Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Artificial intelligence in radiation oncology

Abstract

Artificial intelligence (AI) has the potential to fundamentally alter the way medicine is practised. AI platforms excel in recognizing complex patterns in medical data and provide a quantitative, rather than purely qualitative, assessment of clinical conditions. Accordingly, AI could have particularly transformative applications in radiation oncology given the multifaceted and highly technical nature of this field of medicine with a heavy reliance on digital data processing and computer software. Indeed, AI has the potential to improve the accuracy, precision, efficiency and overall quality of radiation therapy for patients with cancer. In this Perspective, we first provide a general description of AI methods, followed by a high-level overview of the radiation therapy workflow with discussion of the implications that AI is likely to have on each step of this process. Finally, we describe the challenges associated with the clinical development and implementation of AI platforms in radiation oncology and provide our perspective on how these platforms might change the roles of radiotherapy medical professionals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Applications of AI in the radiation therapy workflow.
Fig. 2: Staff involvement and patient-facing steps in the radiation therapy workflow.
Fig. 3: Potential implications of applying AI in radiation oncology for members of the radiation therapy workforce.

Similar content being viewed by others

References

  1. Delaney, G., Jacob, S., Featherstone, C. & Barton, M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104, 1129–1137 (2005).

    Article  PubMed  Google Scholar 

  2. Pan, H. Y. et al. Supply and demand for radiation oncology in the United States: updated projections for 2015 to 2025. Int. J. Radiat. Oncol. Biol. Phys. 96, 493–500 (2016).

    Article  PubMed  Google Scholar 

  3. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Miller, K. D. et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin. 66, 271–289 (2016).

    Article  PubMed  Google Scholar 

  5. Atun, R. et al. Expanding global access to radiotherapy. Lancet Oncol. 16, 1153–1186 (2015).

    Article  PubMed  Google Scholar 

  6. Grover, S. et al. A systematic review of radiotherapy capacity in low- and middle-income countries. Front. Oncol. 4, 380 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Elmore, S. N. C., Ben Prajogi, G., Rubio, J. A. P. & Zubizarreta, E. The global radiation oncology workforce in 2030: estimating physician training needs and proposing solutions to scale up capacity in low- and middle-income countries. Adv. Radiat. Oncol. 1–8 (2019).

  8. Kresl, J. J. & Drummond, R. L. A historical perspective of the radiation oncology workforce and ongoing initiatives to impact recruitment and retention. J. Am. Coll. Radiol. 1, 641–648 (2004).

    Article  PubMed  Google Scholar 

  9. Peters, L. J. et al. Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: results from TROG 02.02. J. Clin. Oncol. 28, 2996–3001 (2010).

    Article  PubMed  Google Scholar 

  10. Brade, A. M. et al. Radiation therapy quality assurance (RTQA) of concurrent chemoradiation therapy for locally advanced non-small cell lung cancer in the PROCLAIM phase 3 trial. Int. J. Radiat. Oncol. Biol. Phys. 101, 927–934 (2018).

    Article  PubMed  Google Scholar 

  11. Kalet, I. J. & Paluszynski, W. Knowledge-based computer systems for radiotherapy planning. Am. J. Clin. Oncol. 13, 344–351 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Laramore, G. E. et al. Applications of data bases and AI/expert systems in radiation therapy. Am. J. Clin. Oncol. 11, 387–393 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Sanders, G. D. & Lyons, E. A. The potential use of expert systems to enable physicians to order more cost-effective diagnostic imaging examinations. J. Digit. Imaging 4, 112–122 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. J. W. L. Artificial intelligence in radiology. Nat. Rev. Cancer. 18, 500–510 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dreyfus, S. The numerical solution of variational problems. J. Math. Anal. Appl. 5, 30–45 (1962).

    Article  Google Scholar 

  16. Fukushima, K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. LeCun, Y., Haffner, P., Bottou, L. & Bengio, Y. in Shape, Contour and Grouping in Computer Vision (eds Forsyth, D. A., Mundy, J. L., di Gesú, V. & Cipolla, R.) 319–345 (Springer, 1999).

  18. Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).

    Article  PubMed  Google Scholar 

  19. Ngiam, J. et al. Multimodal deep learning. in Proceedings of the 28th international conference on machine learning (ICML-11) 689–696 (2011).

  20. Feng, M., Valdes, G., Dixit, N. & Solberg, T. D. Machine learning in radiation oncology: opportunities, requirements, and needs. Front. Oncol. 8, 110 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kann, B. H. et al. Pretreatment identification of head and neck cancer nodal metastasis and extranodal extension using deep learning neural networks. Sci. Rep. 8, 14036 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Savova, G. K. et al. DeepPhe: a natural language processing system for extracting cancer phenotypes from clinical records. Cancer Res. 77, e115–e118 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hong, J. C., Niedzwiecki, D., Palta, M. & Tenenbaum, J. D. Predicting emergency visits and hospital admissions during radiation and chemoradiation: an internally validated pretreatment machine learning algorithm. JCO Clin. Cancer Inform. 2, 1–11 (2018).

    Article  PubMed  Google Scholar 

  24. Oberije, C. et al. A validated prediction model for overall survival from stage III non-small cell lung cancer: toward survival prediction for individual patients. Int. J. Radiat. Oncol. Biol. Phys. 92, 935–944 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jochems, A. et al. Developing and validating a survival prediction model for NSCLC patients through distributed learning across 3 countries. Int. J. Radiat. Oncol. Biol. Phys. 99, 344–352 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Deist, T. M. et al. Expert knowledge and data-driven Bayesian networks to predict post-RT dyspnea and 2-year survival. Radiother. Oncol. 118, S29–S30 (2016).

    Article  Google Scholar 

  27. Deist, T. M. et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med. Phys. 45, 3449–3459 (2018).

    Article  PubMed  Google Scholar 

  28. Gilmer, V., Timothy, D. S., Marina, H., Lyle, U. & Charles, B. S. II. Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Phys. Med. Biol. 61, 6105 (2016).

    Article  CAS  Google Scholar 

  29. Lou, B. et al. An image-based deep learning framework for individualising radiotherapy dose: a retrospective analysis of outcome prediction. Lancet Digital Health 1, e136–e147 (2019).

    Article  PubMed  Google Scholar 

  30. Nguyen, D. et al. A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci. Rep. 9, 1076 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Campbell, W. G. et al. Neural network dose models for knowledge-based planning in pancreatic SBRT. Med. Phys. 44, 6148–6158 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Häring, M., Großhans, J., Wolf, F. & Eule, S. Automated segmentation of epithelial tissue using cycle-consistent generative adversarial networks. Preprint at bioRxiv (2018).

  33. Dinkla, A. M. et al. MR-only brain radiation therapy: dosimetric evaluation of synthetic CTs generated by a dilated convolutional neural network. Int. J. Radiat. Oncol. Biol. Phys. 102, 801–812 (2018).

    Article  PubMed  Google Scholar 

  34. Han, X. MR-based synthetic CT generation using a deep convolutional neural network method. Med. Phys. 44, 1408–1419 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Maspero, M. et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys. Med. Biol. 63, 185001 (2018).

    Article  PubMed  Google Scholar 

  36. Chandarana, H., Wang, H., Tijssen, R. H. N. & Das, I. J. Emerging role of MRI in radiation therapy. J. Magn. Reson. Imaging 48, 1468–1478 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rai, R. et al. The integration of MRI in radiation therapy: collaboration of radiographers and radiation therapists. J. Med. Radiat. Sci. 64, 61–68 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kerkmeijer, L. G. W. et al. The MRI-linear accelerator consortium: evidence-based clinical introduction of an innovation in radiation oncology connecting researchers, methodology, data collection, quality assurance, and technical development. Front. Oncol. 6, 215 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hyun, C. M., Kim, H. P., Lee, S. M., Lee, S. & Seo, J. K. Deep learning for undersampled MRI reconstruction. Phys. Med. Biol. 63, 135007 (2018).

    Article  PubMed  Google Scholar 

  40. Wang, S. et al. Accelerating magnetic resonance imaging via deep learning. Proc. IEEE Int. Symp. Biomed. Imaging 514–517 (2016).

  41. Zhu, B., Liu, J. Z., Cauley, S. F., Rosen, B. R. & Rosen, M. S. Image reconstruction by domain-transform manifold learning. Nature 555, 487–492 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Schlemper, J., Caballero, J., Hajnal, J. V., Price, A. N. & Rueckert, D. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37, 491–503 (2018).

    Article  PubMed  Google Scholar 

  43. Fallone, B. G. The rotating biplanar linac–magnetic resonance imaging system. Semin. Radiat. Oncol. 24, 200–202 (2014).

    Article  PubMed  Google Scholar 

  44. Mutic, S. & Dempsey, J. F. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin. Radiat. Oncol. 24, 196–199 (2014).

    Article  PubMed  Google Scholar 

  45. Raaymakers, B. W. et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys. Med. Biol. 54, N229–N237 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Bahrami, K., Shi, F., Rekik, I. & Shen, D. in Deep Learning and Data Labeling for Medical Applications 39–47 (Springer, 2016).

  47. de Tournemire P. et al. An artificial agent for robust image registration. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence 4168–4175 (2017).

  48. Wu, G., Kim, M., Wang, Q., Munsell, B. C. & Shen, D. Scalable high-performance image registration framework by unsupervised deep feature representations learning. IEEE Trans. Biomed. Eng. 63, 1505–1516 (2016).

    Article  PubMed  Google Scholar 

  49. Miao, S., et al. Dilated FCN for multi-agent 2D/3D medical image registration. Thirty-Second AAAI Conference on Artificial Intelligence (2018).

  50. Hou, B. et al. Predicting slice-to-volume transformation in presence of arbitrary subject motion. International Conference on Medical Image Computing and Computer-Assisted Intervention 296–304 (2017).

  51. Yang, X., Kwitt, R., Styner, M. & Niethammer, M. Fast predictive multimodal image registration. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI) 858–862 (2017).

  52. Miao, S., Jane Wang, Z., Zheng, Y. & Liao, R. Real-time 2D/3D registration via CNN regression. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)1430–1434 (2016).

  53. Kearney, V., Haaf, S., Sudhyadhom, A., Valdes, G. & Solberg, T. D. An unsupervised convolutional neural network-based algorithm for deformable image registration. Phys. Med. Biol. 63, 185017 (2018).

    Article  PubMed  Google Scholar 

  54. Ma, K. et al. Multimodal image registration with deep context reinforcement learning. in Lecture Notes in Computer Science 240–248 (2017).

  55. Suk, H.-I., Lee, S.-W. & Shen, D. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101, 569–582 (2014).

    Article  PubMed  Google Scholar 

  56. Van de Steene, J. et al. Definition of gross tumor volume in lung cancer: inter-observer variability. Radiother. Oncol. 62, 37–49 (2002).

    Article  PubMed  Google Scholar 

  57. Cui, Y. et al. Contouring variations and the role of atlas in non-small cell lung cancer radiation therapy: analysis of a multi-institutional preclinical trial planning study. Pract. Radiat. Oncol. 5, e67–e75 (2015).

    Article  PubMed  Google Scholar 

  58. Wuthrick, E. J. et al. Institutional clinical trial accrual volume and survival of patients with head and neck cancer. J. Clin. Oncol. 33, 156–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Ohri, N. et al. Radiotherapy protocol deviations and clinical outcomes: a meta-analysis of Cooperative Group clinical trials. J. Clin. Oncol. 30, 181–181 (2012).

    Article  Google Scholar 

  60. Delpon, G. et al. Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy. Front. Oncol. 6, 178 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kim, Y. et al. Impact of contouring accuracy on expected tumor control probability for head and neck cancer: semiautomated segmentation versus manual contouring. Int. J. Radiat. Oncol. Biol. Phys. 96, E545 (2016).

    Article  Google Scholar 

  62. Men, K. et al. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front. Oncol. 7, 315 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mak, R. H. et al. Use of crowd innovation to develop an artificial intelligence-based solution for radiation therapy targeting. JAMA Oncol. 5, 654 (2019).

    Article  Google Scholar 

  64. Cardenas, C. E. et al. Deep learning algorithm for auto-delineation of high-risk oropharyngeal clinical target volumes with built-in dice similarity coefficient parameter optimization function. Int. J. Radiat. Oncol. Biol. Phys. 101, 468–478 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ibragimov, B. & Xing, L. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med. Phys. 44, 547–557 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Lustberg, T. et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother. Oncol. 126, 312–317 (2018).

    Article  PubMed  Google Scholar 

  67. Jackson, P. et al. Deep learning renal segmentation for fully automated radiation dose estimation in unsealed source therapy. Front. Oncol. 8, 215 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Peijun, H., Fa, W., Jialin, P., Ping, L. & Dexing, K. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys. Med. Biol. 61, 8676 (2016).

    Article  Google Scholar 

  69. Ibragimov, B., Toesca, D., Chang, D., Koong, A. & Xing, L. Combining deep learning with anatomical analysis for segmentation of the portal vein for liver SBRT planning. Phys. Med. Biol. 62, 8943–8958 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Morris, E. D. et al. Cardiac substructure segmentation with deep learning for improved cardiac sparing. Med. Phys. 47, 576–586 (2020).

    Article  Google Scholar 

  71. Nikolov, S. et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. Preprint at arXiv (2018).

  72. Zhang, J., Ates, O. & Li, A. Implementation of a machine learning-based automatic contour quality assurance tool for online adaptive radiation therapy of prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 96, E668 (2016).

    Article  Google Scholar 

  73. Berry, S. L., Boczkowski, A., Ma, R., Mechalakos, J. & Hunt, M. Interobserver variability in radiation therapy plan output: results of a single-institution study. Pract. Radiat. Oncol. 6, 442–449 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Appenzoller, L. M., Michalski, J. M., Thorstad, W. L., Mutic, S. & Moore, K. L. Predicting dose-volume histograms for organs-at-risk in IMRT planning. Med. Phys. 39, 7446–7461 (2012).

    Article  PubMed  Google Scholar 

  75. Babier, A., Boutilier, J. J., McNiven, A. L. & Chan, T. C. Y. Knowledge-based automated planning for oropharyngeal cancer. Med. Phys. 45, 2875–2883 (2018).

    Article  Google Scholar 

  76. Boutilier, J. J., Lee, T., Craig, T., Sharpe, M. B. & Chan, T. C. Y. Models for predicting objective function weights in prostate cancer IMRT. Med. Phys. 42, 1586–1595 (2015).

    Article  PubMed  Google Scholar 

  77. Voet, P. W. J. et al. Toward fully automated multicriterial plan generation: a prospective clinical study. Int. J. Radiat. Oncol. Biol. Phys. 85, 866–872 (2013).

    Article  PubMed  Google Scholar 

  78. Hussein, M., Heijmen, B. J. M., Verellen, D. & Nisbet, A. Automation in intensity modulated radiotherapy treatment planning — a review of recent innovations. Br. J. Radiol. 91, 20180270 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Xing, Y., Nguyen, D., Lu, W., Yang, M. & Jiang, S. Technical note: a feasibility study on deep learning-based radiotherapy dose calculation. Med. Phys. 47, 753–758 (2019).

    Article  PubMed  Google Scholar 

  80. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Chen, J. X. The evolution of computing: AlphaGo. Comput. Sci. Eng. 18, 4–7 (2016).

    Article  Google Scholar 

  82. Shen, C. et al. Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate brachytherapy for cervical cancer. Phys. Med. Biol. 64, 115013 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tseng, H.-H. et al. Deep reinforcement learning for automated radiation adaptation in lung cancer. Med. Phys. 44, 6690–6705 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Valdes, G. et al. A mathematical framework for virtual IMRT QA using machine learning. Med. Phys. 43, 4323 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Valdes, G. et al. IMRT QA using machine learning: a multi-institutional validation. J. Appl. Clin. Med. Phys. 18, 279–284 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Carlson, J. N. K. et al. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors. Phys. Med. Biol. 61, 2514–2531 (2016).

    Article  PubMed  Google Scholar 

  87. Li, Q. & Chan, M. F. Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study. Ann. N. Y. Acad. Sci. 1387, 84–94 (2017).

    Article  PubMed  Google Scholar 

  88. Valdes, G. et al. Use of TrueBeam developer mode for imaging QA. J. Appl. Clin. Med. Phys. 16, 322–333 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Paul, C. et al. Cancer patients’ concerns regarding access to cancer care: perceived impact of waiting times along the diagnosis and treatment journey. Eur. J. Cancer Care 21, 321–329 (2012).

    Article  CAS  Google Scholar 

  90. Joseph, A., Hijal, T., Kildea, J., Hendren, L. & Herrera, D. in Machine Learning and Applications (ICMLA), 2017 16th IEEE International Conference 1024–1029 (McGill Univ. Health Centre, 2018).

  91. Kida, S. et al. Cone beam computed tomography image quality improvement using a deep convolutional neural network. Cureus 10, e2548 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Langen, K. M. & Jones, D. T. Organ motion and its management. Int. J. Radiat. Oncol. Biol. Phys. 50, 265–278 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Isaksson, M., Jalden, J. & Murphy, M. J. On using an adaptive neural network to predict lung tumor motion during respiration for radiotherapy applications. Med. Phys. 32, 3801–3809 (2005).

    Article  PubMed  Google Scholar 

  94. Kakar, M., Nyström, H., Aarup, L. R., Nøttrup, T. J. & Olsen, D. R. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS). Phys. Med. Biol. 50, 4721–4728 (2005).

    Article  PubMed  Google Scholar 

  95. Murphy, M. J. & Pokhrel, D. Optimization of an adaptive neural network to predict breathing. Med. Phys. 36, 40–47 (2009).

    Article  PubMed  Google Scholar 

  96. Guidi, G. et al. A support vector machine tool for adaptive tomotherapy treatments: prediction of head and neck patients criticalities. Phys. Med. 31, 442–451 (2015).

    Article  PubMed  Google Scholar 

  97. Guidi, G. et al. A machine learning tool for re-planning and adaptive RT: a multicenter cohort investigation. Phys. Med. 32, 1659–1666 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Varfalvy, N., Piron, O., Cyr, M. F., Dagnault, A. & Archambault, L. Classification of changes occurring in lung patient during radiotherapy using relative γ analysis and hidden Markov models. Med. Phys. 44, 5043–5050 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Xu, Y. et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin. Cancer Res. 25, 3266–3275 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hosny, A. et al. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med. 15, e1002711 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Cha, K. H. et al. Bladder cancer treatment response assessment in CT using radiomics with deep-learning. Sci. Rep. 7, 8738 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Chen, X. et al. Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on quantitative radiomic analysis of daily CTs: an exploratory study. PLoS ONE 12, e0178961 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Horvat, N. et al. MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy. Radiology 287, 833–843 (2018).

    Article  PubMed  Google Scholar 

  105. Mattonen, S. A. et al. Detection of local cancer recurrence after stereotactic ablative radiation therapy (SABR) for lung cancer: physician performance versus radiomic assessment. Int. J. Radiat. Oncol. Biol. Phys. 96, S48 (2016).

    Article  Google Scholar 

  106. Lambin, P. et al. Predicting outcomes in radiation oncology — multifactorial decision support systems. Nat. Rev. Clin. Oncol. 10, 27–40 (2013).

    Article  PubMed  Google Scholar 

  107. Lee, S. et al. Machine learning on a genome-wide association study to predict late genitourinary toxicity after prostate radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 101, 128–135 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Dean, J. et al. Incorporating spatial dose metrics in machine learning-based normal tissue complication probability (NTCP) models of severe acute dysphagia resulting from head and neck radiotherapy. Clin. Transl. Radiat. Oncol. 8, 27–39 (2018).

    Article  PubMed  Google Scholar 

  109. Gabryś, H. S., Buettner, F., Sterzing, F., Hauswald, H. & Bangert, M. Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia. Front. Oncol. 8, 35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Dean, J. A. et al. Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy. Radiother. Oncol. 120, 21–27 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Cunliffe, A. et al. Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int. J. Radiat. Oncol. Biol. Phys. 91, 1048–1056 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Chen, S., Zhou, S., Yin, F.-F., Marks, L. B. & Das, S. K. Investigation of the support vector machine algorithm to predict lung radiation-induced pneumonitis. Med. Phys. 34, 3808–3814 (2007).

    Article  PubMed  Google Scholar 

  113. Moran, A., Daly, M. E., Yip, S. S. F. & Yamamoto, T. Radiomics-based assessment of radiation-induced lung injury after stereotactic body radiotherapy. Clin. Lung Cancer 18, e425–e431 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Luna, J. M. et al. Novel use of machine learning for predicting radiation esophagitis in locally advanced stage II–III non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 99, E476–E477 (2017).

    Article  Google Scholar 

  115. Zhen, X. et al. Deep convolutional neural networks with transfer learning for rectum toxicity prediction in combined brachytherapy and external beam radiation therapy for cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 99, S168 (2017).

    Article  Google Scholar 

  116. Liu, Z. et al. Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas. NeuroImage Clin. 19, 271–278 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wright, J. L. et al. Standardizing normal tissue contouring for radiation therapy treatment planning: an ASTRO consensus paper. Pract. Radiat. Oncol. 9, 65–72 (2019).

    Article  PubMed  Google Scholar 

  118. Covington, E. L. et al. Improving treatment plan evaluation with automation. J. Appl. Clin. Med. Phys. 17, 16–31 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Evans, S. B. et al. Standardizing dose prescriptions: an ASTRO white paper. Pract. Radiat. Oncol. 6, e369–e381 (2016).

    Article  PubMed  Google Scholar 

  120. Clark, K. et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26, 1045–1057 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mayo, C. S. et al. American Association of Physicists in Medicine task group 263: standardizing nomenclatures in radiation oncology. Int. J. Radiat. Oncol. Biol. Phys. 100, 1057–1066 (2018).

    Article  PubMed  Google Scholar 

  122. Hayman, J. A. et al. Minimum data elements for radiation oncology: an ASTRO consensus paper. Pract. Radiat. Oncol. 9, 395–401 (2019).

    Article  PubMed  Google Scholar 

  123. Kim, D. W., Jang, H. Y., Kim, K. W., Shin, Y. & Park, S. H. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J. Radiol. 20, 405 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Allen, B. Jr et al. A road map for translational research on artificial intelligence in medical imaging: from the 2018 National Institutes of Health/RSNA/ACR/the Academy workshop. J. Am. Coll. Radiol. 16, 1179–1189 (2019).

    Article  PubMed  Google Scholar 

  125. Gilpin, L. H. et al. in 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) 80–89 (2018).

  126. Goodman, B. & Flaxman, S. European Union regulations on algorithmic decision-making and a ‘right to explanation’. AI Mag. 38, 50–57 (2017).

    Article  Google Scholar 

  127. Kaminski, M. E. The right to explanation, explained. Berkeley Technol. Law J. 34, 1 (2019).

    Google Scholar 

  128. Harned, Z., Lungren, M. P. & Rajpurkar, P. Machine Vision, Medical AI, and Malpractice (JOLT, 2019).

  129. Buolamwini, J. & Gebru, T. in Proceedings of the 1st Conference on Fairness, Accountability and Transparency Vol. 81 (eds Friedler, S. A. & Wilson, C.) 77–91 (PMLR, 2018).

  130. Angwin, J., Larson, J., Mattu, S. & Kirchner, L. Machine bias. ProPublica 23, 2016 (2016).

    Google Scholar 

  131. Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Char, D. S., Shah, N. H. & Magnus, D. Implementing machine learning in health care — addressing ethical challenges. N. Engl. J. Med. 378, 981–983 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. IMDRF. “Software as a Medical Device”: Possible Framework for Risk Categorization and Corresponding Considerations. http://www.imdrf.org/docs/imdrf/final/technical/imdrf-tech-140918-samd-framework-risk-categorization-141013.pdf (2014).

  134. FDA. Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) — Discussion Paper and Request for Feedback. https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf (2019).

  135. FDA. Draft Guidance for Industry and Food and Drug Administration Staff. https://www.fda.gov/media/109618/download (2019).

  136. Hwang, T. J., Kesselheim, A. S. & Vokinger, K. N. Lifecycle regulation of artificial intelligence- and machine learning-based software devices in medicine. JAMA 322, 2285–2286 (2019).

    Article  PubMed  Google Scholar 

  137. Bitterman, D. S. et al. Master protocol trial design for efficient and rational evaluation of novel therapeutic oncology devices. J. Natl Cancer Inst. 112, 229–237 (2020).

    Article  PubMed  Google Scholar 

  138. Schuller, B. W., Hendrickson, K. R. G. & Rong, Y. Medical physicists should meet with patients as part of the initial consult. J. Appl. Clin. Med. Phys. 19, 6–9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Brown, D. W. et al. A program to train medical physicists for direct patient care responsibilities. J. Appl. Clin. Med. Phys. 19, 332–335 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Atwood, T. F. et al. Establishing a new clinical role for medical physicists: a prospective phase II trial. Int. J. Radiat. Oncol. Biol. Phys. 102, 635–641 (2018).

    Article  PubMed  Google Scholar 

  141. Nelms, B. E. et al. Variation in external beam treatment plan quality: an inter-institutional study of planners and planning systems. Practical Radiat. Oncol. 2, 296–305 (2012).

    Article  Google Scholar 

  142. Adams, R. D. The future of medical dosimetry. Med. Dosim. 40, 159–165 (2015).

    Article  PubMed  Google Scholar 

  143. American Association of Medical Dosimetrists. 2017 Salary Survey of Currently Active Medical Dosimetrists. (American Association of Medical Dosimetrists, 2018).

  144. Center for Medicare & Medicaid Services. Radiation Oncology Model. https://innovation.cms.gov/initiatives/radiation-oncology-model (2019).

  145. Hosny, A. & Hugo, J. W. Artificial intelligence for global health. Science 366, 955–956 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Barton, M. B., Frommer, M. & Shafiq, J. Role of radiotherapy in cancer control in low-income and middle-income countries. Lancet Oncol. 7, 584–595 (2006).

    Article  PubMed  Google Scholar 

  147. Zubizarreta, E. H., Fidarova, E., Healy, B. & Rosenblatt, E. Need for radiotherapy in low and middle income countries — the silent crisis continues. Clin. Oncol. 27, 107–114 (2015).

    Article  CAS  Google Scholar 

  148. Aerts, H. J. W. L. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Wang, J. et al. A predictive model of radiation-related fibrosis based on radiomic features of magnetic resonance imaging. Int. J. Radiat. Oncol. Biol. Phys. 105, E599 (2019).

    Article  Google Scholar 

  150. Lin, H. et al. A super-learner model for tumor motion prediction and management in radiation therapy: development and feasibility evaluation. Sci. Rep. 9, 14868 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Mahdavi, S. R. et al. Use of artificial neural network for pretreatment verification of intensity modulation radiation therapy fields. Br. J. Radiol. 92, 20190355 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Zhen, X. et al. Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study. Phys. Med. Biol. 62, 8246–8263 (2017).

    Article  PubMed  Google Scholar 

  153. Tomori, S. et al. A deep learning-based prediction model for gamma evaluation in patient-specific quality assurance. Med. Phys. 45, 4055–4065 (2018).

    Article  Google Scholar 

  154. Kearney, V., Chan, J. W., Haaf, S., Descovich, M. & Solberg, T. D. DoseNet: a volumetric dose prediction algorithm using 3D fully-convolutional neural networks. Phys. Med. Biol. 63, 235022 (2018).

    Article  PubMed  Google Scholar 

  155. Chen, X., Men, K., Li, Y., Yi, J. & Dai, J. A feasibility study on an automated method to generate patient-specific dose distributions for radiotherapy using deep learning. Med. Phys. 46, 56–64 (2019).

    Article  PubMed  Google Scholar 

  156. Cui, S., Luo, Y., Tseng, H., Ten Haken, R. K. & El Naqa, I. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage. Med. Phys. 46, 2497–2511 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Wei, L. et al. Variational autoencoder graph-based radiomics outcome modeling of intrahepatic progression risk and overall survival for HCC post-SBRT patients. Int. J. Radiat. Oncol. Biol. Phys. 105, S83–S84 (2019).

    Article  Google Scholar 

  158. Mahmood, R., Babier, A., McNiven, A., Diamant, A. & Chan, T. C. Y. Automated treatment planning in radiation therapy using generative adversarial networks. Preprint at arXiv (2018).

Download references

Acknowledgements

The authors acknowledge financial support from the US NIH (grants U24CA194354, U01CA190234, U01CA209414 and R35CA220523).

Author information

Authors and Affiliations

Authors

Contributions

E.H., A.H. and R.H.M. researched data for the article; E.H., A.H., H.J.W.L.A. and R.H.M. contributed substantially to the discussion of content; and E.H., A.H., C.G., D.S.B., H.J.W.L.A. and R.H.M. wrote the article. All authors reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Hugo J. W. L. Aerts.

Ethics declarations

Competing Interests

A.H. is a shareholder of and receives consulting fees from Altis Labs. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks I. El Naqa, G. Valdes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, E., Hosny, A., Guthier, C. et al. Artificial intelligence in radiation oncology. Nat Rev Clin Oncol 17, 771–781 (2020). https://doi.org/10.1038/s41571-020-0417-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-0417-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer