundation (grants to L.G.), Cancer Prevention and Research Institute of Texas (RP140102), Conquer Cancer Foundation — Gianni Bonadonna Breast Cancer Research Fellowship (grants to C.D.A.), Fondazione Michelangelo (grants to G.B.) and Italian Ministry of Health (Ricerca Finalizzata 2018) (grants to G.B.). The authors thank L. Pusztai (Yale School of Medicine) for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to all aspects of manuscript preparation.

Corresponding authors

Correspondence to Giampaolo Bianchini or Luca Gianni.

Ethics declarations

Competing interests

G.B. is a consultant and/or advisory board member for Amgen, AstraZeneca, Chugai, Daiichi Sankyo, EISAI, Eli Lilly, Genomic Health, Merck Sharp & Dohme, Neopharm, Novartis, Pfizer, Roche and Sanofi. C.D.A. is a consultant and/or advisory board member for AstraZeneca, Eli Lilly, GlaxoSmithKline, Novartis, Pfizer and Roche. L.L. is a consultant for Eli Lilly and Novartis. L.G. is a consultant and/or advisory board member for ADC Therapeutics, Amgen, AstraZeneca, Biomedical Insights, Celgene, Eli Lilly, Forty Seven (CD47 programmes), G1 Therapeutics, GENENTA, Genentech, Genomic Health, Hexal Sandoz, Menarini Ricerche, Merck Sharp & Dohme, METIS Precision Medicine, Novartis, Odonate Therapeutics, Oncolytics Biotech, Onkaido Therapeutics, Pfizer, Revolution Medicines, Roche, Sanofi–Aventis, Seattle Genetics, Synaffix, Synthon, Taiho Pharmaceutical and Zymeworks.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks F. Montemurro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchini, G., De Angelis, C., Licata, L. et al. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol 19, 91–113 (2022). https://doi.org/10.1038/s41571-021-00565-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00565-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer